Programming with C++ as a
Second Language

Week 2 — Overview of C++

CSE/ICS 45C
Patricia Lee, PhD

BEEEEERE

d S i = O | (
ABSOLUIE C++

SIXTH EDITION Chapter 1

C++ Basics

Walter Savitch

Copyright © 2016 Pearson, Inc.
All rights reserved. PEARSO N

Learning Objectives

Introduction to C++
— Origins, Object-Oriented Programming, Terms

Variables, Expressions, and
Assignment Statements

Console Input/Output
Program Style

Libraries and Namespaces

Introduction to C++

* C++ Origins
— Low-level languages

* Machine, assembly
— High-level languages
e C, C++, ADA, COBOL, FORTRAN
— Object-Oriented-Programming in C++

e C++ Terminology
— Programs and functions
— Basic Input/Output (I/0) with cin and cout

std::C++ Versions

C++98: C++ 1998/2003 Standard
C++11: C++ 2011 Standard

C++14: C++ 2014 Standard (May/may not
discuss new features in this version)

C++17: (TBDin 2017)

Core Language vs. Standard Library

* Core Language is always available to all C++
programs

* Must explicitly ask for the parts of the
standard library to be used

— Via #include directives

— Usually at beginning of program

— Standard header: part of the C++ library, enclosed
in angle brackets (< and >)

_

BEEEEEEEEERE

Display 1.1
A Sample C++ Program (1 of 2)

Display 1.1 A Sample C++ Program

1 #include <iostream>

2 using namespace std;

3 int main()

4 {

5 int numberOfLanguages;

6 cout << "Hello reader.\n"

7 << "Welcome to C++.\n";

8 cout << "How many programming languages have you used? ";
9 cin >> numberOfLanguages;

10 if (numberOfLanguages < 1)

11 cout << "Read the preface. You may prefer\n"
12 << "a more elementary book by the same author.\n";
13 else
14 cout << "Enjoy the book.\n";
15 return 0;
16}

Copyright © 2016 Pearson Inc. All rights reserved.

1-7

Display 1.1
A Sample C++ Program (2 of 2)

SAMPLE DIALOGUE 1

Hello reader.

Welcome to C++.

How many programming languages have you used? @ -«——— User types in 0 on the keyboard.
Read the preface. You may prefer

a more elementary book by the same author.

SAMPLE DIALOGUE 2

Hello reader.

Welcome to C++.

How many programming languages have you used? 1—=-— User types in 1 on the keyboard.
Enjoy the book

Copyright © 2016 Pearson Inc. All rights reserved. 1-8

Program Structure

* Free Form: spaces required only when they
keep adjacent symbols separated

3 entities not free form:

own

— string literals: chars in “” may not span lines

— #include name: must appear on line by itself,
excepting comments

— [/ comments:
// followed by text ends at end of current line

— Comment with /* at beginning and */ at end is
free form and can span multiple lines

Syntax

* Function: a piece of program that has a name
that another program can call (cause to run)

— int main()
* Function Name: main

* Return Type: int (core language datatype), type of data
returned in return statement.

e Parameters: that our function receives from the
implementation, enclosed in parenthesis (in this case,
none)

— Every C++ program must define exactly one
function named main

Syntax

* {}[curly braces] is used around a sequence of
zero or more statements and denotes that

they should

oe treated as a unit (a block)

e : [semicolon]

is used after an expression to

create a statement (called an expression
statement) — can have null statements (just

semicolon)

Terminology

* Types: data structures/operations defined

— Two types:
e Core language (e.g. int)
* Defined outside core language (e.g. std::ostream)

* Namespaces: mechanism for grouping related
names

— Standard library namespace: std

e String Literals (later slide)

Qualified Name/Scope Operator (::
operator)

* Left-associative (type is std::ostream)
— std::cout is used with << [output operator]
— std::cin is used with >> [input operator]
 Manipulator: manipulates stream

— std::endl is used to end the current line of output
(“\n” is used in the program excerpt)

C++ Variables

e C++ ldentifiers
— Keywords/reserved words vs. Identifiers
— Case-sensitivity and validity of identifiers
— *Programmer provides meaningful names

* Variables
— A memory location to store data for a program
— Must declare all data before use in program

Data Types:
Display 1.2 Simple Types (1 of 2)

Display 1.2 Simple Types

short 2 bytes -32,768 t0 32,767 Not applicable

(also called (2*8 bits = 16 bits) (2716 = 65,536)

short int) ’

int L bytes -2,147,483,648 to Not applicable
2,147,483,647

long 4 bytes -2,147,483,648 to Not applicable

(also called 2,147,483,647

long int)

float L bytes approximately 7 digits
1038 to 1038

double 8 bytes approximately I15 digits

Copyright © 2016 Pearson Inc. All rights reserved.

107398 1o 0308

1-15

Data Types:
Display 1.2 Simple Types (2 of 2)

long double 10 bytes approximately 19 digits
107493 t0 10493

char | byte All ASCII characters Not applicable
(Can also be used
as an integer type,
although we do not
recommend doing
s0.)

bool | byte true, false Not applicable

The values listed here are only sample values to give you a general idea of how the types differ.
The values for any of these entries may be different on your system. Precision refers to the num-
ber of meaningful digits, including digits in front of the decimal point. The ranges for the types
float, double, and long double are the ranges for positive numbers. Negative numbers
have a similar range, but with a negative sign in front of each number.

Copyright © 2016 Pearson Inc. All rights reserved. 1-16

C++11 Fixed Width Integer Types

int8_t 1 byte 12810 127

uint8_t 1 byte 0 to 255

int16_t 2 bytes -32,768 to 32,767

uint16_t 2 bytes 0 to 65,535

Int32_t 4 bytes -2,147,483,648 to 2,147,483,647

uint32_t 4 bytes 0 to 4,294,967,295

int64_t 8 bytes -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

uint64_t 8 bytes 0 to 18,446,744,073,709,551,615

long long At least 8 bytes

Avoids problem of variable integer sizes for different CPUs

Copyright © 2016 Pearson Inc. All rights reserved. 1-17

New C++11 Types

e auto

— Deduces the type of the variable based on the expression
on the right side of the assignment statement

auto x = expression;

— More useful later when we have verbose types

e decltype

— Determines the type of the expression. In the example
below, x*3.5 is a double so y is declared as a double.

decltype (x*3.5) vy;

Terminology

* Declare/Define (Declaration/Definition): Give
a type and name to variable or function

* |nitialize (Initialization): First time a variable is
assigned a value

 Use: When expression or function is utilized
in an executed command

Assigning Data

* I|nitializing data in declaration statement

— Results are "undefined" if you don’t initialize
* int myValue =0;

* Assigning data during execution

— Lvalues (left-side) & Rvalues (right-side)
* Lvalues must be variables
e Rvalues can be any expression

 Example:
distance = rate * time;
Lvalue: "distance"
Rvalue: "rate * time"

Assigning Data: Shorthand Notations

count += 2; count = count + 2;

total —-= discount; total = total - discount;

bonus *= 2; bonus = bonus * 2;

time /= rushFactor; time = time/rushFactor;

change %= 100; change = change % 100;

amount *= cntl + cnt2; amount = amount * (cntl + cnt2);

Copyright © 2016 Pearson Inc. All rights reserved. 1-21

Data Assignment Rules

 Compatibility of Data Assignments

— Type mismatches

* General Rule: Cannot place value of one type into variable of
another type

— intVar=2.99; //2is assigned to intVar (not 2.99)

e Only integer part "fits", so that’s all that goes
* Called "implicit" or "automatic type conversion"

— Literals
e 2,5.75,"7", "Hello World"
e Considered "constants": can’t change in program

Literal Data

* Literals
— Examples:
o 2 // Literal constant int
e 5.75 // Literal constant double
o "Z" // Literal constant char
* "Hello World" // Literal constant string

* Cannot change values during execution

e [Called "literals" because you "literally typed"
them in your program]

Escape Sequences

 "Extend" character set
* Backslash, \ preceding a character

— Instructs compiler: a special "escape
character" is coming

— Following character treated as
"escape sequence char”

— Display 1.3 next slide

Display 1.4
Some Escape Sequences (1 of 2)

Some Escape Sequences

\n New line

\r Carriage return (Positions the cursor at the
start of the current line. You are not likely to
use this very much.)

\t (Horizontal) Tab (Advances the cursor to the
next tab stop.)

\a Alert (Sounds the alert noise, typically a
bell.)
\\ Backslash (Allows you to place a backslash in

a quoted expression.)

Copyright © 2016 Pearson Inc. All rights reserved. 1-25

Display 1.4
Some Escape Sequences (2 of 2)

\’ Single quote (Mostly used to place a single
quote inside single quotes.)

\" Double quote (Mostly used to place a double
quote inside a quoted string.)

The following are not as commonly used, but we include them for
completeness:

\V Vertical tab
\b Backspace

\f Form feed

\? Question mark

Copyright © 2016 Pearson Inc. All rights reserved. 1-26

Raw String Literals

Introduced with C++11

Avoids escape sequences by literally
interpreting everything in parens
string s = R“(\t\\t\n)”;

The variable s is set to the exact string
ll\t\\t\n”

Useful for filenames with \ in the filepath

Constants

 Naming your constants

— Literal constants are "OK", but provide
little meaning
* e.g., seeing 24 in a pgm, tells nothing about
what it represents

e Use named constants instead

— Meaningful name to represent data
const int NUMBER _OF_STUDENTS = 24;
* Called a "declared constant" or "named constant”
* Now use it’s name wherever needed in program
* Added benefit: changes to value result in one fix

Arithmetic Operators:
Display 1.5 Named Constant (1 of 2)

e Standard Arithmetic Operators

— Precedence rules — standard rules

Named Constant

1 #include <iostream-

2 using namespace std;

3

4 int main()

5 {

6 const double RATE = 6.9;

7 double deposit;

8 cout << "Enter the amount of your deposit $";
9 cin >> deposit;

Copyright © 2016 Pearson Inc. All rights reserved. 1-29

Arithmetic Operators:
Display 1.5 Named Constant (2 of 2)

10 double newBalance;

11 newBalance = deposit + deposit*(RATE/100);

12 cout << "In one year, that deposit will grow to\n"

13 << "$" << newBalance << " an amount worth waiting for.\n";
14 return 0;

15 }

SAMPLE DIALOGUE

Enter the amount of your deposit $100
In one year, that deposit will grow to
$106.9 an amount worth waiting for.

Copyright © 2016 Pearson Inc. All rights reserved. 1-30

Arithmetic Precision

 Precision of Calculations

— VERY important consideration!

* Expressions in C++ might not evaluate as
you'd "expect"!

— "Highest-order operand" determines type
of arithmetic "precision" performed

— Common pitfall!

Arithmetic Precision Examples

e Examples:

— 17 /5 evaluates to 3 in C++!
* Both operands are integers
* Integer division is performed!

— 17.0 /5 equals 3.4 in C++!

e Highest-order operand is "double type"
 Double "precision" division is performed!

— int intVarl =1, intVar2=2;
intVarl / intVar2;
e Performs integer division!
e Result: O!

Individual Arithmetic Precision

e Calculations done "one-by-one"

—1/2/3.0/4 performs 3 separate divisions.
* First> 1/2 equalsO
 Then—=> 0/3.0equals 0.0
 Then—> 0.0/ 4 equals 0.0!

* So not necessarily sufficient to change
just "one operand" in a large expression

— Must keep in mind all individual calculations
that will be performed during evaluation!

Type Casting

e Casting for Variables

— Can add ".0" to literals to force precision
arithmetic, but what about variables?

 We can’t use "myint.0"!
— static_cast<double>intVar

— Explicitly "casts" or "converts" intVar to
double type
* Result of conversion is then used

* Example expression:
doubleVar = static_cast<double>intVarl / intVar2;

— Casting forces double-precision division to take place
among two integer variables!

Type Casting

* Two types

— Implicit—also called "Automatic”

 Done FOR you, automatically
17 /5.5
This expression causes an "implicit type cast" to
take place, casting the 17 = 17.0

— Explicit type conversion

* Programmer specifies conversion with cast operator
(double)17 /5.5
Same expression as above, using explicit cast
(double)myint / myDouble
More typical use; cast operator on variable

Shorthand Operators

* Increment & Decrement Operators
— Just short-hand notation

— Increment operator, ++
intVar++; is equivalent to
IntVar = intVar + 1;

— Decrement operator, --
intVar--; is equivalent to
intVar = intVar — 1;

Shorthand Operators: Two Options

Post-Increment
intVar++

— Uses current value of variable, THEN increments it

Pre-Increment
++intVar
— Increments variable first, THEN uses new value

"Use" is defined as whatever "context"
variable is currently in

No difference if "alone" in statement:
intVar++; and ++intVar; = identical result

Post-Increment in Action

* Post-Increment in Expressions:
Int n=2,
valueProduced;
valueProduced =2 * (n++);
cout << valueProduced << endl;
cout << n << endl;

— This code segment produces the output:
4
3

— Since post-increment was used

Pre-Increment in Action

* Now using Pre-increment:
Int n=2,
valueProduced;
valueProduced =2 * (++n);
cout << valueProduced << endl;
cout << n << endl;

— This code segment produces the output:
6
3

— Because pre-increment was used

Console Input/Output

/O objects cin, cout, cerr

Defined in the C++ library called
<lostream>

Must have these lines (called pre-
processor directives) near start of file:

— #include <iostream>
using namespace std;

— Tells C++ to use appropriate library so we can
use the 1/O objects cin, cout, cerr

Console Output

* What can be outputted?

— Any data can be outputted to display screen
e Variables
* Constants
e Literals
* Expressions (which can include all of above)

— cout << numberOfGames << " games played.";
2 values are outputted:
"value" of variable numberOfGames,
literal string " games played."

e Cascading: multiple values in one cout

Separating Lines of Output

* New lines in output

— Recall: "\n" is escape sequence for the
char "newline"

A second method: object end|

 Examples:

cout << "Hello World\n";

* Sends string "Hello World" to display, & escape
sequence "\n", skipping to next line

cout << "Hello World" << end|;
e Same result as above

String type

* C++ has a data type of “string” to store
sequences of characters

— Not a primitive data type; distinction will be made
later

— Must add #include <string> at the top of the
program

— The “+” operator on strings concatenates two
strings together

— cin >> str where str is a string only reads up to the
first whitespace character

Input/Output (1 of 2)

Display 1.5 Using cin and cout with a string (part 1 of 2)

1 //Program to demonstrate cin and cout with strings

2 #%DCIude <lostream> Needed to access the

3 #include <string> = string class.

4 using namespace std;

5 1int main()

6

7 string doglame;

8 int actuallge;

9 int humanlge;

10 cout << "How many years old is your dog?" << endl;
11 cin >> actuallge;

12 humanfAge = actuallge * 7;

13 cout =< "What is your dog's name?" << endl;

14 cin >> dogName;

15 cout << dogName << "'s age is approximately " <<
16 "equivalent to a " << humanlAge << " year old human."
17 << endl;

18 return 0;

19 |}

Copyright © 2016 Pearson Inc. All rights reserved. 1-44

Input/Output (2 of 2)

Display 1.5 Using cin and cout with a string (part 2 of 2)

Sample Dialogue 1

How many years old is your dog?
5

What is your dog's name?

Rex

Rex's age 1s approximately equivalent to a 35 year old human.

Sample Dialogue 2

How many years old is your dog?

10 “Bofangles” Is not read into

: : S _____ dogName because cin stops
What 1s your dog's name_:__________--——- fﬁ'put at the space.

Mr. Bojangles «—

Mr.'s age i1s approximately equivalent to a 70 year old human.

Copyright © 2016 Pearson Inc. All rights reserved. 1-45

 BEEEEEREREEERE

Formatting Output

* Formatting numeric values for output
— Values may not display as you'd expect!
cout << "The price is S" << price << end|;

* If price (declared double) has value 78.5, you
might get:
— The price is $78.500000 or:
— The price is $78.5

* We must explicitly tell C++ how to output
numbers in our programs!

Formatting Numbers

 "Magic Formula" to force decimal sizes:
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

e These stmts force all future cout’ed values:

— To have exactly two digits after the decimal place

— Example:
cout << "The price is $" << price << end|;

* Now results in the following:
The price is $78.50

* Can modify precision "as you go" as well!

Error Output

e QOutput with cerr
— cerr works same as cout

— Provides mechanism for distinguishing
between regular output and error output

* Re-direct output streams

— Most systems allow cout and cerr to be
"redirected" to other devices

e e.g., line printer, output file, error console, etc.

Input Using cin

e cin for input, cout for output

e Differences:

— ">>" (extraction operator) points opposite
* Think of it as "pointing toward where the data goes"

— Object name "cin" used instead of "cout"
— No literals allowed for cin

* Must input "to a variable"
° Cin>>num;
— Waits on-screen for keyboard entry
— Value entered at keyboard is "assigned" to num

Prompting for Input: cin and cout

* Always "prompt" user for input
cout << "Enter number of dragons: ";
cin >> numOfDragons;

— Note no "\n" in cout. Prompt "waits" on same
line for keyboard input as follows:

Enter number of dragons:

* Underscore above denotes where keyboard entry
is made

* Every cin should have cout prompt
— Maximizes user-friendly input/output

Program Style

* Bottom-line: Make programs easy to read and modify

e Comments, two methods:
— // Two slashes indicate entire line is to be ignored
— /*Delimiters indicates everything between is ignored*/
— Both methods commonly used

* |dentifier naming
— ALL_CAPS for constants

— lowerToUpper for variables
— Most important: MEANINGFUL NAMES!

Libraries

e C++ Standard Libraries

e #include <Library Name>

— Directive to "add" contents of library file to
your program

— Called "preprocessor directive"

» Executes before compiler, and simply "copies”
library file into your program file

 C++ has many libraries
— Input/output, math, strings, etc.

Namespaces

Namespaces defined:
— Collection of name definitions

For now: interested in namespace "std"
— Has all standard library definitions we need

Examples:
#tinclude <iostream>
using namespace std;
* Includes entire standard library of name definitions

#include <iostream>using std::cin;
using std::cout;
e Can specify just the objects we want

Summary 1

C++ is case-sensitive

Use meaningful names
— For variables and constants

Variables must be declared before use
— Should also be initialized

Use care in numeric manipulation
— Precision, parentheses, order of operations

#include C++ libraries as needed

Summary 2

Object cout

— Used for console output
Object cin

— Used for console input
Object cerr

— Used for error messages

Use comments to aid understanding of
your program
— Do not overcomment

Copyright © 2016 Pearson Inc. All rights reserved.

1-55

