
Chapter 2

Flow of Control

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• Boolean Expressions
– Building, Evaluating & Precedence Rules

• Branching Mechanisms
– if-else

– switch

– Nesting if-else

• Loops
– While, do-while, for

– Nesting loops

• Introduction to File Input

2-2Copyright © 2016 Pearson Inc. All rights reserved.

Boolean Expressions:
Display 2.1 Comparison Operators

• Logical Operators

– Logical AND (&&)

– Logical OR (||)

2-3Copyright © 2016 Pearson Inc. All rights reserved.

Evaluating Boolean Expressions

• Data type bool

– Returns true or false

– true, false are predefined library consts

• Truth tables

– Display 2.2 next slide

2-4Copyright © 2016 Pearson Inc. All rights reserved.

Evaluating Boolean Expressions: Display 2.2
Truth Tables

2-5Copyright © 2016 Pearson Inc. All rights reserved.

Display 2.3
Precedence of Operators (1 of 4)

2-6Copyright © 2016 Pearson Inc. All rights reserved.

Display 2.3
Precedence of Operators (2 of 4)

2-7Copyright © 2016 Pearson Inc. All rights reserved.

Display 2.3
Precedence of Operators (3 of 4)

2-8Copyright © 2016 Pearson Inc. All rights reserved.

Display 2.3
Precedence of Operators (4 of 4)

2-9Copyright © 2016 Pearson Inc. All rights reserved.

Precedence Examples

• Arithmetic before logical
– x + 1 > 2 || x + 1 < -3 means:

• (x + 1) > 2 || (x + 1) < -3

• Short-circuit evaluation
– (x >= 0) && (y > 1)

– Be careful with increment operators!
• (x > 1) && (y++)

• Integers as boolean values
– All non-zero values  true

– Zero value  false

2-10Copyright © 2016 Pearson Inc. All rights reserved.

Strong Enum

• C++11 introduces strong enums or enum
classes

– Does not act like an integer

– Examples

– Illegal: if (d == 0)

– Legal: if (d == Days::Wed)

2-11Copyright © 2016 Pearson Inc. All rights reserved.

enum class Days { Sun, Mon, Tue, Wed, Thu, Fri, Sat };
enum class Weather { Rain, Sun };
Days d = Days::Tue;
Weather w = Weather::Sun;

Branching Mechanisms

• if-else statements

– Choice of two alternate statements based
on condition expression

– Example:
if (hrs > 40)

grossPay = rate*40 + 1.5*rate*(hrs-40);
else

grossPay = rate*hrs;

2-12Copyright © 2016 Pearson Inc. All rights reserved.

if-else Statement Syntax

• Formal syntax:
if (<boolean_expression>)

<yes_statement>
else

<no_statement>

• Note each alternative is only
ONE statement!

• To have multiple statements execute in
either branch  use compound statement

2-13Copyright © 2016 Pearson Inc. All rights reserved.

Compound/Block Statement

• Only "get" one statement per branch

• Must use compound statement { }
for multiples

– Also called a "block" stmt

• Each block should have block statement

– Even if just one statement

– Enhances readability

2-14Copyright © 2016 Pearson Inc. All rights reserved.

Compound Statement in Action

• Note indenting in this example:
if (myScore > yourScore)
{

cout << "I win!\n";
wager = wager + 100;

}
else
{

cout << "I wish these were golf scores.\n";
wager = 0;

}

2-15Copyright © 2016 Pearson Inc. All rights reserved.

Common Pitfalls

• Operator "=" vs. operator "=="

• One means "assignment" (=)

• One means "equality" (==)
– VERY different in C++!

– Example:
if (x = 12) Note operator used!

Do_Something
else

Do_Something_Else

2-16Copyright © 2016 Pearson Inc. All rights reserved.

The Optional else

• else clause is optional

– If, in the false branch (else), you want "nothing" to happen,
leave it out

– Example:
if (sales >= minimum)

salary = salary + bonus;
cout << "Salary = %" << salary;

– Note: nothing to do for false condition, so there is no else
clause!

– Execution continues with cout statement

2-17Copyright © 2016 Pearson Inc. All rights reserved.

Nested Statements

• if-else statements contain smaller statements

– Compound or simple statements (we’ve seen)

– Can also contain any statement at all, including another if-
else stmt!

– Example:
if (speed > 55)

if (speed > 80)
cout << "You’re really speeding!";

else
cout << "You’re speeding.";

• Note proper indenting!

2-18Copyright © 2016 Pearson Inc. All rights reserved.

Multiway if-else

• Not new, just different indenting

• Avoids "excessive" indenting

– Syntax:

2-19Copyright © 2016 Pearson Inc. All rights reserved.

Multiway if-else Example

2-20Copyright © 2016 Pearson Inc. All rights reserved.

The switch Statement

• A statement for controlling multiple branches

• Can do the same thing with if statements but
sometimes switch is more convenient

• Uses controlling expression which returns bool
data type (true or false)

• Syntax:

– Next slide

2-21Copyright © 2016 Pearson Inc. All rights reserved.

switch Statement Syntax

2-22Copyright © 2016 Pearson Inc. All rights reserved.

The controlling expression must be integral! This includes char.

The switch Statement in Action

2-23Copyright © 2016 Pearson Inc. All rights reserved.

The switch: multiple case labels

• Execution "falls thru" until break

– switch provides a "point of entry"

– Example:
case 'A':
case 'a':

cout << "Excellent: you got an "A"!\n";
break;

case 'B':
case 'b':

cout << "Good: you got a "B"!\n";
break;

– Note multiple labels provide same "entry"

2-24Copyright © 2016 Pearson Inc. All rights reserved.

switch Pitfalls/Tip

• Forgetting the break;
– No compiler error

– Execution simply "falls thru" other cases until
break;

• Biggest use: MENUs
– Provides clearer "big-picture" view

– Shows menu structure effectively

– Each branch is one menu choice

2-25Copyright © 2016 Pearson Inc. All rights reserved.

switch Menu Example

• Switch stmt "perfect" for menus:
switch (response)
{

case 1:
// Execute menu option 1
break;

case 2:
// Execute menu option 2
break;

case 3:
// Execute menu option 3
break;

default:
cout << "Please enter valid response.";

}

2-26Copyright © 2016 Pearson Inc. All rights reserved.

Conditional Operator

• Also called "ternary operator"

– Allows embedded conditional in expression

– Essentially "shorthand if-else" operator

– Example:
if (n1 > n2)

max = n1;
else

max = n2;

– Can be written:
max = (n1 > n2) ? N1 : n2;
• "?" and ":" form this "ternary" operator

2-27Copyright © 2016 Pearson Inc. All rights reserved.

Loops

• 3 Types of loops in C++

– while
• Most flexible

• No "restrictions"

– do-while
• Least flexible

• Always executes loop body at least once

– for
• Natural "counting" loop

2-28Copyright © 2016 Pearson Inc. All rights reserved.

while Loops Syntax

2-29Copyright © 2016 Pearson Inc. All rights reserved.

while Loop Example

• Consider:
count = 0; // Initialization
while (count < 3) // Loop Condition
{

cout << "Hi "; // Loop Body
count++; // Update expression

}

– Loop body executes how many times?

2-30Copyright © 2016 Pearson Inc. All rights reserved.

do-while Loop Syntax

2-31Copyright © 2016 Pearson Inc. All rights reserved.

do-while Loop Example

• count = 0; // Initialization
do
{

cout << "Hi "; // Loop Body
count++; // Update expression

} while (count < 3); // Loop Condition

– Loop body executes how many times?

– do-while loops always execute body at least once!

2-32Copyright © 2016 Pearson Inc. All rights reserved.

while vs. do-while

• Very similar, but…

– One important difference
• Issue is "WHEN" boolean expression is checked

• while: checks BEFORE body is executed

• do-while: checked AFTER body is executed

• After this difference, they’re
essentially identical!

• while is more common, due to it’s
ultimate "flexibility"

2-33Copyright © 2016 Pearson Inc. All rights reserved.

Comma Operator

• Evaluate list of expressions, returning
value of the last expression

• Most often used in a for-loop

• Example:
first = (first = 2, second = first + 1);
– first gets assigned the value 3

– second gets assigned the value 3

• No guarantee what order expressions will
be evaluated.

2-34Copyright © 2016 Pearson Inc. All rights reserved.

for Loop Syntax

for (Init_Action; Bool_Exp; Update_Action)

Body_Statement

• Like if-else, Body_Statement can be
a block statement

– Much more typical

2-35Copyright © 2016 Pearson Inc. All rights reserved.

for Loop Example

• for (count=0;count<3;count++)
{

cout << "Hi "; // Loop Body
}

• How many times does loop body execute?

• Initialization, loop condition and update all
"built into" the for-loop structure!

• A natural "counting" loop

2-36Copyright © 2016 Pearson Inc. All rights reserved.

Loop Issues

• Loop’s condition expression can be ANY boolean
expression

• Examples:
while (count<3 && done!=0)
{

// Do something
}

for (index=0;index<10 && entry!=-99)
{

// Do something
}

2-37Copyright © 2016 Pearson Inc. All rights reserved.

Loop Pitfalls: Misplaced ;

• Watch the misplaced ; (semicolon)
– Example:

while (response != 0) ;
{

cout << "Enter val: ";
cin >> response;

}

– Notice the ";" after the while condition!

• Result here: INFINITE LOOP!

2-38Copyright © 2016 Pearson Inc. All rights reserved.

Loop Pitfalls: Infinite Loops

• Loop condition must evaluate to false at
some iteration through loop
– If not  infinite loop.

– Example:
while (1)
{

cout << "Hello ";
}

– A perfectly legal C++ loop  always infinite!

• Infinite loops can be desirable
– e.g., "Embedded Systems"

2-39Copyright © 2016 Pearson Inc. All rights reserved.

The break and continue Statements

• Flow of Control
– Recall how loops provide "graceful" and clear flow of

control in and out

– In RARE instances, can alter natural flow

• break;
– Forces loop to exit immediately.

• continue;
– Skips rest of loop body

• These statements violate natural flow
– Only used when absolutely necessary!

2-40Copyright © 2016 Pearson Inc. All rights reserved.

Nested Loops

• Recall: ANY valid C++ statements can be
inside body of loop

• This includes additional loop statements!
– Called "nested loops"

• Requires careful indenting:
for (outer=0; outer<5; outer++)

for (inner=7; inner>2; inner--)
cout << outer << inner;

– Notice no { } since each body is one statement

– Good style dictates we use { } anyway

2-41Copyright © 2016 Pearson Inc. All rights reserved.

Introduction to File Input

• We can use cin to read from a file in a manner
very similar to reading from the keyboard

• Only an introduction is given here, more
details are in chapter 12

– Just enough so you can read from text files and
process larger amounts of data that would be too
much work to type in

2-42Copyright © 2016 Pearson Inc. All rights reserved.

Opening a Text File

• Add at the top
#include <fstream>

using namespace std;

• You can then declare an input stream just as you
would declare any other variable.

ifstream inputStream;

• Next you must connect the inputStream variable to a
text file on the disk.

inputStream.open("filename.txt");

• The “filename.txt” is the pathname to a text file or a
file in the current directory

2-43Copyright © 2016 Pearson Inc. All rights reserved.

Reading from a Text File

• Use

inputStream >> var;

• The result is the same as using cin >> var

except the input is coming from the text file
and not the keyboard

• When done with the file close it with

inputStream.close();

2-44Copyright © 2016 Pearson Inc. All rights reserved.

File Input Example (1 of 2)

• Consider a text file named player.txt with the
following text

2-45Copyright © 2016 Pearson Inc. All rights reserved.

File Input Example (2 of 2)

2-46Copyright © 2016 Pearson Inc. All rights reserved.

Summary 1

• Boolean expressions
– Similar to arithmetic  results in true or false

• C++ branching statements
– if-else, switch

– switch statement great for menus

• C++ loop statements
– while

– do-while

– for

2-47Copyright © 2016 Pearson Inc. All rights reserved.

Summary 2
• do-while loops

– Always execute their loop body at least once

• for-loop
– A natural "counting" loop

• Loops can be exited early
– break statement

– continue statement

– Usage restricted for style purposes

• Reading from a text file is similar to reading
from cin

2-48Copyright © 2016 Pearson Inc. All rights reserved.

