Chapter 2

Flow of Control

Walter Savitch

Copyright © 2016 Pearson, Inc. _
All rights reserved. P EA RSO N

Learning Objectives

Boolean Expressions
— Building, Evaluating & Precedence Rules

Branching Mechanisms
— if-else

— switch

— Nesting if-else

Loops
— While, do-while, for
— Nesting loops

Introduction to File Input

Boolean Expressions:
Display 2.1 Comparison Operators

e Logical Operators
— Logical AND (&&)
— Logical OR (| |)

Display 2.1 Comparison Operators

= Equal to == X + 7 == 2%y X+7=2y
Not equal to l= ans != 'n’ ans # 'n’
< Less than < count < m + 3 count<m+3
< Less than or <= time <= limit time < limit
equal to
> Greater than > time > limit time > limit
> Greater than >= age >= 21 age 2 2l
or equal to

Copyright © 2016 Pearson Inc. All rights reserved.

2-3

Evaluating Boolean Expressions

e Data type bool
— Returns true or false
— true, false are predefined library consts

* Truth tables
— Display 2.2 next slide

Evaluating Boolean Expressions: Display 2.2
Truth Tables

Display 2.2 Truth Tables

AND
Exp_1 Exp_2 Exp_1 && Exp_2
true true true
true false false
NOT
false true false
false false false Exp U
true false
OR false true
Exp_1 Exp_2 Exp_i1 || Exp_2
true true true
true false true
false true true
false false false

Copyright © 2016 Pearson Inc. All rights reserved.

Display 2.3

Precedence of Operators (1 of 4)

Display 2.3

Precedence of Operators

Scope resolution operator
. Dot operator
—> Member selection
[] Array indexing
) Function call
++ Postfix increment operator (placed after the variable)
— Postfix decrement operator (placed after the variable)
++ Prefix increment operator (placed before the variable)
-— Prefix decrement operator (placed before the variable)
! Not
- Unary minus
+ Unary plus
* Dereference
& Address of
new Create (allocate memory)
delete Destroy (deallocate)
delete[] Destroy array (deallocate)
sizeof Size of object
) Type cast

Copyright © 2016 Pearson Inc. All rights reserved.

Highest precedence
(done first)

2-6

Display 2.3

Precedence of Operators (2 of 4)

* Multiply

/ Divide

% Remainder (modulo)

- Addition

- Subtraction

<< Insertion operator (console output)
>> Extraction operator (console input)

Lower precedence
(done later)

Copyright © 2016 Pearson Inc. All rights reserved.

2-7

IBEEEER

. 1

IBEEE

Display 2.3
Precedence of Operators (3 of 4)

Display 2.3 Precedence of Operators

All operators in part 2 are of lower precedence than those in part 1.

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
== Equal

I= Not equal

&& And

| | Or

Copyright © 2016 Pearson Inc. All rights reserved.

2-8

Display 2.3
Precedence of Operators (4 of 4)

= Assignment
+= Add and assign
—= Subtract and assign
*= Multiply and assign
= Divide and assign Y
6= Modulo and assign Lowest precedence
(done last)
? Conditional operator
throw Throw an exception
, Comma operator

Copyright © 2016 Pearson Inc. All rights reserved. 2-9

Precedence Examples

* Arithmetic before logical

—X+1>2 || x+1<-3means:
e (x+1)>2 || (x+1)<-3

e Short-circuit evaluation
— (x>=0) && (y>1)
— Be careful with increment operators!
e (x>1) && (y++)
* Integers as boolean values

— All non-zero values = true
— Zero value = false

Strong Enum

C++11 introduces strong enums or enum
classes

— Does not act like an integer

— Examples

enum class Days { Sun, Mon, Tue, Wed, Thu, Fri, Sat };
enum class Weather { Rain, Sun };

Days d = Days::Tue;

Weather w = Weather::Sun;

— lllegal: if (d == 0)
— Legal: if (d == Days::Wed)

Copyright © 2016 Pearson Inc. All rights reserved. 2-11

Branching Mechanisms

e if-else statements

— Choice of two alternate statements based
oh condition expression

— Example:
if (hrs > 40)
grossPay = rate*40 + 1.5*rate*(hrs-40);
else
grossPay = rate*hrs;

if-else Statement Syntax

* Formal syntax:
if (<boolean_expression>)
<yes_statement>

else
<no_statement>

* Note each alternative is only
ONE statement!

* To have multiple statements execute in
either branch = use compound statement

Compound/Block Statement

* Only "get" one statement per branch

 Must use compound statement { }
for multiples

— Also called a "block" stmt

 Each block should have block statement
— Even if just one statement
— Enhances readability

Compound Statement in Action

* Note indenting in this example:
if (myScore > yourScore)

{
cout << "l win!\n";
wager = wager + 100;
}
else
{

cout << "l wish these were golf scores.\n";
wager = 0;

Common Pitfalls

* Operator "=" vs. operator "=="
e One means "assignment" (=)
* One means "equality" (==

— VERY different in C++!

— Example:
if (x=12) <Note operator used!
Do_Something
else
Do _Something_Else

The Optional else

* else clause is optional

— If, in the false branch (else), you want "nothing" to happen,
leave it out

— Example:
if (sales >= minimum)
salary = salary + bonus;
cout << "Salary = %" << salary;

— Note: nothing to do for false condition, so there is no else
clause!

— Execution continues with cout statement

Nested Statements

e if-else statements contain smaller statements

— Compound or simple statements (we’ve seen)

— Can also contain any statement at all, including another if-
else stmt!

— Example:
if (speed > 55)
if (speed > 80)
cout << "You're really speeding!”;
else
cout << "You're speeding.";
* Note proper indenting!

Multiway if-else

* Not new, just different indenting

* Avoids "excessive" indenting
— Syntax:

Multiway if-else Statement

SYNTAX

if (Boolean_Expression_i)
Statement_i

else if (Boolean_Expression_z)
Statement_z2

else if (Boolean_Expression_n)
Statement_n

else
Statement_For_All_Other_Possibilities

Copyright © 2016 Pearson Inc. All rights reserved. 2-19

Multiway if-else Example

EXAMPLE

if ((temperature < -10) && (day == SUNDAY))
cout << "Stay home.";

else if (temperature < -10) //and day != SUNDAY
cout << "Stay home, but call work.";

else if (temperature <= 0) //and temperature >= -10
cout << "Dress warm.";

else //temperature > 0
cout << "Work hard and play hard.";

The Boolean expressions are checked in order until the first true Boolean expression is encoun-
tered, and then the corresponding statement is executed. If none of the Boolean expressions is
true, then the Statement_For_All_Other_Possibilities is executed.

Copyright © 2016 Pearson Inc. All rights reserved. 2-20

The switch Statement

A statement for controlling multiple branches

Can do the same thing with if statements but
sometimes switch is more convenient

Uses controlling expression which returns bool
data type (true or false)

Syntax:
— Next slide

switch Statement Syntax

switch Statement

SYNTAX
switch (Controlling_Expression)

{
case Constant_i:
Statement_Sequence_1
break;
case Constant_z:
Statement_Sequence_2
break;

case Constant_n:
Statement_Sequence_n
break;

default:
Default_Statement_Sequence

You need not place a break statement in
each case. If you omit a break, that case
continues until a break (or the end of the
switch statement) is reached.

The controlling expression must be integral! This includes char.

Copyright © 2016 Pearson Inc. All rights reserved.

2-22

The switch Statement in Action

{

EXAMPLE

int vehicleClass;

double toll;

cout << "Enter vehicle class: ";
cin >> vehicleClass;

switch (vehicleClass)

case 1:
cout << "Passenger car.";
toll = 0.50;
break; If you forget this break,
case 2: \ then passenger cars will
cout << "Bus.'"; pay $1.50.
toll = 1.50;
break;
case 3:
cout << "Truck.";
toll = 2.00;
break;
default:

cout << "Unknown vehicle class!";

Copyright © 2016 Pearson Inc. All rights reserved.

2-23

The switch: multiple case labels

 Execution "falls thru" until break

— switch provides a "point of entry"

— Example:

case 'A":

case 'a":
cout << "Excellent: you got an "A"I\n";
break;

case 'B":

case 'b":
cout << "Good: you got a "B"!\n";
break;

— Note multiple labels provide same "entry"

switch Pitfalls/Tip

Forgetting the break;
— No compiler error

— Execution simply "falls thru" other cases until
break;

Biggest use: MENUSs

— Provides clearer "big-picture" view
— Shows menu structure effectively
— Each branch is one menu choice

switch Menu Example

e Switch stmt "perfect” for menus:
switch (response)

{
case 1:
// Execute menu option 1
break;
case 2:
// Execute menu option 2
break;
case 3:
// Execute menu option 3
break;
default:
cout << "Please enter valid response.";
}

Copyright © 2016 Pearson Inc. All rights reserved. 2-26

Conditional Operator

* Also called "ternary operator"
— Allows embedded conditional in expression
— Essentially "shorthand if-else" operator

— Example:
if (N1 >n2)
max = nl;
else
max = n2;

— Can be written:
max =(nl>n2)? N1:n2;
e "?"and":" form this "ternary" operator

Loops

* 3 Types of loops in C++

— while
* Most flexible
* No "restrictions"

— do-while
e Least flexible

* Always executes loop body at least once

— for
* Natural "counting" loop

Copyright © 2016 Pearson Inc. All rights reserved.

2-28

while Loops Syntax

Syntax for while and do-while Statements

A while STATEMENT WITH A SINGLE STATEMENT BODY

while (Boolean_Expression)
Statement

A while STATEMENT WITH A MULTISTATEMENT BODY

while (Boolean_Expression)

{
Statement_i
Statement_2
Statement_Last
}

Copyright © 2016 Pearson Inc. All rights reserved. 2-29

while Loop Example

* Consider:
count = 0; // Initialization
while (count < 3) // Loop Condition
{
cout << "Hi "; // Loop Body
count++; // Update expression
}

— Loop body executes how many times?

do-while Loop Syntax

A do-while STATEMENT WITH A SINGLE-STATEMENT BODY

do
Statement
while (Boolean_Expression) ;

A do-while STATEMENT WITH A

MULTISTATEMENT BODY Do not forget
the final
?0 semicolon.
Statement_J

Statement_2

Statement_Last
} while (Boolean_Expression) ;

Copyright © 2016 Pearson Inc. All rights reserved. 2-31

do-while Loop Example

e count=0; // Initialization
do

{
cout << "Hi "; // Loop Body
count++; // Update expression
} while (count < 3); // Loop Condition

— Loop body executes how many times?

— do-while loops always execute body at least once!

while vs. do-while

Very similar, but...

— One important difference

* Issue is "WHEN" boolean expression is checked
* while: checks BEFORE body is executed
e do-while: checked AFTER body is executed

After this difference, they’re
essentially identical!

while is more common, due to it’s
ultimate "flexibility"

Comma Operator

Evaluate list of expressions, returning
value of the last expression

Most often used in a for-loop

Example:

first = (first = 2, second = first + 1);
— first gets assigned the value 3
— second gets assigned the value 3

No guarantee what order expressions will
be evaluated.

for Loop Syntax

for (Init_Action; Bool Exp; Update_ Action)
Body Statement

* Like if-else, Body Statement can be
a block statement

— Much more typical

Copyright © 2016 Pearson Inc. All rights reserved. 2-35

for Loop Example

for (count=0;count<3;count++)

{
cout << "Hi "; // Loop Body

}

How many times does loop body execute?

Initialization, loop condition and update all
"built into" the for-loop structure!

A natural "counting" loop

Loop Issues

* Loop’s condition expression can be ANY boolean
expression

 Examples:

while (count<3 && done!=0)

{
// Do something

}
for (index=0;index<10 && entry!=-99)

{
// Do something

}

Copyright © 2016 Pearson Inc. All rights reserved. 2-37

Loop Pitfalls: Misplaced ;

e Watch the misplaced ; (semicolon)

— Example:
while (response = 0) ;<

{

cout << "Enter val: ";
cin >> response;

}

— Notice the ";" after the while condition!

e Result here: INFINITE LOOP!

Loop Pitfalls: Infinite Loops

* Loop condition must evaluate to false at
some iteration through loop
— If not = infinite loop.

— Example:
while (1)
{

}
— A perfectly legal C++ loop = always infinite!

cout << "Hello ";

* Infinite loops can be desirable
— e.g., "Embedded Systems"

The break and continue Statements

Flow of Control

— Recall how loops provide "graceful" and clear flow of
control in and out

— In RARE instances, can alter natural flow

break;
— Forces loop to exit immediately.

continue;
— Skips rest of loop body

These statements violate natural flow
— Only used when absolutely necessary!

Nested Loops

e Recall: ANY valid C++ statements can be
inside body of loop

* This includes additional loop statements!
— Called "nested loops"

* Requires careful indenting:
for (outer=0; outer<5; outer++)
for (inner=7; inner>2; inner--)
cout << outer << inner;
— Notice no { } since each body is one statement

— Good style dictates we use { } anyway

Introduction to File Input

e We can use cin to read from a file in a manner
very similar to reading from the keyboard

* Only an introduction is given here, more
details are in chapter 12
— Just enough so you can read from text files and

process larger amounts of data that would be too
much work to type in

Opening a Text File

Add at the top

#include <fstream>
using namespace std;

You can then declare an input stream just as you
would declare any other variable.

ifstream inputStream;
Next you must connect the inputStream variable to a
text file on the disk.

inputStream.open ("filename.txt");

The “filename.txt” is the pathname to a text file or a
file in the current directory

Reading from a Text File

e Use

inputStream >> var;

 The result is the same as using cin >> var

except the input is coming from the text file
and not the keyboard

e When done with the file close it with

inputStream.close() ;

File Input Example (1 of 2)

* Consider a text file named player.txt with the
following text

Display 2.10 Sample Text File, player. txt, to Store a Player’s High Score and Name

1008510

Gordon Freeman

Copyright © 2016 Pearson Inc. All rights reserved. 2-45

File Input Example (2 of 2)

Display 2.11 Program to Read the Text File in Display 2.10

1 #include <iostreams=

2 #include <fstream=>

3 #include <string>

4 using namespace std;

5 1int main()

6 {

7 string firstName, lastName;

g int score;

g fstream inputStream;

10 inputStream.open("player.txt") ;

11 inputStream >> score;

12 inputStream == firstName => lastName;
13 cout << "Name: " << firstName << " "
14 <=z lastlName =< endl;

15 cout =< "Score: " <=z score =< endl;
1& inputStream.close () ;

17 return 0;

18}

Sample Dialogue

Name: Gordon Freeman

Score: 100510 2-46

BEEEEEEERERERE

Summary 1

* Boolean expressions
— Similar to arithmetic = results in true or false

 C++ branching statements
— if-else, switch
— switch statement great for menus

 C++ loop statements
— while
— do-while
— for

Copyright © 2016 Pearson Inc. All rights reserved. 2-47

Summary 2

do-while loops

— Always execute their loop body at least once

for-loop

— A natural "counting" loop

Loops can be exited early

— break statement
— continue statement
— Usage restricted for style purposes

Reading from a text file is similar to reading
from cin

