
Chapter 6

Structures
and Classes

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• Structures
– Structure types

– Structures as function arguments

– Initializing structures

• Classes
– Defining, member functions

– Public and private members

– Accessor and mutator functions

– Structures vs. classes

6-2Copyright © 2016 Pearson Inc. All rights reserved.

Structures

• 2nd aggregate data type: struct

• Recall: aggregate meaning "grouping"

– Recall array: collection of values of same type

– Structure: collection of values of different types

• Treated as a single item, like arrays

• Major difference: Must first "define" struct

– Prior to declaring any variables

6-3Copyright © 2016 Pearson Inc. All rights reserved.

Structure Types

• Define struct globally (typically)

• No memory is allocated
– Just a "placeholder" for what our struct

will "look like"

• Definition:
struct CDAccountV1 Name of new struct "type"
{

double balance; member names
double interestRate;
int term;

};

6-4Copyright © 2016 Pearson Inc. All rights reserved.

Declare Structure Variable

• With structure type defined, now declare
variables of this new type:
CDAccountV1 account;

– Just like declaring simple types

– Variable account now of type CDAccountV1

– It contains "member values"

• Each of the struct "parts"

6-5Copyright © 2016 Pearson Inc. All rights reserved.

Accessing Structure Members

• Dot Operator to access members

– account.balance

– account.interestRate

– account.term

• Called "member variables"

– The "parts" of the structure variable

– Different structs can have same name
member variables
• No conflicts

6-6Copyright © 2016 Pearson Inc. All rights reserved.

Structure Example:
Display 6.1 A Structure Definition (1 of 3)

6-7Copyright © 2016 Pearson Inc. All rights reserved.

Structure Example:
Display 6.1 A Structure Definition (2 of 3)

6-8Copyright © 2016 Pearson Inc. All rights reserved.

Structure Example:
Display 6.1 A Structure Definition (3 of 3)

6-9Copyright © 2016 Pearson Inc. All rights reserved.

Structure Pitfall

• Semicolon after structure definition

– ; MUST exist:
struct WeatherData
{

double temperature;
double windVelocity;

};  REQUIRED semicolon!

– Required since you "can" declare structure
variables in this location

6-10Copyright © 2016 Pearson Inc. All rights reserved.

Structure Assignments

• Given structure named CropYield

• Declare two structure variables:
CropYield apples, oranges;

– Both are variables of "struct type CropYield"

– Simple assignments are legal:
apples = oranges;
• Simply copies each member variable from apples

into member variables from oranges

6-11Copyright © 2016 Pearson Inc. All rights reserved.

Structures as Function Arguments

• Passed like any simple data type
– Pass-by-value

– Pass-by-reference

– Or combination

• Can also be returned by function
– Return-type is structure type

– Return statement in function definition
sends structure variable back to caller

6-12Copyright © 2016 Pearson Inc. All rights reserved.

Initializing Structures

• Can initialize at declaration

– Example:
struct Date
{

int month;
int day;
int year;

};
Date dueDate = {12, 31, 2003};

– Declaration provides initial data to all three member
variables

6-13Copyright © 2016 Pearson Inc. All rights reserved.

Classes

• Similar to structures

– Adds member FUNCTIONS

– Not just member data

• Integral to object-oriented programming

– Focus on objects

• Object: Contains data and operations

• In C++, variables of class type are objects

6-14Copyright © 2016 Pearson Inc. All rights reserved.

Class Definitions

• Defined similar to structures

• Example:
class DayOfYear  name of new class type
{
public:

void output(); member function!
int month;
int day;

};

• Notice only member function’s prototype
– Function’s implementation is elsewhere

6-15Copyright © 2016 Pearson Inc. All rights reserved.

Declaring Objects

• Declared same as all variables
– Predefined types, structure types

• Example:
DayOfYear today, birthday;
• Declares two objects of class type DayOfYear

• Objects include:
– Data

• Members month, day

– Operations (member functions)
• output()

6-16Copyright © 2016 Pearson Inc. All rights reserved.

Class Member Access

• Members accessed same as structures

• Example:
today.month
today.day

– And to access member function:
today.output();  Invokes member function

6-17Copyright © 2016 Pearson Inc. All rights reserved.

Class Member Functions

• Must define or "implement" class member
functions

• Like other function definitions

– Can be after main() definition

– Must specify class:
void DayOfYear::output()
{…}
• :: is scope resolution operator

• Instructs compiler "what class" member is from

• Item before :: called type qualifier

6-18Copyright © 2016 Pearson Inc. All rights reserved.

Class Member Functions Definition

• Notice output() member function’s
definition (in next example)

• Refers to member data of class

– No qualifiers

• Function used for all objects of the class

– Will refer to "that object’s" data when invoked

– Example:
today.output();
• Displays "today" object’s data

6-19Copyright © 2016 Pearson Inc. All rights reserved.

Complete Class Example:
Display 6.3 Class With a Member Function (1 of 4)

6-20Copyright © 2016 Pearson Inc. All rights reserved.

Complete Class Example:
Display 6.3 Class With a Member Function (2 of

4)

6-21Copyright © 2016 Pearson Inc. All rights reserved.

Complete Class Example:
Display 6.3 Class With a Member Function (3 of

4)

6-22Copyright © 2016 Pearson Inc. All rights reserved.

Complete Class Example:
Display 6.3 Class With a Member Function (4 of

4)

6-23Copyright © 2016 Pearson Inc. All rights reserved.

Dot and Scope Resolution Operator

• Used to specify "of what thing" they are
members

• Dot operator:

– Specifies member of particular object

• Scope resolution operator:

– Specifies what class the function
definition comes from

6-24Copyright © 2016 Pearson Inc. All rights reserved.

A Class’s Place

• Class is full-fledged type!

– Just like data types int, double, etc.

• Can have variables of a class type

– We simply call them "objects"

• Can have parameters of a class type

– Pass-by-value

– Pass-by-reference

• Can use class type like any other type!

6-25Copyright © 2016 Pearson Inc. All rights reserved.

Encapsulation

• Any data type includes
– Data (range of data)

– Operations (that can be performed on data)

• Example:
int data type has:
Data: -2147483648 to 2147483647 (for 32 bit int)
Operations: +,-,*,/,%,logical,etc.

• Same with classes
– But WE specify data, and the operations to

be allowed on our data!

6-26Copyright © 2016 Pearson Inc. All rights reserved.

Abstract Data Types

• "Abstract"
– Programmers don’t know details

• Abbreviated "ADT"
– Collection of data values together with set

of basic operations defined for the values

• ADT’s often "language-independent"
– We implement ADT’s in C++ with classes

• C++ class "defines" the ADT

– Other languages implement ADT’s as well

6-27Copyright © 2016 Pearson Inc. All rights reserved.

More Encapsulation

• Encapsulation

– Means "bringing together as one"

• Declare a class  get an object

• Object is "encapsulation" of

– Data values

– Operations on the data (member functions)

6-28Copyright © 2016 Pearson Inc. All rights reserved.

Principles of OOP

• Information Hiding

– Details of how operations work not known to "user" of
class

• Data Abstraction

– Details of how data is manipulated within
ADT/class not known to user

• Encapsulation

– Bring together data and operations, but keep "details"
hidden

6-29Copyright © 2016 Pearson Inc. All rights reserved.

Public and Private Members

• Data in class almost always designated
private in definition!

– Upholds principles of OOP

– Hide data from user

– Allow manipulation only via operations

• Which are member functions

• Public items (usually member functions)
are "user-accessible"

6-30Copyright © 2016 Pearson Inc. All rights reserved.

Public and Private Example

• Modify previous example:
class DayOfYear
{
public:

void input();
void output();

private:
int month;
int day;

};

• Data now private

• Objects have no direct access

6-31Copyright © 2016 Pearson Inc. All rights reserved.

Public and Private Example 2

• Given previous example

• Declare object:
DayOfYear today;

• Object today can ONLY access
public members
– cin >> today.month; // NOT ALLOWED!

– cout << today.day; // NOT ALLOWED!

– Must instead call public operations:
• today.input();

• today.output();

6-32Copyright © 2016 Pearson Inc. All rights reserved.

Public and Private Style

• Can mix & match public & private

• More typically place public first

– Allows easy viewing of portions that can be
USED by programmers using the class

– Private data is "hidden", so irrelevant to users

• Outside of class definition, cannot change
(or even access) private data

6-33Copyright © 2016 Pearson Inc. All rights reserved.

Accessor and Mutator Functions

• Object needs to "do something" with its data

• Call accessor member functions

– Allow object to read data

– Also called "get member functions"

– Simple retrieval of member data

• Mutator member functions

– Allow object to change data

– Manipulated based on application

6-34Copyright © 2016 Pearson Inc. All rights reserved.

Separate Interface
and Implementation

• User of class need not see details of how
class is implemented
– Principle of OOP  encapsulation

• User only needs "rules"
– Called "interface" for the class

• In C++  public member functions and
associated comments

• Implementation of class hidden
– Member function definitions elsewhere

– User need not see them

6-35Copyright © 2016 Pearson Inc. All rights reserved.

Structures versus Classes

• Structures
– Typically all members public

– No member functions

• Classes
– Typically all data members private

– Interface member functions public

• Technically, same
– Perceptionally, very different mechanisms

6-36Copyright © 2016 Pearson Inc. All rights reserved.

Thinking Objects

• Focus for programming changes

– Before  algorithms center stage

– OOP  data is focus

• Algorithms still exist

– They simply focus on their data

– Are "made" to "fit" the data

• Designing software solution

– Define variety of objects and how they interact

6-37Copyright © 2016 Pearson Inc. All rights reserved.

Summary 1

• Structure is collection of different types

• Class used to combine data and functions
into single unit -> object

• Member variables and member functions
– Can be public  accessed outside class

– Can be private  accessed only in a member
function’s definition

• Class and structure types can be formal
parameters to functions

6-38Copyright © 2016 Pearson Inc. All rights reserved.

Summary 2

• C++ class definition

– Should separate two key parts

• Interface: what user needs

• Implementation: details of how class works

6-39Copyright © 2016 Pearson Inc. All rights reserved.

