Informatics 41 • Fall 2009	• David G. Kay • UC Irvine •	Your name
----------------------------	------------------------------	-----------

NINTH QUIZ

You have 15 minutes from the start of class to complete this quiz. Read the questions with care; work with deliberate speed. Don't give us more than we ask for. The usual instructions apply. Good luck!

Problem 1 (14 points)

Suppose you have a list of restaurant structures, which are defined as usual:

```
(define-struct rrant (name cuisine phone dish price)).
```

(a) (2 points) Fill in the blanks to complete the definition of this function. (Hint: Consider add1 or sub1.)

(b) (4 points) Now let's generalize this function to check for a match on any field of a restaurant. Complete the definition below; of course you'll need more than one symbol per line.

(c) (4 points) Now suppose we have a vector of restaurants instead of a list. Complete this version of rrant-location-in-vector (whose purpose is the same as above).

(d) (4 points) For each of the four functions defined on the previous page, mark its name below as TR (tailrecursive), RO (recursive (only) and not tail-recursive), or N (not recursive at all); consider each function independently, not including any internal definitions. For any function that is RO, list which section(s) of the code make it non-tail-recursive and (in just a couple of words) why.

rrant-location-by-name rrant-location rrant-location-in-vector rrant-location-aux

Problem 2 (4 points)

C. 000 101

D. 0101 0100

E. 0101 0100

000 100

0101 0101

0101 0111

000 011

000 101

0101 0010

0101 0010

000 110

0100 1011

0100 1011

000 001

0101 1001

0100 0101

For each of the algorith complexity (i.e., its O-r	-		check the box o	corresponding	g most closely to i	ts	
(a) (filter p? (map	f L)) where p? and	f are function	ns and L is a lis	st of n items:			
☐ Constant—O(1)	☐ Logarithmic—O($\log n$ \square L	inear—O(n)	☐ Quadra	tic $-O(n^2)$		
(b) (vector-ref V n) where V is a vector and n is a number between 0 and (vector-length V):							
☐ Constant—O(1)	☐ Logarithmic—O($\log n$ \square L	inear—O(n)	☐ Quadra	$tic-O(n^2)$		
(c) Search for an element in a (balanced) binary search tree containing n items:							
☐ Constant—O(1)	☐ Logarithmic—O($\log n$ \square L	inear—O(n)	☐ Quadra	tic $-O(n^2)$		
(d) In a (balanced) bi	•		rdered by the	restaurant's	name, collecting	; an	
☐ Constant—O(1)	☐ Logarithmic—O($\log n$ \square L	inear—O(n)	□ Quadra	tic $-O(n^2)$		
Problem 3 (2 points) (a) If you need to represent 25 different values (e.g., 25 different colors, or the numbers 0 to 24), car you do it in 4 bits? Why or why not?							
(b) Only one of the f Which one is it? (You A. 0101 0100 01	•	ow the actual	ASCII codes t	o answer thi		·"·	
B. 0101 0100		110 0001					