Set 2: State-spaces and Uninformed Search

ICS 271 Fall 2016
Kalev Kask
You need to know

• State-space based problem formulation
 – State space (graph)

• Search space
 – Nodes vs. states
 – Tree search vs graph search

• Search strategies

• Analysis of search algorithms
 – Completeness, optimality, complexity
 – b, d, m
Goal-based agents

Goals provide reason to prefer one action over the other. We need to predict the future: we need to plan & search.
Problem-Solving Agents

• Intelligent agents can solve problems by searching a state-space

• State-space Model
 – the agent’s model of the world
 – usually a set of discrete states
 – e.g., in driving, the states in the model could be towns/cities

• Goal State(s)
 – a goal is defined as a desirable state for an agent
 – there may be many states which satisfy the goal
 • e.g., drive to a town with a ski-resort
 – or just one state which satisfies the goal
 • e.g., drive to Mammoth

• Operators(actions)
 – operators are legal actions which the agent can take to move from one state to another
Example: Romania

[Map of Romania showing cities and distances]
Example: Romania

- On holiday in Romania; currently in Arad.
- Flight leaves tomorrow from Bucharest
- Formulate goal:
 - be in Bucharest
- Formulate problem:
 - states: various cities
 - actions: drive between cities
- Find solution:
 - sequence of actions (cities), e.g., Arad, Sibiu, Fagaras, Bucharest
Problem Types

• **Static / Dynamic**
 Previous problem was static: no attention to changes in environment

• **Observable / Partially Observable / Unobservable**
 Previous problem was observable: it knew its initial state.

• **Deterministic / Stochastic**
 Previous problem was deterministic: no new percepts were necessary, we can predict the future perfectly

• **Discrete / continuous**
 Previous problem was discrete: we can enumerate all possibilities
A problem is defined by five items:

- **states** e.g. cities

- **initial state** e.g., "at Arad"

- **actions** or successor function $S(x) = \text{set of action–state pairs}$
 - e.g., $S(\text{Arad}) = \{<\text{Arad} \rightarrow \text{Zerind}, \text{Zerind}>, \ldots \}$

- **transition function** - maps action & state \rightarrow state

- **goal test**, (or goal state)
e.g., $x =$ "at Bucharest", $\text{Checkmate}(x)$

- **path cost** (additive)
 - e.g., sum of distances, number of actions executed, etc.
 - $c(x,a,y)$ is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a goal state
State-Space Problem Formulation

- **A statement of a Search problem has components**
 - 1. States
 - 2. A start state S
 - 3. A set of operators/actions which allow one to get from one state to another
 - 4. transition function
 - 5. A set of possible goal states G, or ways to test for goal states
 - 6. Cost path

- **A solution consists of**
 - a sequence of operators which transform S into a goal state G

- **Representing real problems in a State-Space search framework**
 - may be many ways to represent states and operators
 - key idea: represent only the relevant aspects of the problem (abstraction)
Abstraction/Modeling

• Definition of Abstraction (states/actions)
 – Process of removing irrelevant detail to create an abstract representation: "high-level", ignores irrelevant details

• Navigation Example: how do we define states and operators?
 – First step is to abstract “the big picture”
 • i.e., solve a map problem
 • nodes = cities, links = freeways/roads (a high-level description)
 • this description is an abstraction of the real problem
 – Can later worry about details like freeway onramps, refueling, etc

• Abstraction is critical for automated problem solving
 – must create an approximate, simplified, model of the world for the computer to deal with: real-world is too detailed to model exactly
 – good abstractions retain all important details
 – an abstraction should be easier to solve than the original problem
Robot block world

• Given a set of blocks in a certain configuration,
• Move the blocks into a goal configuration.
• Example:
 – \(((A)(B)(C)) \rightarrow (ACB)\)
Operator Description

((A)(B)(C))

move (A, B)
((A)(B)(C))

move (A, C)
((B)(AC))

move (B, A)
((BA)(C))

move (B, C)
((BC)(A))

move (C, A)
((CA)(B))

move (C, B)
((A)(CB))

Effects of Moving a Block

271-fall 2016
The State-Space Graph

• Problem formulation:
 – Give an abstract description of states, operators, initial state and goal state.

• Graphs:
 – vertices, edges(arcs), directed arcs, paths

• State-space graphs:
 – States are vertices
 – operators are directed arcs
 – solution is a path from start to goal

• Problem solving activity:
 – Generate a part of the search space that contains a solution

State-space:
1. A set of states
2. A set of “operators”/transitions
3. A start state S
4. A set of possible goal states
5. Cost path
Example: vacuum world

• **Observable**, start in #5. Solution?
Example: vacuum world

- Observable, start in #5. Solution? [Right, Suck]
Vacuum world state space graph

5
Example: vacuum world

• Unobservable, start in \{1,2,3,4,5,6,7,8\} e.g., Solution?
Example: vacuum world

- Unobservable, start in \{1,2,3,4,5,6,7,8\} e.g., Solution?
 [Right, Suck, Left, Suck]
The Traveling Salesperson Problem

- Find the shortest tour that visits all cities without visiting any city twice and return to starting point.
- State:
 - sequence of cities visited
- \(S_0 = A \)
The Traveling Salesperson Problem

• Find the shortest tour that visits all cities without visiting any city twice and return to starting point.
• State: sequence of cities visited
• $S_0 = A$

• Solution = a complete tour

| $\{a, c, d\}$ | \Leftrightarrow | $\{(a, c, d, x) \mid X \not\in a, c, d\}$ |

Transition model

271-fall 2016
Example: 8-queen problem
Example: 8-Queens

- **states?** - any arrangement of n≤8 queens
 - or arrangements of n≤8 queens, 1 per column, such that no queen attacks any other (BETTER).
 - or arrangements of n≤8 queens in leftmost n columns, 1 per column, such that no queen attacks any other (BEST)

- **initial state?** no queens on the board

- **actions?** - add queen to any empty column
 - or add queen to leftmost empty column such that it is not attacked by other queens.

- **goal test?** 8 queens on the board, none attacked.

- **path cost?** 1 per move
The Sliding Tile Problem

Figure 8.1
Start and Goal Configurations for the Eight-Puzzle

move(x, loc y, loc z)

Up
Down
Left
Right
The “8-Puzzle” Problem

Start State

```
1 2 3
4 5 6
7 8
```

Goal State

```
1 2 3
4 5 6
7 8
```
Example: robotic assembly

- **states?**: real-valued coordinates of robot joint angles
- **parts of the object to be assembled**
- **actions?**: continuous motions of robot joints
- **goal test?**: complete assembly
- **path cost?**: time to execute
Formulating Problems; Another Angle

• **Problem types**
 – Satisfying: 8-queen
 – Optimizing: Traveling salesperson
 • For traveling salesperson satisfying easy, optimizing hard

• **Goal types**
 – board configuration
 – sequence of moves
 – A strategy (contingency plan)

• **Satisfying leads to optimizing since “small is quick”**

• For traveling salesperson
 – satisfying easy, optimizing hard

• **Semi-optimizing:**
 – Find a good solution

• **In Russel and Norvig:**
 – single-state, multiple states, contingency plans, exploration problems
Summary so far

• Problem state space formulation
 – states, initial state, goal state(s)/test
 – actions, transition function

• Abstraction

• Search as exploration of the state space graph
 – tree search (no memory) vs graph search (memory)

• States vs nodes; node implementation

• Basic search scheme

• Q: we transformed original problem to path finding on state-space graph; why not apply shortest path finding algorithms?
Searching the State Space

• Exploration of the state space
 – states, operators
 – by generating successors of already explored states (aka *expanding* states)

• Trial and error: pick on possible extension of some path, leaving others aside for the time being.

• **Control strategy** (how to pick a node to expand) generates a search tree.

• Systematic search
 – Do not leave any stone unturned

• Efficiency
 – Do not turn any stone more than once
Tree search example
Tree search example
Tree search example

function Tree-Search(problem, strategy) returns a solution, or failure
 initialize the search tree using the initial state of problem
 loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
State-Space Graph of the 8 Puzzle Problem

Figure 3.6 State space of the 8-puzzle generated by "move blank" operations.
Implementation

- States vs Nodes
 - A state is a (representation of) a physical configuration
 - A node is a data structure constituting part of a search tree contains info such as: state, parent node, action, path cost $g(x)$, depth

- The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.

- Queue managing frontier:
 - FIFO
 - LIFO
 - priority
Tree-Search vs Graph-Search

- **Tree-search**(problem), returns a solution or failure
- Frontier \leftarrow initial state
- Loop do
 - If frontier is empty return failure
 - Choose a leaf node and remove from frontier
 - If the node is a goal, return the corresponding solution
 - Expand the chosen node, adding its children to the frontier

- **Graph-search**(problem), returns a solution or failure
- Frontier \leftarrow initial state, *explored* \leftarrow empty
- Loop do
 - If frontier is empty return failure
 - Choose a leaf node and remove from frontier
 - If the node is a goal, **return** the corresponding solution.
 - Add the node to the *explored*.
 - Expand the chosen node, adding its children to the frontier, **only if not in frontier or explored set**
Basic search scheme

- We have 3 kinds of states
 - explored (past) – only graph search
 - frontier (current)
 - unexplored (future) – implicitly given
- Initially frontier=start state
- Loop until found solution or exhausted state space
 - pick/remove first node from frontier using search strategy
 - priority queue – FIFO (BFS), LIFO (DFS), g (UCS), f (A*), etc.
 - check if goal
 - add this node to explored,
 - expand this node, add children to frontier (graph search : only those children whose state is not in explored/frontier list)
 - Q: what if better path is found to a node already on explored list?
Graph-Search
Tree-Search vs. Graph-Search

- Example: Assemble 5 objects \{a, b, c, d, e\}
- A state is a bit-vector (length 5), 1=object in assembly
- 11010 = a, b, d in assembly, c, e not
- State space
 - number of states \(2^5 = 32\)
 - number of edges \((2^5)\cdot5\cdot\frac{1}{2} = 80\)
- Tree-search space
 - number of nodes \(5! = 120\)
- State can be reached in multiple ways
 - 11010 can be reached \(a+b+d\) or \(a+d+b\) etc.
- Graph-search:
 - three kinds of nodes: unexplored, frontier, explored
 - before adding a node, check if a state is in frontier or explored set
Tree-Search vs. Graph-Search

- Route finding on rectangular grid (e.g. computer games)
 - Tree search $O(4^d)$
 - Graph search $O(d^2)$
Why Search Can be Difficult

• At the start of the search, the search algorithm does not know
 – the size of the tree
 – the shape of the tree
 – the depth of the goal states

• How big can a search tree be?
 – say there is a constant branching factor b
 – and one goal exists at depth d
 – search tree which includes a goal can have
 b^d different branches in the tree (worst case)

• Examples:
 – $b = 2, d = 10$: $b^d = 2^{10} = 1024$
 – $b = 10, d = 10$: $b^d = 10^{10} = 10,000,000,000$
Searching the Search Space

• Uninformed (Blind) search: don’t know if a state is “good”
 – Breadth-first
 – Uniform-Cost first
 – Depth-first
 – Iterative deepening depth-first
 – Bidirectional
 – Depth-First Branch and Bound
• Informed Heuristic search: have evaluation fn for states
 – Greedy search, hill climbing, Heuristics
• Important concepts:
 – Completeness: does it always find a solution if one exists?
 – Time complexity (b, d, m)
 – Space complexity (b, d, m)
 – Quality of solution: optimality = does it always find best solution?
Search strategies

• A search strategy is defined by picking the order of node expansion

• Strategies are evaluated along the following dimensions:
 – completeness: does it always find a solution if one exists?
 – time complexity: number of nodes generated
 – space complexity: maximum number of nodes in memory
 – optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of
 – b: maximum branching factor of the search tree
 – d: depth of the least-cost solution
 – m: maximum depth of the state space (may be ∞)
Breadth-First Search

• Expand shallowest unexpanded node
• Frontier: nodes waiting in a queue to be explored, also called OPEN

• Implementation:
 – *frontier* is a first-in-first-out (FIFO) queue, i.e., new successors go at end of the queue.

Is A a goal state?
Breadth-First Search

• Expand shallowest unexpanded node

• Implementation:
 – *frontier* is a FIFO queue, i.e., new successors go at end

Expand:
frontier = [B, C]

Is B a goal state?
Breadth-First Search

- Expand shallowest unexpanded node
- **Implementation:**
 - *frontier* is a FIFO queue, i.e., new successors go at end

Expand:
frontier=[C,D,E]

Is C a goal state?
Breadth-First Search

• Expand shallowest unexpanded node

• Implementation:
 – frontier is a FIFO queue, i.e., new successors go at end

Expand:
frontier=[D,E,F,G]

Is D a goal state?
Actually, in BFS we can check if a node is a goal node when it is generated (rather than expanded)
Breadth-First-Search (*)

OPEN = frontier, CLOSED = explored

• 1. Put the start node s on OPEN
• 2. If OPEN is empty exit with failure.
• 3. Remove the first node n from OPEN and place it on CLOSED.
• 4. Expand n, generating all its successors.
 – If child is not in CLOSED or OPEN, then
 – If child is not a goal, then put them at the end of OPEN in some order.
• 5. If n is a goal node, exit successfully with the solution obtained by tracing back pointers from n to s.
• Go to step 2.

* This is graph-search
Example: Map Navigation

S = start, G = goal, other nodes = intermediate states, links = legal transitions
Breadth-First Search Graph

Note: this is the search tree at some particular point in the search.
Complexity of Breadth-First Search

- **Time Complexity**
 - assume (worst case) that there is 1 goal leaf at the RHS
 - so BFS will expand all nodes
 \[= 1 + b + b^2 + \ldots + b^d\]
 \[= O(b^d)\]

- **Space Complexity**
 - how many nodes can be in the queue (worst-case)?
 - at depth \(d\) there are \(b^d\) unexpanded nodes in the \(Q\)
 \[= O(b^d)\]
Examples of Time and Memory Requirements for Breadth-First Search

<table>
<thead>
<tr>
<th>Depth of Solution</th>
<th>Nodes Expanded</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1 millisecond</td>
<td>100 bytes</td>
</tr>
<tr>
<td>2</td>
<td>111</td>
<td>0.1 seconds</td>
<td>11 kbytes</td>
</tr>
<tr>
<td>4</td>
<td>11,111</td>
<td>11 seconds</td>
<td>1 megabyte</td>
</tr>
<tr>
<td>8</td>
<td>10^8</td>
<td>31 hours</td>
<td>11 giabytes</td>
</tr>
<tr>
<td>12</td>
<td>10^{12}</td>
<td>35 years</td>
<td>111 terabytes</td>
</tr>
</tbody>
</table>

Assuming $b=10$, 1000 nodes/sec, 100 bytes/node
Breadth-First Search (BFS) Properties

• Solution Length: optimal
• Expand each node once (can check for duplicates, performs graph-search)
• Search Time: $O(b^d)$
• Memory Required: $O(b^d)$
• Drawback: requires exponential space
Uniform Cost Search

- Use priority queue to implement frontier
- Expand lowest-cost OPEN node \(g(n) \)
- In BFS \(g(n) = \text{depth}(n) \)

\[\text{Requirement} \]
\[g(\text{successor})(n) \geq g(n) \]
Uniform Cost Search

• Guaranteed to find optimal solution (as long as all steps have >0 cost)
 – When a node is selected for expansion, a shortest path to it has been found
• UCS expands in the order of optimal path cost
Uniform cost search

1. Put the start node s on OPEN
2. If OPEN is empty exit with failure.
3. Remove the first node n from OPEN and place it on CLOSED.
4. If n is a goal node, exit successfully with the solution obtained by tracing back pointers from n to s.
5. Otherwise, expand n, generating all its successors attach to them pointers back to n, and put them in OPEN in order of shortest cost
6. Go to step 2.

DFS Branch and Bound

At step 4: compute the cost of the solution found and update the upper bound U.
At step 5: expand n, generating all its successors attach to them pointers back to n, and put on top of OPEN. Compute cost of partial path to node and prune if larger than $U.$
Depth-First Search

- Expand *deepest* unexpanded node
- **Implementation:**
 - *frontier* = Last In First Out (LIFO) queue, i.e., put successors at front

Is A a goal state?
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - \textit{frontier} = LIFO queue, i.e., put successors at front

queue=[B,C]

Is B a goal state?
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – *frontier* = LIFO queue, i.e., put successors at front

\[\text{queue=}[D, E, C]\]

Is \(D\) = goal state?
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – frontier = LIFO queue, i.e., put successors at front

queue=[H,I,E,C]

Is H = goal state?
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – *frontier* = LIFO queue, i.e., put successors at front

queue=[I,E,C]

Is I = goal state?
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - *frontier* = LIFO queue, i.e., put successors at front

Is E = goal state?
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *frontier* = LIFO queue, i.e., put successors at front

```
queue=[J,K,C]
```

Is J = goal state?
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - *frontier* = LIFO queue, i.e., put successors at front

```
queue=[K,C]
```

Is K = goal state?
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – `frontier` = LIFO queue, i.e., put successors at front

queue=[C]

Is C = goal state?
Depth-first search

• Expand deepest unexpanded node
• Implementation:
 – *frontier* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - *frontier* = LIFO queue, i.e., put successors at front

\[\text{queue} = [L, M, G] \]

Is \(L \) = goal state?
Depth-first search

• Expand deepest unexpanded node

• Implementation:
 – *frontier* = LIFO queue, i.e., put successors at front

queue=[M,G]

Is M = goal state?
Depth-First Search (DFS)

Here, (if tree-search) then to avoid infinite depth (in case of finite state-space graph) assume we don’t expand any child node which appears already in the path from the root S to the parent. (Again, one could use other strategies)
Depth-First Search

![Diagram](image)

(a) (b) (c)

Discarded before generating node 7

Generation of the First Few Nodes in a Depth-First Search
The Graph When the Goal Is Reached in Depth-First Search
Depth-First-Search (*)

1. Put the start node s on OPEN

2. If OPEN is empty exit with failure.

3. Remove the first node n from OPEN.

4. If n is a goal node, exit successfully with the solution obtained by tracing back pointers from n to s.

5. Otherwise, expand n, generating all its successors (check for self-loops) attach to them pointers back to n, and put them at the top of OPEN in some order.

6. Go to step 2.

*search the tree search-space (but avoid self-loops)
** the default assumption is that DFS searches the underlying search-tree

271-fall 2016
Complexity of Depth-First Search?

- **Time Complexity**
 - Assume d is deepest path in the search space
 - Assume (worst case) that there is 1 goal leaf at the RHS
 - So DFS will expand all nodes

 $$1 + b + b^2 + \ldots + b^d$$

 $$= O(b^d)$$

- **Space Complexity (for tree-search)**
 - How many nodes can be in the queue (worst-case)?
 - $O(bd)$ if deepest node at depth d
Example, Diamond Networks
graph-search vs tree-search (BFS vs DFS)

- Graph-search & BFS
- Tree-search & DFS
Depth-First tree-search Properties

• Non-optimal solution path
• Incomplete unless there is a depth bound
• (we will assume depth-limited DF-search)
• Re-expansion of nodes (when the state-space is a graph)
• Exponential time
• Linear space (for tree-search)
Comparing DFS and BFS

• BFS optimal, DFS is not
• Time Complexity worse-case is the same, but
 – In the worst-case BFS is always better than DFS
 – Sometimes, on the average DFS is better if:
 • many goals, no loops and no infinite paths
• BFS is much worse memory-wise
 • DFS can be linear space
 • BFS may store the whole search space.
• In general
 • BFS is better if goal is not deep, if long paths, if many loops, if small search space
 • DFS is better if many goals, not many loops
 • DFS is much better in terms of memory
Iterative-Deepening Search (DFS)

- Every iteration is a DFS with a depth cutoff.

Iterative deepening (ID)
1. $i = 1$
2. While no solution, do
3. DFS from initial state S_0 with cutoff i
4. If found goal, stop and return solution, else, increment cutoff

Comments:
- IDS implements BFS with DFS
- Only one path in memory
- BFS at step i may need to keep 2^i nodes in OPEN
Iterative deepening search $L=0$
Iterative deepening search $L=1$
Iterative deepening search $L=2$
Iterative Deepening Search $L=3$

Limit = 3
Iterative deepening search

Depth bound = 1
Depth bound = 2
Depth bound = 3
Depth bound = 4

Stages in Iterative-Deepening Search
Iterative Deepening (DFS)

• Time: \[T(n) = \sum_{j=1}^{n} \frac{b^{j+1} - 1}{b-1} = \frac{b^{n+2}}{(b-1)^2} = O(b^n) \]

- BFS time is \(O(b^n) \), \(b \) is the branching degree
- IDS is asymptotically like BFS,
- For \(b=10 \quad d=5 \quad d=\text{cut-off} \)
- DFS = 1+10+100,\ldots,=111,111
- IDS = 123,456
- Ratio is \(\frac{b}{b-1} \)
Summary on IDS

- A useful practical method
 - combines
 - guarantee of finding an optimal solution if one exists (as in BFS)
 - space efficiency, $O(bd)$ of DFS
 - But still has problems with loops like DFS
Bidirectional Search

• Idea
 – simultaneously search forward from S and backwards from G
 – stop when both “meet in the middle”
 – need to keep track of the intersection of 2 open sets of nodes

• What does searching backwards from G mean
 – need a way to specify the predecessors of G
 • this can be difficult,
 • e.g., predecessors of checkmate in chess?
 – what if there are multiple goal states?
 – what if there is only a goal test, no explicit list?

• Complexity
 – time complexity is best: $O(2 \ b^{(d/2)}) = O(b^{(d/2)})$
 – memory complexity is the same
Bi-Directional Search

Fig. 2.10 Bidirectional and unidirectional breadth-first searches.
Comparison of Algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative</th>
<th>Bidirectional (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>b^d</td>
<td>b^d</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
<td>$b^{d/2}$</td>
</tr>
<tr>
<td>Space</td>
<td>b^d</td>
<td>b^d</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
<td>$b^{d/2}$</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes, if $l \geq d$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 3.18 Evaluation of search strategies. b is the branching factor; d is the depth of solution; m is the maximum depth of the search tree; l is the depth limit.
Summary

• A review of search
 – a search space consists of nodes and operators: it is a tree/graph

• There are various strategies for “uninformed search”
 – breadth-first
 – depth-first
 – iterative deepening
 – bidirectional search
 – Uniform cost search
 – Depth-first branch and bound

• Repeated states can lead to infinitely large search trees
 – we looked at methods for detecting repeated states

• All of the search techniques so far are “blind” in that they do not look at how far away the goal may be: next we will look at informed or heuristic search, which directly tries to minimize the distance to the goal.