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ABSTRACT
Hybrid on-chip memories that combine Non-Volatile Memo-

ries (NVMs) with SRAMs promise to mitigate the increasing
leakage power of traditional on-chip SRAMs. We present
HaVOC: a run-time memory manager that virtualizes the
hybrid on-chip memory space and supports efficient shar-
ing of distributed ScratchPad Memories (SPMs) and NVMs.
HaVOC allows programmers and the compiler to partition
the application’s address space and generate data/instruction
block layouts considering virtualized hybrid address spaces.
We define a data volatility metric used by our hybrid memory-
aware compilation flow to generate memory allocation poli-
cies that are enforced at run-time by a filter-inspired dy-
namic memory algorithm. Our experimental results with
a set of embedded benchmarks executing simultaneously on
a Chip-Multiprocessor with hybrid NVM/SPMs show that
HaVOC is able to reduce execution time and energy by 60.8%
and 74.7% respectively with respect to traditional multitask-
ing based SPM allocation policies.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based systems]:
Real-time and embedded systems; B.3 [Design Styles]:
Virtual Memory; D.4 [Storage Management]: Distributed
memories

General Terms
Algorithms, Design, Management, Performance

1. INTRODUCTION
The ever increasing complexity of embedded software and

adoption of open-environments (e.g., Android) is exacerbat-
ing the deployment of multi-core platforms with distributed
on-chip memories [12, 18]. Traditional memory hierarchies
consist of caches, however, it is known that caches may con-
sume up to 50% of the processor’s area and power [3]. As
a result, ScratchPad Memories (SPMs) are rapidly being
adopted and incorporated into multi-core platforms for their
high predictability, low area and power consumption. Effi-
cient SPM management can significantly reduce power con-
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sumption [17, 29, 13], and may be a good alternative to
caches for applications with high levels of regularity (e.g.,
Multimedia).

As sub-micron technology continues to scale, leakage power
will overshadow dynamic power consumption [19, 14]. Since
SRAM-based memories consume a large portion of the die,
they are a major source of leakage in the system [2], which
is a major issue for multi-core platforms. In order to reduce
leakage power in SRAM-based memories, designers have pro-
posed emerging Non-Volatile Memories (NVMs) as alterna-
tives to SRAM for on-chip memories [27, 15, 24]. Typically,
NVMs (e.g., PCRAM [20]) offer high densities, low leakage
power, comparable read latencies and dynamic read power
with respect to traditional embedded memories (SRAM/e-
DRAM). One major drawback across NVMs is the expen-
sive write operation (high latencies and dynamic energy).
To mitigate the drawbacks of the write operation in NVMs,
designers have made the case for deploying hybrid on-chip
memory hierarchies (e.g., SRAM, NVM) [27], which have
shown up to 37% reduction in leakage power [11], and in-
creased IPC as a byproduct of the higher density provided by
NVMs [24]. Orthogonal to traditional hybrid on-chip mem-
ory subsystems which have been predominately focused on
caches, Hu et al. [11] showed the benefits of exploiting hy-
brid memory subsystems consisting of SPMs and NVMs.

In this paper, we present HaVOC, a system-level HW/SW
solution to efficiently manage on-chip hybrid memories con-
sisting distributed ScratchPad Memories (SRAM) and Non-
Volatile Memories (e.g., MRAMs) to support multitasking
Chip-Multiprocessors. HaVOC allows programmers to par-
tition their application’s address space into virtualized SRAM
address space and virtualized NVM address space through a
minimalistic API. Programmers (through annotations) and
compilers (through static analysis) can then specify hybrid
memory-aware allocation policies for their data/instruction
blocks at compile-time, while HaVOC dynamically enforces
them and adapts to the underlying memory subsystem. The
novel contributions of our work are that we:

• Explore distributed shared on-chip hybrid memories
consisting of SPMs and NVMs and virtualize their ad-
dress spaces to facilitate the management of their phys-
ical address spaces

• Introduce the notion of data volatility analysis to drive
efficient compilation and policy generation for hybrid
on-chip memories

• Present a filter-driven dynamic allocation algorithm
that exploits filtering and volatility to find the best
memory placement
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Figure 1: HaVOC-aware Policy Generation (a) and Enforcement (b).

2. MOTIVATION
Unlike caches, SPMs are software controlled memories as

their management is completely left to the programmer and
compiler. At first glance, we would need to take traditional
SPM management schemes and adapt them to manage hy-
brid memories. However, SPM based allocation schemes
(e.g., [29, 13]) assume physical access to the memory hierar-
chy; consequently, the traditional SPM based programming
model would require extensive changes to account for the
different characteristics of the NVMs. This motivates the
need for a simplified address space to minimize changes to
the SPM programming model.

The challenge of programming and managing SPM/NVM-
based hybrid memories is aggravated by the adoption of open
environments (e.g., Android OS), where users can download
applications, install them, and run them on their devices. In
these environments, it is possible that many of the running
processes will require access to the physical SPMs, there-
fore, programmers and compilers can no longer assume that
their applications are the only ones running on the system.
Traditional SPM-sharing approaches [9, 26, 28] would either
allocate part of the physical address space to each process
(spatial allocation) or time-share the SPM space (tempo-
ral allocation). Once the entire SPM space has been allo-
cated, all remaining data is then mapped to off-chip mem-
ory. In order to reduce the overheads of sharing the SPM/N-
VMs, our scheme exploits programmer/compiler-driven poli-
cies obtained through static analysis/annotations (Sec. 3.3)
and uses the information to efficiently manage the memory
resources at run-time (Sec. 3.4).

3. HAVOC OVERVIEW
Figure 1 (a) shows our proposed compilation flow, which

takes annotated source code, and performs various types of
SPM/NVM-aware static analysis techniques (e.g., instruc-
tion placement, data reuse analysis, data volatility analy-
sis); the compiler then uses this information to generate al-
location policies assuming the use of virtual SPMs (vSPMs)
and virtual NVMs (vNVMs). Figure 1 (b) shows our pro-
posed dynamic policy enforcement mechanism for multitask-
ing CMPs. The HaVOC manager (black box) takes in the
vSPM/vNVM allocation policies provided by each applica-
tion (Application 1 & 2), and decides how to best utilize
the underlying memory resources. The rest of this section
will go over each of the different components at a high level,
for more details please refer to our technical report [4]. In
the following discussion we use data/instruction blocks in-
terchangeably as our approach supports placement of both
data and instructions onto the hybrid memories.

3.1 Target Platform and Assumptions
Figure 2 shows a high level diagram of our SPM/NVM
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Figure 2: HaVOC-Enhanced CMP.

enhanced CMP, which consists of a number of OpenRISC-
like cores, the HaVOC manager, a set of distributed SPMs
and NVMs, a DRAM/NVM main memory hierarchy, and
an AMBA AHB bus-based communication fabric.

We make the following assumptions: 1) The application
can be statically analyzed/profiled so that data/instruction
blocks can be mapped to SPMs [12, 13, 28]. 2) We operate
over blocks of data (e.g., 1KB mini-pages). 3) We can map
all data/instructions to on-chip/off-chip memory and do not
use caches (e.g., [12]). 4) Part of off-chip memory can be
locked in order to support the virtualization of the on-chip
SPM/NVM memories.

3.2 Virtual Hybrid Memory Space
In order to present the compiler/programmer with an ab-

stracted view of the hybrid memory hierarchy and minimize
the complexity of our run-time system we propose the use of
virtual SPMs and virtual NVMs. We leverage the concept
of vSPMs [5], which enables a program to view and manage
a set of vSPMs as if they were physical SPMs. In order vir-
tualize SPMs, a small part of main memory (DRAM) called
protected evict memory (PEM ) space is locked and used as
extra storage. The run-time system would then prioritize
the data mapping to SPM and PEM space based on a uti-
lization metric. In this work we introduce the concept of
virtual NVMs (vNVMs), which behave similarly to vSPMs,
meaning that the run-time environment transparently allows
each application to manage their own set of vNVMs. Man-
agement of virtual memories is done through a small set of
APIs [4], which send management commands to the HaVOC
manager. The HaVOC manager then presents each appli-
cation with intermediate physical addresses (IPAs), which
point to their virtual SPMs/NVMs. Traditional SPM-based
memory management requires the data layout to use physi-
cal addresses by pointing to the base register of the SPMs,
as a result, the same is expected of SPM/NVM-based mem-
ory hierarchies [11]. In our scheme, all policies use virtual
SPM and NVM base addresses, so any run-time re-mapping
of data will remain transparent to the initial allocation poli-
cies as the IPAs will not change.

3.3 Hybrid Memory-aware Policy Generation
The run-time system needs compile-time support in order

to make efficient allocation decisions at run-time. In this
paper we present various ways by which designers may gen-



erate policies (manual through annotations or through static
analysis). These policies are then enforced (currently in best
effort fashion) by the run-time system in order to prioritize
the access to SPM/NVM space for the various applications
running on the system. Each policy attempts to map data
to virtual SPMs/NVMs, while the HaVOC manager dynam-
ically maps the data to physical memories.

3.3.1 Volatility Analysis
Datalifetime ←

n⋃
i=0

STi (1)

Writeifreq. ←Writesi ÷ STi, i = 0 · · ·n (2)

Datavolatility ← STDEV (Writeifreq), i = 0 · · ·n (3)
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We introduce a new metric, data volatility, to facilitate ef-
ficient loading of data on the hybrid on-chip memory con-
figurations. Data volatility is defined as the write frequency
of a piece of data over its accumulated lifetime. In order
to estimate the volatility of a data block we first define a
sampling time (STi), which can be in cycles, so that the
union of all sample times equals the block’s lifetime (Eq. 1).
Next, we calculate the write frequency for each sample time
(Eq. 2). Finally, we estimate the volatility of the data as
the variation in its write frequency (Eq. 3). This metric is
useful when deciding whether data is worth (cost effective)
being mapped onto NVM. Highly volatile data implies that
at some point the cost of keeping data in NVM during its
entire lifetime might be greater than leaving it in main mem-
ory. As a result, when two competing applications request
NVM space, the estimated cost function (e.g., energy sav-
ings) will be used to prioritize allocation of on-chip space,
while volatility can be used as a tie breaker and prediction
metric of cost fluctuation. Volatility may also be used to de-
cide the granularity at which designers might do their data
partitioning. We define the expected cost metric (C(Di))
for a given data block (Di) as shown in Eq. 4, which takes
into account the cost of transferring data between memory
type Df

i and memory type Dt
i (Cload, Cevict), the utilization

cost (Cutil), and the extra leakage power consumed by map-
ping the given data to the preferred memory type. The cost
represents energy or latency.
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Figure 3: Data volatility across various lifetimes.

Figure 3 (a) shows sample JPEG [21] code and how par-
titioning its data’s lifetime may affect its data’s volatility.
Figure 3 (b) shows the global life time of the data arrays (a,
b, c, zt, qt), where the number of accesses to NVM would be
(128 rd, 23K wr) for qt/zt if we map and keep them in NVM
during the entire execution of the program. To accommo-
date other data structures onto SPM space, arrays qt/zt ’s
lifetime may be split, resulting in finer life-time granularities
(Figure 3 (c-d)). Though the rd/wr ratio of data remains
the same (qt/zt have 23K reads to 0 writes), finer granularity

lifetimes might yield higher volatility (qt/zt now have 23K
writes to NVM since they are loaded every time block decode
executes), making qt/zt poor candidates for NVM.

3.3.2 Memory Allocation Policy Generation
Programmers can embed application-specific insights into

source code through annotations [10] in order to guide the
compilation process. Since we are working with virtualized
address spaces, programmers can create hybrid memory-
aware policies that define the placement for a given data
structure by simply defining the following parameters: <
preferred memory type, reads, writes, lifespan, volatility >.
These annotations are used at run-time by the HaVOC man-
ager to allocate the data onto the preferred memory type.

Instruction blocks are very good candidates for mapping
onto on-chip NVMs since their volatility is quite low (e.g.,
write once and use many times). In this work, we borrow
traditional SPM-based instruction-placement schemes [16]
and enhance them to account for the possibility of mapping
the instructions to NVM memories by introducing volatil-
ity analysis into the flow. Like we discussed in Sec. 3.3.1,
the granularity of the code partitioning (e.g, function, ba-
sic block, etc.) will affect how volatile the placement will
become. As a result, when mapping a block of instructions
onto vNVM/vSPM, we need to partition our code such that
Eq. 5 is met, where C(Di) represents the cost in Eq. 4. Our
goal is to partition the application such that we can mini-
mize the number of instruction replacements ([16]) in order
to minimize energy and execution time.

C(Di)Off−Chip � C(Di)On−Chip (5)
Data placement candidates are obtained from static anal-

ysis (e.g., data reuse analysis [13]) or profiling. The idea is
to map highly read-reused data with a long access distance
onto vNVM to minimize number of fetches from off-chip
memory, while highly reused read-data with short lifetimes
will be mapped to vSPM preferably. Highly reused-read-
modify data with low write-volatility should be mapped to
vNVM, while highly reused write-data and read-modify data
with high write-volatility should go to vSPM.

The last step in our flow involves the generation of near-
optimal hybrid memory layouts we define as allocation poli-
cies. This process takes as input data/instruction blocks
with various pre-computed costs (e.g., Eq. 4) obtained from
static analysis, profiling, and annotations, which are com-
bined and fed as inputs to an enhanced hybrid memory-
aware allocator based on [11].

3.4 HaVoC Manager
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Figure 4: HaVOC Manager

The HaVOC manager may be implemented in software as
an extended memory manager embedded within a hypervi-
sor/OS or as a hardware module (e.g., [9, 5]). The software
implementation is quite flexible and does not require modi-
fying existing platforms. The hardware version requires ad-
ditional hardware and the necessary run-time support, but



the run-time overheads will be much lower than the software
version. In this work, we present a proof-of-concept embed-
ded hardware implementation (Figure 2). Figure 4 shows
a block diagram of the HaVOC manager. It consists of a
memory-mapped slave interface, which is used by the sys-
tem’s masters (e.g., CPUs) and handles the read/write/con-
figuration requests. The address translation layer module
converts IPAs to physical addresses (PAs) in one cycle [7,
5]). The manager consists of 1KB to 256KB of configura-
tion memory used to keep block metadata information (e.g.,
volatility, # accesses, etc.). The allocation/eviction logic
uses the cost estimation (e.g., efficiency) logic to prioritize
access to on-chip storage. Finally, the internal DMA (iS-
DMA) allows the manager to asynchronously transfer data
between on-chip and off-chip memory. In order to use the
HaVOC manager, the compiler generates two things: 1) the
creation of the required virtual SPM/NVMs through the use
of our APIs and 2) The use of IPAs instead of PAs during
the data/instruction layout stage (e.g., memory maps using
purely virtual addresses for SPMs/NVMs). Any read/write
to a given IPA is translated and routed to the right memory.
Any write to HaVOC configuration memory space is then
used to manage the virtualized address space. The goal is to
allow each application to manage its virtual on-chip memo-
ries as if it had full access to the on-chip real-estate.

3.5 HaVOC’s Dynamic Policy Enforcement
Table 1: Filter Inequalities and Preferred Memory Type

Filter Pref. Inequalities

F1 sram E(Dspm
i ) > E(Ddram

i )
∧

E(Dnvm
i ) < E(Ddram

i )
∧

V > Tvol

F2 nvm E(Dnvm
i ) > E(Ddram

i )
∧

V < Tvol

F3 either E(Dspm
i ) > E(Ddram

i )
∧

E(Dnvm
i ) > E(Ddram

i )

F4 dram E(Dspm
i ) < E(Ddram

i )
∧

E(Dnvm
i ) < E(Ddram

i )

Algorithm 1 FilterDynamic Allocation Algorithm

Require: req{size, cost, volatility}
pref_mem← filter(req, volatility)

2: if allocatable(req, pref_mem) then
return ipa← update_alloc_table(req)

4: end if
minset ← sortHi2LowEff (alloc_table, size)

6: if E(minset) < Cevict(minset) + E(req) then
evict(minset)

8: return ipa← update_alloc_table(req)
else

10: return ipa← mm_malloc(req)
end if
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Figure 5: Dynamic Hybrid Memory Allocation Policies

We define three block-based allocation policies: 1) Tem-
poral allocation, which combines temporal SPM allocation
([28]) and hybrid memory allocation ([11]), and adheres to
the initial layout obtained through static analysis (Sec. 3.3);
however, the application’s SPM and NVM contents must be
swapped on a context-switch to avoid conflicts with other
tasks (Fig. 5 (a)). 2) FixedDynamic allocation, which com-
bines dynamic-spatial SPM allocation ([9]) and hybrid mem-
ory allocation [11], and maps the data block to the preferred
memory type (adhering to the initial layout) as long as there
is space, otherwise, data is mapped to DRAM (Fig. 5 (b)).
3) FilterDynamic allocation (Alg. 1), which exploits the

concept of filtering and volatility to find the best placement.
Each request is filtered according to a set of inequalities
(shown in Table 1) which determine the preferred memory
type (Fig. 5 (d)). The volatility of the data block (V ) and its
mapping efficiency (E(Di) = C(Di)/|Di|) are used to deter-
mine what memory type would minimize the block’s energy
(or access latency). For instance, data with low volatility
and high energy efficiency could potentially benefit more
from being mapped to NVM than SRAM (e.g., filter F2 in
Table 1). If there is enough preferred memory space (e.g.,
SPM or NVM), the dynamic allocator adheres to Eq. 4 prior
to loading the data. If there is not enough space, then the
allocator follows Alg. 1 and sorts the allocated blocks from
highest to lowest efficiency (e.g., energy per bit). It then
compares the cost of evicting the least important blocks
(MINSet) with the cost of dedicating the space to the new
block. If the efficiency of bringing the new block offsets
the eviction cost and efficiency of the data already mapped
to the preferred memory type (E(MINSet)), then HaVOC
evicts the MINSet blocks and updates the allocation table
with the new block (|new block| ≤ |MINSet|). In the event
the preferred memory type is either NVM or SPM (filter F3
in Table 1), the allocator evicts the min(MINspm

Set ,MINnvm
Set ).

At the end, HaVOC allocates either on-chip space or off-
chip space (unified PEM space (sPEM )), resulting in the
allocation shown in Fig. 5 (c), where a data block originally
intended for SPM is mapped to NVM.

4. RELATED WORK
Most efforts have focused on replacing and/or comple-

menting main memory (DRAM) or caches (SRAM) with a
combination of various NVMs to reduce leakage power and
increase throughput. Joo et al. [15] proposed PCM as an al-
ternative to SRAM for on-chip caches. Sun et al. [27] intro-
duced MRAM into the cache hierarchy of a NUCA-based 3D
stacked multi-core platform. Mishra et al. [24] followed up
by introducing STT-RAM as an alternative MRAM memory
and hid the overheads in access latencies by customizing how
accesses are prioritized by the the interconnect network. Wu
et al. [31] presented a hybrid cache architecture consisting
of SRAM (fast L1/L2 accesses), eDRAM/MRAM (slow L2
accesses), and PCRAM (L3). Hybrid main memory has also
been studied [32]. Mogul et al. [25] and Wongchaowart et al.
[30] attempted to reduce write overheads in main memory
by exploiting page migration and block content signatures.
Ferreira et al. [8] introduced a memory management module
for hybrid DRAM/PCM main memories. Static analysis has
been explored to efficiently map application data on off-chip
hybrid main memories [23, 22].

HaVOC is different from approaches that address hybrid
cache/main memories in that we primarily focus on hy-
brid SPM/NVM-based hierarchies, however, our scheme can
be complemented by both existing schemes that leverage
the benefits of both on-chip SRAMs and NVMs as well as
hardware/system-level solutions that address hybrid off-chip
memories (e.g., DRAM/eDRAM and PCM). Our work is dif-
ferent from [11] in that we consider: 1) shared distributed
on-chip SPMs and 2) dynamic support for multitasking sys-
tems, however, our scheme can benefit from compile-time
analysis schemes that provide our runtime system with al-
location hints (e.g., [22, 23, 11]). Like [5], we use part of
off-chip memory to virtualize on-chip memories, however,
our approach differs in that our primary focus is the ef-
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Figure 6: Normalized Execution Time and Energy for Performance Optimized (a) and Energy Optimized (b) Policies

ficient management of hybrid on-chip memories, and as a
result, HaVOC ’s programming model and run-time envi-
ronment account for the different physical characteristics
of SRAMs, DRAMs and NVMs (MRAM and PCRAM).
Moreover, we believe that we can complement our static-
analysis/allocation policy generation with other SPM man-
agement techniques [17, 29, 9, 26, 28].

5. EXPERIMENTAL RESULTS
Table 2: Configurations

Config. Applications CPUs vSPM/vNVM SPM/NVM
Space Space

C1 adpcm,aes 1 32/128 KB 16/64 KB
C2 adpcm,aes,blowfish,gsm 1 64/256 KB 16/64 KB
C3 C2 & h263,jpeg,motion,sha 1 128/512 KB 16/64 KB
C4 same as C2 2 64/256 KB 32/128 KB
C5 same as C3 2 128/512 KB 32/128 KB
C6 same as C3 4 128/512 KB 64/256 KB

5.1 Experimental Setup and Goals
Our goal is to show that HaVOC is able maximize en-

ergy savings and increase application throughput in a mul-
titasking environment under various scenarios. First, we
generate two sets of hybrid memory aware allocation poli-
cies (Sec. 3.3.2), one set of policies minimizes execution time
(Sec. 5.2) and the other minimizes energy (Sec. 5.3). These
policies are generated at compile-time and enforced at run-
time by a set of dynamic allocation policies (Sec. 3.5) under
various system configurations (Table 2). Next, we show the
effects of the allocation policy’s block-size on execution time
(Sec. 5.4). We built a trace-driven simulator that models a
light-weight OS, with a round-robin scheduler and context-
switching enabled (window = 50K cycles). We model CMPs
consisting of an AMBA AHB bus, OpenRISC-like in-order
cores, distributed SPMs and NVMs, and the HaVOC man-
ager (Fig. 2). We bypassed the cache and mapped all data
to either SPM, NVM, or main memory (see Sec. 3.3.2).
We obtained traces from Mediabench II [21] by using Sim-
pleScalar [1]. We model on-chip SPMs (SRAMs), MRAMs
and PCRAM by interfacing our simulator with NVSim [6]
and set leakage power as the optimization goal. To virtualize
SPMs/NVMs we use the unified PEM space model discussed
in Sec. 3.2 (sPEM). The HaVOC manager consists of 4KB
low power SRAM memory.

5.2 Enforcing Performance Optimized Policies
For this experiment we generated allocation policies that

minimized execution time for each application. We then exe-
cuted each application on top of our simulated RTOS/CMP.
Table 2 shows each configuration (C1-6), which has a set of
applications running concurrently over a numberof CPUs,
and a predefined hybrid memory physical space. To show
the benefit of our approach we implemented four policies:

the three described in Sec. 3.5 (Temporal, FixedDynamic,
FilterDynamic), and a policy we call Oracle (black bar in
Fig. 6), which is a near-optimal policy because on every
block-allocation request, it feeds the entire memory map to
the same policy generator the compiler uses to generate poli-
cies statically (see Sec. 3.3.2). The idea is to show that
our FilterDynamic policy (backward-slashed bars in Fig. 6)
achieves competitive quality allocation solutions as the more
complex Oracle policy. Fig. 6 (a) shows the normalized ex-
ecution time and energy for each of the different configura-
tions (C1-6, Goal=Min Execution Time denoted as G=P)
using 4KB blocks and different memory types with respect
to the Temporal policy. The FixedDynamic policy (forward-
slashed bars in Fig. 6 (a)) suffers the greatest impact on
energy and execution time as memory space increases (C4-
6 ) since it adheres to the decisions made at compile-time
and does not efficiently allocate memory blocks at run-time.
In general, we see that the FilterDynamic policy performs
almost as good as the Oracle policy (within 8.45% execu-
tion time). Compared with the Temporal policy, HaVOC ’s
FilterDynamic policy is able to reduce execution time and
energy by an average 75.42% and 62.88% respectively when
the initial application policies have been optimized for exe-
cution time minimization.

5.3 Enforcing Energy Optimized Policies
Fig. 6 (b) shows the the normalized execution time and

energy for each of the different configurations and memory
types (Goal=Min Energy denoted as G=E) with respect
to the Temporal policy. Similar to the case of G=P, both
the Temporal and FixedDynamic policies are unable to effi-
ciently manage the on-chip real-estate. The FilterDynamic
and Oracle policies are able to greatly reduce execution time
and energy, with the FilterDynamic within 3.54% of the ex-
ecution time achieved by the Oracle policy. Compared with
the Temporal policy, HaVOC ’s FilterDynamic policy is able
to reduce execution time and energy by an average 85.58%
and 61.94% respectively when the initial application policies
have been optimized for energy minimization. The goal of
this experiment was to show that regardless of the initial
optimization goal, HaVOC ’s FilterDynamic policy is able
to achieve as good results as the Oracle policy.

5.4 Block Size Effect on Allocation Policies
So far we have seen that the Oracle policy appears to

be a feasible dynamic allocation solution, which would po-
tentially enhance HaVOC ’s virtualization engine. However,
the Oracle policy is very complex as it runs in O(Blks ∗
spmsize ∗ nvmsize). The FixedDynamic policy on the other
extreme runs in O(Blks), however, its efficiency may be
even worse than the Temporal policy. HaVOC ’s FilterDy-
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Figure 7: Effects of Varying Block Size.

namic policy on the other hand, keeps a semi-sorted list
of data blocks, as a result it can be O(Blks) best case or
O(Blks log Blks) worst case for sorting, and the final fil-
tering decision runs in O(Blksspm + Blksnvm + Blksdram),
which results in O(Blks log Blks)+O(Blksspm+Blksnvm+
Blksdram). Thus, the complexity and execution time of the
Oracle policy will increase orders of magnitude as the num-
ber of data/instruction blocks to allocate increases (Blks) or
as the available resources increases (spmsize, nvmsize). This
is validated in Fig. 7, where we have varying block size (as a
result, number of blocks to allocate increases) and increase
in available resources (C3-C6 ). As we can see, for block
size = 1KB, where the number of blocks to allocate is in
the hundreds, the allocation time of the Oracle is orders of
magnitude greater than the FilterDynamic policy. For block
size = 2KB, we see that as resources increase, the Oracle al-
location time once again prevents it from being a feasible
solution. On average, we observe that HaVOC ’s FilterDy-
namic is capable of achieving as good solutions as the Oracle
policy (within 10% margin) with much lower complexity. On
average, across all test scenarios (varying page sizes, differ-
ent optimization goals, and different configurations) we see
that the FilterDynamic is able to reduce execution time and
energy by 60.8% and 74.7% respectively.

6. CONCLUSION
We presented HaVOC, a hybrid memory aware virtual-

ization layer for dynamic memory management of appli-
cations executing on CMP platforms with hybrid on-chip
NVM/SPMs. We introduced the notion of data volatility
analysis and proposed a dynamic filter-based memory alloca-
tion scheme to efficiently manage the hybrid on-chip memory
space. Our experimental results for embedded benchmarks
executing on a hybrid memory-enhanced CMP show that our
dynamic filter-based allocator greatly minimizes execution
time and energy by 60.8% and 74.7% respectively with re-
spect to traditional multitasking-aware SPM allocation poli-
cies. Future work includes: 1) Integrating HaVOC ’s con-
cepts in a hypervisor to support full on-chip hybrid memory
virtualization, 2) Adding off-chip NVM memories to support
the virtualization of on-chip NVMs (nPEM ), and 3) Design-
ing a scalable hybrid-memory aware virtualization layer.
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