
TrustGeM: Dynamic Trusted Environment
Generation for Chip-Multiprocessors

Luis Angel D. Bathen, Nikil D. Dutt
Center for Embedded Computer Systems

Donald Bren School of Information & Computer Science
University of California, Irvine

{lbathen, dutt}@uci.edu

Abstract—Embedded system security challenges have been
exacerbated by the complexity inherent in the software stack of
next generation handheld devices (internet connectivity, app
stores, mobile banking, etc.) and the aggressive push for
multicore technology. As applications with different degrees of
assurance are deployed on these multiprocessor platforms, new
challenges emerge in terms of protection against software based
side channel attacks and exploits such as buffer overruns. In this
paper, we introduce TrustGeM: a dynamic trusted environment
generation engine for chip-multiprocessors. TrustGeM’s goal is
to dynamically generate trusted execution environments for
applications with different assurance requirements. TrustGeM
exploits the concepts of application driven policy generation,
performance/power-aware on-chip application sandboxing, and
reliable, secure, and dynamic memory virtualization.
Experimental results on an 8 Core CMP show that TrustGeM is
able reduce overall system energy by an average 24% due to its
memory utilization efficiency while incurring minimal
performance overhead over the ideal case (an average of 5%).
TrustGeM is also able to generate policies with much smaller
memory requirements allowing the dynamic trusted environment
generation to enforce the policies much more efficiently.

information assurance; security; chip-multiprocessors; policy;
embedded raids-on-chip; isolation; scheduling

I. INTRODUCTION
As semiconductor manufacturers continue to push for Chip-

Multiprocessor technology (e.g., IBM Cell [1], Intel’s Multi-
core [2], Teraflops Research [3], Single Cloud Computer [4],
and Tilera Tile-Gx [5]) new challenges emerge in terms of
guaranteeing secure execution of a trusted application. Since
multicore platforms are capable of running a series of
applications with different assurance requirements [6], even OS
instances on each core [4], guaranteeing data confidentiality
becomes a major point of concern. Moreover, as systems
become more open [7], with the ability to download and run
pre-compiled applications, combined with greater on-chip
resources and the ability to share resources opens the door to
new threats (e.g., side channel attacks [9]) that were not present
in the uniprocessor domain, much less in closed systems. As a
result, any one of these vulnerabilities may lead the system to
(a) run a malicious application that tries to access sensitive data
via software exploits (e.g., buffer overflows [8]), or (b) expose
private information via side channel attacks [9, 14, 15].

In order to prevent software exploits, research efforts have
been made in the compiler domain [10-13], which analyze the
application’s source code and attempt at finding vulnerabilities
(e.g., opportunities for buffer overruns due to lack of boundary
checks). Hardware monitors [22, 23] have also been proposed
to detect execution invariance due to code injection/buffer
overruns. There has been effort as well in developing full
platform support for secure application implementations [8,
19]. Isolation has also been shown to be effective in providing
a secure means to execute trusted applications [20, 21],
however, they all require the programmer to fully map the
application onto the given platform (e.g., design the application
with isolation in mind).

In this paper, we propose TrustGeM, a dynamic trusted
environment generation engine for chip-multiprocessors. The
goal of TrustGeM is to build a trusted environment for the
execution of trusted applications concurrently with untrusted
applications. TrustGeM exploits the ideas of application driven
policy generation, on-chip application sandboxing (isolation),
and Secure, Reliable, and dynamic memory Virtualization
(SeReVral) technology.

The main contributions or this paper are:
• SeReVral: Secure, reliable, and dynamic memory

virtualization support for CMPs
• SeReVral-aware policy generation
• SeReVral-aware real-time on-chip application sandboxing.

II. TRUSTGEM

Figure 1. Secure CMP Platform Support

A. Chip-Multiprocessor Platform
Figure 1 shows a high-level block diagram of our proposed

platform. It consists of a series of simple RISC cores, a set of
distributed on-chip scratchpad memories, a secure arbiter, a
crypto engine, and the SeReVral manager module. It consists
of an on-chip shared bus (e.g., AMBA AHB bus protocol)

This research was partially supported by NSF Variability Expeditions Award
CCF-1029783

used for internal transactions. All masters in the system can
talk to the off-chip main memory (MM) through the off-chip
bus. The main difference from this platform to that presented in
[6] is the on-chip SeReVral manager. The Crypto co-processor
is responsible for providing support for data
encryption/decryption. On-chip data is stored in clear text, and
any sensitive data coming in/going out of the chip is
encrypted/decrypted. This model is standard as sensitive data
(e.g., DRM keys) are stored in main memory encrypted, and
decrypted (kept in the clear) while being processed by the
CPUs. Our SeReVral module is responsible for providing
secure and reliable virtual memory support utilizing physical
on-chip resources (SPMs) for the platform. All on-chip data is
protected via access control list (ACL) enforcement, as
encrypting/decrypting the data in real-time whenever it is
needed is not energy/performance efficient. ACLs are tied to
the hardware IDs associated with each master in the system in
order to prevent spoofing of ACLs.

Figure 2. SeReVral Logical SPM Mapping

III. SEREVRAL: SECURE, RELIABLE, AND DYNAMIC
MEMORY VIRTUALIZATION

The concept of Embedded RAIDs-on-Chip (E-RoC) was
first introduced in [17] with the goal of providing highly
reliable memory management for CMP platforms with
distributed SPMs. The goal of a traditional RAID system in
storage systems is to guarantee the uptime of the system. In
case a disk goes bad, the remaining disks are used to 1) serve
data requests despite the failed disk, and 2) on disk
replacement, rebuild the RAID system. Unlike traditional
RAID systems, where disks are replaced following a disk
failure, the goal of an Embedded RAID (E-RAID) is to
guarantee the validity of the data stored in the E-RAID. Thus
custom E-RAID levels were designed for the use in embedded
SoCs. Since RAID system parity can be computed by simple
XORs, E-RAIDs incur much less performance overheads
compared with any of the ECC/hybrid schemes previously
proposed [17]. Moreover, E-RAIDs exploit aggressive voltage
scaling of memories in order to significantly reduce the power
consumption at the cost of exponentially increasing the error
rate in memory cells (these errors are automatically handled by
the E-RAID levels).

One of the key features in E-RoC is the ability to generate
on demand Logical SPMs (LSPMs). Much like the notion of
Logical Volumes, Logical SPMs are exposed to the host as

regular scratchpad memories, and hence, their management is
no different from managing regular scratchpad memories. As
shown in Figure 2, the SeReVral module is responsible for
creating a virtualized memory space that is viewed by the
outside world as regular memory mapped SPMs, however,
internally, data is mapped to the distributed physical memories
in various forms. Each LSPM is capable of supporting different
degrees of reliability and security, from simple mirroring to
highly reliable TMR, as well as secure memory space. Note
that it is possible to create secure and reliable LSPMs as any E-
RAID level can be configured to enforce ACLs. Figure 2
shows the SeReVral memory subsystem with three Logical
SPMs (Logical SPM 1-3), where each LSPM guarantees a
different degree of reliability and trust. LSPM 1 configured to
provide trustworthy memory space for CPUs 0 and 1 through
ACL enforcement and running an E-RAID 1 level of 1 KB
(mirroring). Logical SPM 2 was configured to provide highly
reliable memory through E-RAID TRM for CPU 2, and finally,
Logical SPM 3, which provides secure and dedicated memory
space for CPU 3. In case of E-RAID creation with ACL
enforcement enabled, every memory transaction is validated
against the ACLs, and only the E-RAID creator can delete it or
update the ACL. Our software API for E-RAID manipulation
provides designers with a very small TCB, which removes all
E-RAID packet generation from the user’s hands, and exposes
a very abstract C-like interface (e.g., malloc()). Data within the
physical memories is zeroed after E-RAID deletion. Due to
space limitation we give a very high level overview of E-RoC,
for more information please refer to [17].

Figure 3. Security Policy Example

IV. TRUSTED ENVIRONMENT GENERATION

A. SeReVral-Aware Policy Generation
Custom policy generation presented in [6] assumes that the

underlying hardware can dedicate enough resources for the
application to execute; thus, each policy contains both task and
data mapping information. As we can see from Figure 3, the
policy assumes that the underlying hardware can dedicate two
memories for the execution of the application. This approach
works well when the system is able to support said policies,
however, dedicating full memories to support the execution of
a trusted application may lead to underutilization of the
memory resources, and as a result, poor overall system
performance. TrustGeM solves this limitation by rearranging
the address mapping of buffers and grouping them into
continuous trusted/untrusted memory space; This allows
TrustGeM to estimate the maximum required memory needed
to support the buffers, thereby providing the system with much
more accurate memory requirements information. During the
policy generation (scheduling and placement), we replace
memories of fixed size (as was previously done) with logical
LSPMs of varying sizes leading to better memory utilization.

cpu_0 accesses: 720 162 0
cpu_0 tasks: 3 time: 9539
SCHED: 0 1643 t2
 MAP: t2 buf_5 mem_2
 ACL: (t2:rw t3:r)
 MAP: t2 buf_8 mem_1
 ACL: (t2:r t3:rw t4:r)
 MAP: t2 buf_9 mem_1
 ACL: (t2:rw)

TABLE I. POLICY SELECTION

	 High	 Load	 Low	 Load	

On	 Battery	 Policy	 1	 Policy	 1/2	

On	 Power	 Cord	 Policy	 2	 Policy	 3	

B. Selective Policy Enforcement
Each application will be bundled with a set of policies; each

will have a different execution profile consisting of energy
consumption, performance (latency), and resource
requirements. Table I shows an example of the selection
among three different policies: Policy 1 is a low power, high
latency policy. Policy 2 is a mid power/mid latency policy.
Policy 3 is high performance, high power consumption
policy). As we can see, given the system’s load (and status)
we can then choose the right policy. Current implementation
limits up to three policies per application as we are yet to fully
investigate the impact of the policies’ footprint on the total
size of the (downloadable) application.

Figure 4. On-Chip Sandboxing Comparison

C. On-Chip Dynamic Sandboxing

TABLE II. POLICY REQUIREMENTS

	 #	 Processors	 Needed	 Memories	 (Sizes)	

Application	 1	 2	 	 3	 (2KB,	 3KB,	 3KB)	

Application	 2	 1	 	 2	 (4KB,	 2KB)	

Application	 3	 1	 1	 (2KB)	

Figure 4 shows the process of on-chip sandboxing. At first, the
system (a 4CPUx4KB SPMs CMP) is running an application
(Figure 4 (a)), at time 200; a DRM application wishes to launch
(Figure 4 (b)). The traditional halt approach (Figure 4 (c)) will
first stop execution of all tasks, context-switch them, start
execution of the DRM application, and resume execution of all
other tasks after DRM completes its execution. This approach
is very secure as it grants full access to the hardware to the
DRM system, but it suffers from great performance
degradation (on average, a 460 ms delay in execution). Figure 4
(d) shows TrustGeM’s sandboxing approach, which first
selects and loads a policy for the given system load, it then
proceeds to sort all tasks based on their context-switch
overhead, and context-switches the ones with the lowest

overhead. Next, a call for SeReVral LSPM generation is made
(dark box), and execution of DRM is initiated on the given
sandbox, while the remaining tasks continue their normal
execution on the available CPUs. This approach incurs an
average of 90 ms delay (5x much more efficient).

Figure 5. Improved Sandboxing

Figure 5 shows a comparison between sandboxing support for
multiple trusted applications (defined in Table II) given
PoliMakE (Figure 5 (a)) and TrustGeM (Figure 5 (b)). As we
can see, PoliMakE is forced to map data from Applications 1
and 2 (2 x 2KB) onto off-chip memory space, leading to extra
off-chip access penalties, affecting both energy and
performance of the system. TrustGeM, however, is able to
generate enough LSPMs (a total of 6 LSPMs with varying sizes
and assurance guarantees) for all applications, therefore
improving on-chip memory utilization.

Figure 6. Data utilization for various policies

V. EXPERIMENTAL RESULTS
We analyzed CHStone and Mediabench II benchmarks and

generated four different policies with different memory/
performance requirements. We integrated TrustGeM into our
simulation environment [6], and added the SeReVral support.
We then tested the environment generation on an 8CPU x
8x16KB SPMs @ 65 nm (CMP_L), and a smaller CMP with 8
Cores and 8 KB SPMs (CMP_S). We then evaluated three
trusted environment generation mechanisms (Halt [24],
PoliMakE [6], and TrustGeM). TrustGeM (like PoliMakE) will
outperform the Halt approach as it halts execution of all tasks
in order to provide the trusted application with full access to
the underlying hardware. Both PoliMakE and TrustGeM
generate dynamic trusted environments, however, TrustGeM
overcomes PoliMakE’s limitations by virtualizing the on-chip
memories.

A. TrustGeM Memory Utilization Efficiency
The main contribution of this paper is the ability to generate

policies with reduced memory footprint and dynamically
generate trusted execution environments with efficient memory
virtualization (exploiting SeReVral). Figure 6 shows four
policies generated with SeReVral (Figure 6 (a)) support and
PoliMakE support (Figure 6 (b)). From this figure we can
observe how policies generated for TrustGeM have a smaller
footprint than PoliMakE policies (up to 81% higher efficiency).
TrustGeM is able to accommodate all 7 applications isolated

utilizing only 40% of the available resources. Finally, if all
applications are to run concurrently with the policy with
highest requirements (Policy 1), we can see that TrustGeM is
able to execute them successfully, whereas PoliMakE is forced
to map data to off-chip memory.

TABLE III. PERFORMANCE AND ENERGY COMPARISON

Apps	 Expected	 Halt	 PoliMakE	 TrustGeM	 Energy	 Savings	

adpcm	 1	 102.25	 2.08	 1.02	 73.86%	

aes	 1	 142.93	 1	 0.97	 19.00%	

gsm	 1	 231.63	 1	 1.07	 3.79%	

h.263	 1	 1	 1.09	 1.04	 14.24%	

jpeg	 1	 6.10	 0.98	 1.062	 19.03%	

sha	 1	 19.46	 1	 1.13	 14.85%	

avg	 1	 83.89	 1.19	 1.05	 24.13%	

B. Policy Enforcement Comparison Under Constraints
Table III shows the performance comparison among

various trusted environment generation schemes (Halt [24],
PoliMakE [6], and TrustGeM) and the Expected (ideal)
execution of each application assuming no delays due to
context switching. For this experiment, we ran the applications
in a resource-constrained environment (CMP_S). We started
h.263 at t=0, adpcm at t=100, jpeg and gsm at t=300, and
sha/aes at t=500 (all K cycles). In the PoliMakE scenario, the
first two applications utilized the entire system resources and
loaded Policy 1 each. The remaining applications loaded and
enforced Policy 2. Each time a new application starts,
PoliMakE generates a trusted environment (sandbox) for its
execution. PoliMakE suffers from higher data eviction rate as it
reserves entire memories for execution of tasks, whereas
TrustGeM is able to dynamically generate LSPMs (of various
sizes), and thus utilizes the on-chip resources much more
efficiently (leading to better energy efficiency and system
performance). In general, TrustGeM is able to outperform
PoliMakE and remain within the Expected execution (minimal
delays). Note that in [6], PoliMakE was shown to reduce
latency over the halt approach by 61% and reduce power
consumption by 99%. As expected, the halt approach is the
worst for all except h.263, which is the very first executed
application. For this experiment, no application was given
higher priority than the rest since we wanted to test how well
each scheme was able to accommodate concurrent (sandboxed)
execution of all applications as they enter the system.

C. Energy Savings over PoliMakE
SeReVral allows TrustGeM to generate policies with lower

memory footprints than PoliMakE; combined with SeReVral’s
aggressive voltage scaling of the memories, TrustGeM
achieves higher energy efficiency than PoliMakE. As shown in
Table III, we observe up to 73% energy savings for adpcm
alone, and a system wide energy savings of 24%.

VI. CONCLUSIONS
In this paper, we presented TrustGeM, a dynamic trusted

environment generation methodology for chip-multiprocessors

capable of building a trusted environment for the execution of
trusted applications concurrently with untrusted applications.
TrustGeM exploits the ideas of application driven policy
generation, on-chip application sandboxing (isolation), and
Secure, Reliable, and dynamic memory Virtualization
(SeReVral) technology. Experimental results on an 8 Core
CMP show that TrustGeM is able reduce overall system energy
by an average 24% due to its memory utilization efficiency
while incurring minimal performance overhead over the ideal
case (an average of 5%).

REFERENCES
[1] The Cell project at IBM Research, http://www.research.ibm.com/cell/
[2] Intel Multi-Core Technology, http://www.intel.com/multi-

core/index.htm?iid=tech_as_lhn+multi
[3] Intel’s Teraflops Research Chip,

http://techresearch.intel.com/articles/Tera-Scale/1449.htm
[4] Tilera’s Tile Gx Family,

http://www.tilera.com/products/processors/TILE-Gx_Family
[5] Intel’s Single Cloud Computer,

http://techresearch.intel.com/ProjectDetails.aspx?Id=1
[6] L. Bathen et al., “PoliMakE: a policy making engine for secure

embedded software execution on chip-multiprocessors,” WESS ‘10
[7] Android OS, http://www.android.com/
[8] J. Coburn et al., “SECA: security-enhanced communication

architecture.” In Proc. of CASES '05.
[9] Z. Wan et al., “New cache designs for thwarting software cache-based

side channel attacks.” In Proceedings of ISCA '07
[10] G. Necula et al., “CCured: type-safe retrofitting of legacy software.”

ACM Trans. Program. Lang. Syst. 27, 3 (May. 2005), 477-526.
[11] H. Ozdoganoglu et al., “SmashGuard: A Hardware Solution to Prevent

Security Attacks on the Function Return Address.” IEEE Trans.
Comput. 55, 2006

[12] C. Cowan, et al., “PointguardTM: protecting pointers from buffer
overflow vulnerabilities.” In Proc. of USENIX Security ‘03

[13] C. Cowan et al., “StackGuard: automatic adaptive detection and
prevention of buffer-overflow attacks.” In Proc. USENIX Security ‘08

[14] P. C. Kocher et al., “Differential Power Analysis.” In Proc. of the 19th
Annual Int. Cryptology Conference on Advances in Cryptology, 1999

[15] D. J. Bernstein. Cache-timing attacks on AES. Technical report, 2005.
URL: http://cr.yp.to/antiforgery/cachetiming- 20050414.pdf

[16] E. Biham et al., “Differential Fault Analysis of Secret Key
Cryptosystems.” In Proc. of CRYPTO '97

[17] L. Bathen et al., “E-RoC: Embedded RAIDs-on-Chip for Low Power
Distributed Dynamically Managed Reliable Memories,” DATE ‘11

[18] Open Mobile Alliance, "DRM Specification V2.0", Open Mobile
Alliance Ltd, 2004, La Jolla (CA), USA

[19] R. York, A New Foundation for CPU Systems Security. ARM Limited
(http://www.arm.com/armtech/TrustZone?OpenDocument), 2003

[20] Shimizu, K., Hofstee, H. P., and Liberty, J. S. 2007. Cell broadband
engine processor vault security architecture. IBM J. Res. Dev. 51, 5

[21] G. E. Suh et al, “AEGIS: Architecture for Tamper-Evident and Tamper-
Resistant Processing,” in Proc. Intl Conf. Supercomputing (ICS ’03)

[22] K. Patel et al., “SHIELD: a software hardware design methodology for
security and reliability of MPSoCs.” In Proceedings of DAC ‘8

[23] Z. Shao et al., “Security Protection and Checking for Embedded System
Integration against Buffer Overflow Attacks via
Hardware/Software.” IEEE Trans. Comput. 55, 4 (Apr. 2006), 443-453

[24] J. McCune et al., “Flicker: an execution infrastructure for tcb
minimization.” In Proc. of EuroSys ‘08

