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Abstract

The problem of multiple global comparison in
families of biological sequences has been well-
studied. Fewer algorithms have been devel-
oped for identifying local consensus patterns
or motifs in biological sequence. These two
important problems have di�erent biological
constraints and, consequently, di�erent com-
putational approaches. The di�culty of �nd-
ing the biologically meaningful motifs results
from (1) the variation among motif bases, (2)
the alignment of motif position (sites) among
the sequences, and (3) the multiplicity of mo-
tif occurrences within a given sequence. In
this paper, we review and compare the main
approaches for �nding motifs. We also intro-
duce our own approach, DMS, which com-
bines two objective functions with an im-
proved iterative sampling search method. We
demonstrate the e�ectiveness of the various
algorithms by comparing them on 10 real do-
mains and 14 arti�cial domains. The main
advantage of DMS is that it is better able to
�nd shorter motifs.

1 Introduction

Genome projects are generating large data sets of ge-
nomic sequence data. However, the size and speed
of acquisition of these data sets exceeds experimental
analyses and interpretations. Among other genomes
sequenced, yeast was completely sequenced in 1995. It
has 12 million base pairs (bps) and about 6,000 genes.
To the surprise of biologists, the biological functions of
only about 2,000 genes were known. The functions of
another 2,000 genes might be guessed at by compari-

son. The functions of the remaining 2,000 genes, called
orphans, are unknown. Recently the complete genome
(approximately 100 million bps) of a multi-celled ani-
mal (C. elegans) was determined. Within a few years
the sequencing of the human genome (approximately 3
billion bps) is anticipated. Once the genome and genes
have been determined there are two essential questions
to be answered: 1) What is the function of each gene,
and 2) When is the gene expressed ?

The �rst question has been heavily studied and pri-
marily depends on characterizing a gene family. The
most successful way of characterizing a gene has been
based on probabilistic models, usually some instan-
tiation of Hidden Markov Models (HMMs). HMMs
work well for this problem since they provide a global
model which allows insertions, deletions, and trans-
positions. These capabilities match the intuition that
similar genes have had a common evolutionary history
and the evolution process involves insertions, deletions
and changes to the base pairs.

The second question has been less well studied and
has a very di�erent character. Biologists have deter-
mined that the control or regulation of gene expression
in animals is primarily determined by relatively short
sequences in the upstream or surrounding region of a
gene. These sequences vary in length from about 5 to
12, have large amount of variability in their base con-
stituency, do not have inserts or deletes, do not occur
in the same position, and sometimes occur multiple
times. These qualities prohibit the simple application
of HMMs.

Several methods have been developed for detecting
patterns shared by functionally related biosequences
(Helden et. al., 1998; Hertz & Stormo, 1995; Hertz et.

al., 1990; Bailey & Elkan, 1995; Lawrence et. al., 1993;
Hughey and Krogh, 1996; Eddy, 1995). These meth-
ods employ di�erent representations, objective func-



tions, and search strategies, and provide a basis for
understanding the various approaches.

In addition, we present a new approach called DMS to
detect motifs from sequences. DMS extends previous
work by combining two objective functions with an im-
proved iterative sampling technique. The performance
of our algorithm and several others are compared on 10
problems taken from the biological literature. Each of
these problems consists of a set of biological sequences
with known motifs. To further understand the limita-
tions and value of these programs, we also compared
the programs on 14 arti�cial problems, which were de-
signed to mimic real data.

2 Characteristics of Motif-�nding
Problem

Fundamentally the control of gene regulation is deter-
mined by chemical reactions which are, in turn, con-
trolled by the shape and electrostatic charges of the
molecules involved. Unfortunately this information is
not available. We expect that the local shape of a bind-
ing or receptor site will be primarily determined by the
bases involved, acknowledging the fact that non-local
base changes can a�ect local shape.

There are a number of consequences that we can ex-
pect from this view. These consequences are supported
by the structure of known motifs.

� Patterns are relatively short since they only de�ne
a local shape.

� Patterns are not de�ned by an exact sequence of
bases, and variation is allowed. Typically the vari-
ation is represented via a probability matrix.

� The precise location of the receptor site may not
be important, as the goal of the receptor site is to
bind to another molecule.

� Multiple occurrences of a receptor site may be
important since each occurrence would give a
molecule a greater chance of �nding the binding
site.

� Insertion and deletions probably do not occur,
as these would have a drastic e�ect on the local
shape of the receptor.

� The pattern or motif should be common to most
of these sequences and uncommon in all se-
quences. It is essential that not all genes are ex-
pressed, but only a selected few. Also there may

be multiple ways of turning on a gene, so it not
required that the motif occur in every sequence in
a given family.

These characteristics make the problem somewhat ill-
de�ned. The terms of \common", \pattern", and
\most" require precise de�nitions. While various def-
initions are possible, which best corresponds to the
underlying biological problem is unclear.

In any case these characteristics make the problem
computationally di�cult. For example, a typical prob-
lem would be: given 30 DNA sequences each of length
800, �nd a common pattern of length 8. Let us sim-
plify the problem, as many algorithms do, and assume
the pattern occurs exactly once in each sequence. This
means that there are approximately 80030 potential lo-
cations for a motif candidate.

3 Issues in Motif-Finding Algorithms

There are three main interrelated computational is-
sues: the representation of a pattern, the de�nition of
the objective function, and the search strategy. While
we examine the algorithms on computational grounds,
the �nal, gold-standard is how well the algorithm does
at predicting motifs.

3.1 Representation

As the primary DNA sequences are described by a
double-stranded string of nucleic bases fA,C,G,Tg, the
most basic pattern representation is the exact base
string. Due to the complexity and exibility of the mo-
tif binding mechanism, there is rarely any motif that
can be exactly described by a string of nucleic bases.
To obtain more exibility, the IUPAC code was de-
signed, which extends the expressiveness of the simple
base string representation by including all disjunctions
of nucleotides. In this language there is a new symbol
for each possible disjunction, e.g. W represents A or
T.

A more informative pattern representation is a proba-
bility matrix in which each element reects the impor-
tance of the base at a particular position. Such ma-
trices can be easily translated into the IUPAC code,
while the converse is not true. These matrices are often
transformed from the observed occurrence frequencies.
One limitation of probability matrices is that correla-
tion or dependence between positions are not repre-
sented.



3.2 Objective Function

The purpose of an objective function is to approximate
the biological meanings of the patterns in terms of a
mathematical function. The objective functions are
only heuristics. Once the objective function is deter-
mined, the goal is simply to �nd those patterns with
high objective function value. Di�erent objective func-
tions have been derived from the background knowl-
edge, such as the secondary structures of homologous
proteins, the relation between the energetic interac-
tions among residues and the residue frequencies, etc
(Stormo, 1990; Lawrence et. al., 1993). Objective
functions based on the information content or its vari-
ants were proposed (Hertz et. al., 1990; Lawrence et.

al., 1993). Others evaluate the quality of the pattern
by its likelihood or by some other measures of statisti-
cal signi�cance (Bailey & Elkan, 1995; Helden et. al.,
1998). In addition, some de�ne the pattern as a model
of a probabilistic sequence generator and evaluate the
model by the probability that the given sequence data
is generated by the model (Hughey and Krogh, 1996;
Eddy, 1995).

Even though there are many di�erent objective func-
tions currently used, they are all heuristic. It is still
unclear what is the best representation for patterns
and the best objective function, as that relates to bi-
ology. More than likely, additional knowledge will need
to be incorporated to get a better de�nition of a motif.
In the �nal analysis, the various algorithms can only
produce candidate motifs that will require biological
experiments to verify.

3.3 Search Strategy

If one adopts the exact string representation, then
one can exhaustively check every possible candidate.
However this approach is only able to identify short
known motifs or partial long motifs (Helden et. al.,
1998); therefore, the primary representation used is a
probability matrix (Harr et. al., 1983; Staden, 1984;
Hertz et. al., 1990; Lawrence et. al., 1993; Bailey and
Elkan, 1995). Once one accepts a probability matrix
as the representation, then there is no possibility for
an exhaustive search. Initial approaches started with
a hill-climbing strategy, but fell into local optimum.
Standard approaches to repairing hill-climbing, such as
beam search or adding a stochastic element was tried
next. The current approaches involve a mixture of
sampling and stochastic iterative improvement. This
avoids the computational explosion and maintains or
improves the ability to �nd motifs (Lawrence et. al.,

1993; Bailey and Elkan, 1995).

4 The DMS Algorithm

DMS adopts the probability matrix representation for
motifs. The user provides a family of sequences and
how many motifs he would like returned. The system
returns a ranked order of motifs.

The probability matrix representation has been used
in various pattern identi�cation problems (Harr et. al.,
1983; Staden, 1984; Hertz et. al., 1990; Lawrence et.

al., 1993). It is usually built from the base frequency
of example biosequences. For example, in the NIT reg-
ulatory family, which contains 7 members, a possible
6-base motif matrix looks like the following. If we di-
vide every element in the matrix by the total number
of sequences, i.e., 7, we get a normalized matrix as
shown in Figure 1.

Based on the normalized motif matrix, we could calcu-
late the match score of any 6-base sequence by dividing
the sum of the values for each position of the motif. For
example, given a 6-base sequence, GATAAG, its match
score is 0:86+1+1+1+1+1

6 . The success of these analy-
ses con�rms the fact that the frequencies of bases at
positions within sites are related to the importance of
the bases to the functioning within the sites (Stormo,
1988). The challenge is to �nd a matrix that well rep-
resents the motif in terms of the objective function.

We propose a new motif-�nding algorithm, DMS. Un-
like other approaches, DMS uses two types of objective
functions, the motif consensus quality and the motif
signi�cance. The consensus quality is used to guide the
search for \common" motif candidates. Motif signi�-
cance is used to rank motifs, estimating its biological
signi�cance.

We measure the consensus quality of a matrix by its
relative information content. The information is calcu-
lated from two probabilities, the probability that each
base (i.e., A, G, C, T) occurs in the genome, Pgb, and
the probability that each base occurs at each position
in the motif, Pmb. More precisely, the relative infor-
mation content for a particular position n is given by:

In =
X

b2A;G;C;T

Pmb lg
Pmb

Pgb

The �nal consensus quality of a matrix is de�ned as
the average quality over all positions.



A 0 7 0 7 7 0 A 0.00 1.00 0.00 1.00 1.00 0.00

G 6 0 0 0 0 7 normalized to G 0.86 0.00 0.00 0.00 0.00 1.00

C 1 0 0 0 0 0 C 0.14 0.00 0.00 0.00 0.00 0.00

T 0 0 7 0 0 0 T 0.00 0.00 1.00 0.00 0.00 0.00

Figure 1: A 6-base Motif Matrix Example

I = 1
W

PW

n=1 In , where W is the width of the motif.

The signi�cance measure is derived from the accuracy.
It is simple and empirically e�ective. We de�ne the
signi�cance of a motif b, by :

sig(b) = occS(b)
occG(b)

where occS(b) is b's occurrences in S, and occG(b) is
b's occurrences in genome. A more complicated and
computationally expensive measure of signi�cance is
given by Helden et. al. (Helden et. al., 1998), but
empirically we found the two measures give similar
rankings.

Given a set of N biosequences, DMS carries out an it-
erative improvement search to �nd a matrix that max-
imizes the consensus quality de�ned above. This ma-
trix is then a candidate for the motif. There are three
main steps in DMS, which are described in the follow-
ing subsections.

4.1 Translation: Subsequences into Matrices

If we knew the motif location(s) in every sequence, we
could start with a probability matrix corresponding to
these positions. As this is unknown, we begin by al-
lowing each subsequence of length W to be a candidate
motif. We convert this particular subsequence into a
probability matrix in two steps, adopting an idea from
(Bailey and Elkan, 1995). First we �x the probabil-
ity of every base in the subsequence to some value
0 < X < 1, and assign probabilities of the other bases
according to 1�X

4�1 (4 nucleic bases). Following Bailey
and Elkan, we set X to 0.5. This gives us a set of seed
probability matrices to be used as starting points for
iterative improvement. Since motifs should occur in
most sequences, we can select a random subset of the
sequences and only generate candidate starting points
from this subset.

4.2 Determining Possible Motif Occurrences

Rather than making the common assumption that
each motif occurs only once per sequence, we allow for
the possibility that a motifmay occur multiple times in
a single sequence. For each matrix and each sequence,
we �nd the position that maximizes the match score.
Now we set the threshold for deciding if a motif occurs
at any position as the mean of match scores. Finally
we add to the list of motif positions any position whose
match score is greater than this threshold. This pro-
cess de�nes a set of potential motif positions. Once
these motif positions are de�ned, the seed probability
matrices are no longer used.

4.3 Finding and Ranking Motif Candidates

After the likely motif positions are determined, DMS
performs an iterative optimization procedure to �nd
the motif probability matrix. Unlike other current ap-
proaches that search all possible positions within a se-
quence, DMS only considers the potential motif posi-
tions determined in the previous step. This strategy
signi�cantly constrains the search space. For initial-
ization, a randomly selected motif position from the
potential positions in each sequence forms the initial
probability matrix.

A sequence is then chosen at random for optimization.
DMS optimizes the information content of the matrix
by checking every potential motif position within the
selected sequence. The position that gains the high-
est information content is chosen to update the ma-
trix. The process is repeated until no improvement
is noted. In each optimization cycle, the order of se-
quences is randomly shu�ed. The randomization in
each trial cycle is important to remove implicit biases,
such as the order of the sequences, that can be harm-
ful in search algorithms (Hampson and Kibler, 1996).
When the process stops, in each sequence the subse-
quence that contributes to the last updated matrix is
determined. We then compute the mean of the match
scores of the subsequences that form the matrix, and



isolate all subsequences with a match score over the
mean as possible motif repeats in each sequence. All
these motif repeats in sequences are used to form the
�nal motif matrix.

The same procedure is performed on all matrices to
produce the motif candidates. Finally, DMS ranks the
motif candidates according to its signi�cance measure.
Unlike other algorithms that use a probabilistic repre-
sentation, DMS sets a threshold which de�nes whether
or not a subsequence is a motif. This permits DMS to
use the signi�cance measure for ranking motifs, and
the other algorithms cannot apply the same signi�-
cance measure directly.

A pseudocode description of matrix optimization pro-
cedure is given in Figure 2.

5 History/Related Work

We review some of the methods developed for the de-
tection of the motifs. These methods were selected
since they have been well-developed, are freely avail-
able over the internet, and represent a spectrum of
di�erent approaches.

CONSENSUS (Hertz et. al., 1990; Hertz and Stormo,
1995) was one of the �rst motif-�nding algorithms to
identify matrices common to a set of sequences. The
algorithm assumes that there is exactly one occurrence
per string. The algorithm uses beam search with an
information content evaluation function. The algo-
rithm's limitations are that it only found a single mo-
tif (and variants) from a set of sequence and often got
stuck in local optimum, missing the real motif.

The Gibbs sampler (Lawrence et. al., 1993) uses a
probabilistic matrix to describe a common pattern,
and its search strategy is based on random iterative
sampling. It is capable of �nding multiple motifs in se-
quences when the number of occurrences of each motif
in each sequence is known (Bailey & Elkan, 1995). It is
computationally expensive and has di�culty learning
short motifs.

The MEME algorithm (Bailey & Elkan, 1995) is an
extension/variation on the Expectation Maximization
(EM) algorithm introduced by Lawrence and Reilly,
1990. Like the Gibbs sampler, it also uses the prob-
abilistic matrix as the representation. By repeatedly
applying EM, MEME �nds a matrix with maximum
likelihood. In general MEME works very well, espe-
cially on longer sequences. A drawback is that MEME
has di�culty �nding short patterns, which is sup-
ported by experiments on real and arti�cial data.

Helden et. al. designed a simple algorithm that
detects over-represented oligonucleotides within se-
quences (Helden et. al., 1998). This method exhaus-
tively counts all oligonucleotide occurrences in the se-
quences, and estimates their statistical signi�cance.
This work highlighted the value of the multiplicity in
identifying motifs, however it has a number of short-
comings. The motif is not really identi�ed - this needs
to be done manually from the output of the program.
To maintain the simplicity of the representation, this
approach sacri�ces the expressiveness of probability
matrices, making it unable to �nd motifs with a large
amount of variability.

We summarize the main design decisions of the various
algorithms in Table 1.

6 Experiments on Real Domains

Recall that our goal is to describe the motif that de-
termines when a gene is expressed. From the litera-
ture, Helden et. al. de�ned ten families of genes that
have known common regulatory site(s) or motif(s). Bi-
ologists believe that there are likely to be additional
sites, but the known ones de�ne ten learning tasks for
evaluating the various algorithms. These families are
described in more detail in Table 2. Also recall that
the regulation of a gene is determined by motifs in the
upstream region. We used the 800 bp upstream region
for each gene, as this is the same sized region used by
Helden in his experiments. The data is available from
Saccharomyces Genome Database at Stanford1.

We ran all the motif-�nding algorithms above on these
regulatory families except for the Helden algorithm,
since his results were published. Except for DMS, none
of the algorithms we tested provides any ranking infor-
mation in its output. As they all adopt the matrix as
the representation, and the matching threshold is im-
plicit in the programs, our objective is to test whether
they can identify the published motifs based on other
controllable parameters, e.g., the motif width and the
number of motifs desired. Because of the variation
in strategies of the algorithms, we allowed each algo-
rithm to construct 100 motifs from each family. As
the biological literature only publishes regulatory mo-
tifs in the IUPAC code, we needed to construct a way
to credit the algorithms that determined a probability
matrix. Also the biological published motif may, in
fact, contain errors. We followed the following proce-
dure for determining a match. From each probability
matrix we constructed a consensus pattern. If this con-

1http://genome-www.stanford.edu/Saccharomyces



Given: a set of biosequences, B

A random subset of B, S

the width of motif, W

Return: a set of ranked motif candidates, C

Step 1. Translation

For each subsequence s in B Do

Translate s into candidate probability matrix m via:

m(i,base) = .50 if base occurs in position i

= .17 otherwise

Step 2. Determine possible motif positions

For each sequence s in S Do

Find highest match scoring subsequence in s

Compute the mean of the highest match scores in S

For each sequence s in S Do

Set Potential Positions to those with match

score >= mean

Step 3. Find and rank motif candidates

Randomly choose a Potential Position in each sequence

to initialize matrix M

Repeat

Randomly pick a sequence s in S

Check if M's quality can be improved by using a

different Potential Position in s

Update matrix M

Until no improvement in M's quality

Compute the mean of match scores of subsequences

contributing to M

For each sequence s in S Do

Isolate motif repeats to those with match score >= mean

Form the final matrix FM with all repeats in S

Put FM in C

Sort all motif candidates in C according to significance

Return C

Figure 2: Pseudocode of DMS



Table 1: Characteristics of Motif-Finding Algorithms

Algorithm Search Strategy Objective Function Representation
CONSENSUS beam search information frequency

content matrix
Gibbs stochastic ratio of pattern probabilistic

hill-climbing probability to matrix
background probability

MEME EM variant likelihood probabilistic
matrix

Helden exhaustive statistical base string
signi�cance

assuming binomial
distribution

DMS stochastic information probabilistic
hill-climbing content and matrix

signi�cance

Table 2: Ten regulatory families and the associated published motifs

Family Size published motifs
NIT 7 GATAAG
MET 11 TCACGTG

AAAACTGTGG
PHO 5 GCACGTGGG

GCACGTTTT
PDR 7 TCCGCGGA
GAL 6 CGGNNNNNWNNNNNCCG
GCN 38 RRTGACTCTTT
INO 10 CATGTGAAWT
HAP 8 CCAAY
YAP 16 TTACTAA
TUP 25 KANWWWWATSYGGGGW

sensus pattern matched the published motif in 80% of
the positions of the motif, we counted this as a correct
match. A base in the consensus sequence was allowed
to match a disjunction of bases (as described by the
IUPAC code) if the disjunction contained the base.

The experimental results are presented in Table 3.
Column 2 to 5 shows whether the algorithm success-
fully identi�ed the motifs. A \�" means the motifs(s)
was successfully found, a \�" shows the motif(s) was
contained in a longer pattern, and a blank indicates a
failure.

CONSENSUS did not �nd the GATAAG motif in the
NIT family as reported in Helden et. al.'s paper even
though we speci�ed the same matrix width and tried
several di�erent settings of the expected number of
motif occurrences, including the one they used. There
may be some other di�erences in the parameter set-
tings. Moreover CONSENSUS failed to identify the
published motifs in GCN, HAP, YAP and TUP reg-
ulatory families. Gibbs sampler found the published
motifs in each family except the motifs in the HAP
family, and the less conserved GCACGTTTT motif
in PHO family. Gibbs is very sensitive to the setting
of the expected number of motif occurrences. Wrong

settings may hinder Gibbs sampler from isolating the
correct motifs. MEME also identi�ed all the published
motifs except for the motifs in the HAP family, but it
is also sensitive to whether to allow multiple appear-
ances of a motif in any sequence or not. For exam-
ple, allowing multiple appearances of a motif in any
sequence prohibits MEME from detecting the target
motif in the TUP family. In addition, MEME tended
to detect longer elements even if we set it to �nd short
motifs. Some of the shorter patterns are contained in
longer ones, such as the motifs in the NIT family, the
YAP and the MET. DMS identi�ed all the published
motifs in all regulatory families.

7 Experiments on Arti�cial Domains

The primary standard is how e�ectively these algo-
rithms identify the reported motifs on real domains.
However, as the biologists do not always have a per-
fect idea of these regulatory families, and the collection
of data sets is not extensive at the moment, it is useful
to use synthetic domains to evaluate the various algo-
rithms. While we have tried to maintain �delity with
real domains, we also had the ability to create motifs
with known and controllable properties.



Table 3: Results of ten regulatory families

Family CONSENSUS Gibbs MEME DMS
NIT * � *
MET * * � *
PHO * missed GCACGTTTT * *
PDR * * * *
GAL * * * *
GCN * * *
INO * * * *
HAP * *
YAP * � *
TUP * * *

As the size of the families varied from 5 to 38 in the
real domains, we used arti�cial families with sizes of
10 to 40 sequences. For the most part in real domains,
the various algorithms did well at �nding large motifs,
but as the motif got shorter, the di�culty of �nding
them became higher. Consequently we created test
sets with motif widths varying from 4 to 8 bases. The
background sequences were generated either at ran-
dom or by randomly shu�ing real upstream regions
from the yeast genome, e.g., the sets of 38 sequences
are derived from the GCN family. To insert the motif
into a sequence, we used four probabilities.

1. P0 the probability of no arti�cial motif in a se-
quence

2. P1 the probability of one arti�cial motif in a se-
quence,

3. P2 the probability of two arti�cial motifs in a se-
quence,

4. PB the probability of the preferred bases in the
motif,

These 14 arti�cial regulatory families are described in
Table 4. The results are presented in Table 5, where
we used the same test methodology as in the real do-
mains. First, this data reinforces the conclusions from
the experiments on real data, namely that CONSEN-
SUS is unable to deal with variability in the motifs
and that the stochastic search process of Gibbs only
occasionally, but not always, lets it �nd the motif. The
surprising result is how often MEME failed to �nd the
seeded small motifs. MEME found only three of the
seeded motifs, and one of them is partially correct. On
the other hand, DMS found all the seeded motifs.

8 Conclusions

Finding local consensus patterns in biosequences, i.e.,
motifs, is a very di�erent problem than �nding global

alignments. We have reviewed the computational de-
sign of the leading approaches for �nding motifs and
provided the �rst empirical comparison of these on a
common set of real and arti�cial problems. We have
also introduced our own algorithm DMS for �nding
motifs. This algorithm incorporated some novel con-
straints on the search that increases speed signi�cantly
without losing its ability to �nd motifs. On the cho-
sen real domains, DMS and MEME performed nearly
equivalently and much better than the alternative al-
gorithms. We believe that the DMS algorithm is su-
perior at �nding short motifs and that conclusion was
supported by arti�cial experiments with seeded, vari-
able, short motifs.

This research is part of a larger system that be-
gins with collecting genes expression patterns using
an A�ymetrix gene-chip machine. Genes are then
grouped into families with similar expression patterns
via a new clustering algorithm. This a�ords us an au-
tomatic way to acquire families of similarly regulated
genes. When DMS is run on these clusters, it has re-
discovered know regulatory motifs and suggested ad-
ditional motifs.
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