Chapter 6

Structures
and Classes

Walter Savitch

Copyright © 2016 Pearson, Inc.
All rights reserved. PEARSON

Learning Objectives

e Structures
— Structure types
— Structures as function arguments
— Initializing structures

* Classes
— Defining, member functions
— Public and private members
— Accessor and mutator functions
— Structures vs. classes

Structures

2"d aggregate data type: struct

Recall: aggregate meaning "grouping"
— Recall array: collection of values of same type
— Structure: collection of values of different types

Treated as a single item, like arrays

Major difference: Must first "define" struct

— Prior to declaring any variables

Structure Types

e Define struct globally (typically)

* No memory is allocated

— Just a "placeholder" for what our struct
will "look like"

e Definition:
struct CDAccountV1l < Name of new struct "type"
{

double balance; < member names
double interestRate;

int term;

Declare Structure Variable

* With structure type defined, now declare
variables of this new type:
CDAccountV1 account;
— Just like declaring simple types
— Variable account now of type CDAccountV1
— It contains "member values”

* Each of the struct "parts”

Accessing Structure Members

* Dot Operator to access members
— account.balance
— account.interestRate
— account.term

e Called "member variables”
— The "parts" of the structure variable

— Different structs can have same name
member variables

* No conflicts

Structure Example:
Display 6.1 A Structure Definition (1 of 3)

Display 6.1 A Structure Definition

1 //Program to demonstrate the CDAccountV1l structure type.

2 #include <iostream>

3 using namespace std;

4 //Structure for a bank certificate of deposit: ,AnfﬁWNUVSdVBFQKNTOfthki

> B structure will be given later in this
6 A chapter.

7 double balance;

8 double interestRate;

9 int term;//months until maturity

10 };

11 void getData(CDAccountV1& theAccount);
12 //Postcondition: theAccount.balance, theAccount.interestRate, and
13 //theAccount.term have been given values that the user entered at the keyboar

Copyright © 2016 Pearson Inc. All rights reserved. 6-7

 BESNEERERERERE

Structure Example:

Display 6.1 A Structure Definition (2 of 3)

14
15
16
17

18
19
20
21

22
23
24
25
26
27
28

29
30

int main()

{

CDAccountV1l account;
getData(account);

double rateFraction, interest;

rateFraction = account.interestRate/100.0;

interest = account.balance*(rateFraction*(account.term/12
account.balance = account.balance + interest;

cout.setf(ios::fixed);

cout.setf(ios: :showpoint);

cout.precision(2);

cout << "When your CD matures 1in
<< account.term << " months,\n"
<< "it will have a balance of $"
<< account.balance << endl;

return 0;

Copyright © 2016 Pearson Inc. All rights reserved.

.0));

(continued)

6-8

Structure Example:

Display 6.1 A Structure Definition (3 of 3)

Display 6.1 A Structure Definition

31 //Uses 1iostream:
32 void getData(CDAccountV1& theAccount)

33 {

34 cout << "Enter account balance: $";

35 cin >> theAccount.balance;

36 cout << "Enter account interest rate: ";

37 cin >> theAccount.interestRate;

38 cout << "Enter the number of months until maturity:
39 cin >> theAccount.term;

40 %

SAMPLE DIALOGUE

Enter account balance: $100.00

Enter account interest rate: 10.0

Enter the number of months until maturity: 6
When your CD matures in 6 months,

it will have a balance of $105.00

’

Copyright © 2016 Pearson Inc. All rights reserved.

6-9

Structure Pitfall

e Semicolon after structure definition

— » MUST exist:
struct WeatherData
{
double temperature;

double windVelocity;
}; €< REQUIRED semicolon!

— Required since you "can" declare structure
variables in this location

Structure Assignments

* Given structure named CropYield

 Declare two structure variables:
CropYield apples, oranges;

— Both are variables of "struct type CropYield"

— Simple assignments are legal:
apples = oranges;

» Simply copies each member variable from apples
into member variables from oranges

Structures as Function Arguments

* Passed like any simple data type
— Pass-by-value
— Pass-by-reference
— Or combination

* Can also be returned by function
— Return-type is structure type

— Return statement in function definition
sends structure variable back to caller

Initializing Structures

e Can initialize at declaration

— Example:
struct Date
{
int month;
int day;
int year;
};
Date dueDate = {12, 31, 2003};
— Declaration provides initial data to all three member
variables

Copyright © 2016 Pearson Inc. All rights reserved. 6-13

Classes

e Similar to structures
— Adds member FUNCTIONS
— Not just member data

* |Integral to object-oriented programming

— Focus on objects
* Object: Contains data and operations
* |n C++, variables of class type are objects

Class Definitions

 Defined similar to structures

e Example:

class DayOfYear < name of new class type

{

public:
void output(); € member function!
int month;
int day;

¥

* Notice only member function’s prototype
— Function’s implementation is elsewhere

Declaring Objects

e Declared same as all variables
— Predefined types, structure types

e Example:

DayOfYear today, birthday;

* Declares two objects of class type DayOfYear

* Objects include:

— Data

* Members month, day
— Operations (member functions)

e output()

Class Member Access

* Members accessed same as structures

 Example:

today.month
today.day

— And to access member function:
today.output(); €< Invokes member function

Class Member Functions

* Must define or "implement" class member
functions

e Like other function definitions
— Can be after main() definition

— Must specify class:
void DayOfYear::output()
{...}
e ::.is scope resolution operator
* Instructs compiler "what class" member is from
* Item before :: called type qualifier

Class Member Functions Definition

* Notice output() member function’s
definition (in next example)

e Refers to member data of class
— No qualifiers

* Function used for all objects of the class
— Will refer to "that object’s" data when invoked

— Example:
today.output();
* Displays "today" object’s data

Complete Class Example:
Display 6.3 Class With a Member Function (1 of 4)

Display 6.3 Class with a Member Function

1 //Program to demonstrate a very simple example of a class.
2 //A better version of the class DayOfYear will be given in Display 6.4.
3 #include <iostream> . .
. Normally, member variables are private and
4 using namespace std; . . , o
not public, as in this example. This is
5 class DayOfYear discussed a bit later in this chapter.
6 {
7 public:
8 void output();1__'—"——'— Member function declaration
9 int month;
10 int day;
1 3}
12 int main()
13 {
14 DayOfYear today, birthday;
15 cout << "Enter today’s date:\n";
16 cout << "Enter month as a number: ";
17 cin >> today.month;
18 cout << "Enter the day of the month: ";
19 cin >> today.day;
20 cout << "Enter your birthday:\n";
21 cout << "Enter month as a number: ";
22 cin >> birthday.month;
23 cout << "Enter the day of the month: ";
24 cin >> birthday.day;

(continued)

Copyright © 2016 Pearson Inc. All rights reserved. 6-20

Complete Class Example:
Display 6.3 Class With a Member Function (2 of

4)

Display 6.3 Class with a Member Function

25 cout << "Today’s date is ";

26 today.output(

27 cout << endl;

28 cout << "Your birthday is Calls to the member function output
29 birthday.output()=

30 cout << endl;

31 if (today.month == birthday.month && today.day == birthday.day)
32 cout << "Happy Birthday!\n";

33 else

34 cout << "Happy Unbirthday!\n";

35 return 0;

36 }

37 //Uses iostream:
38 void DayOfYear::output()

39 {

40 switch (month)

41 {

42 case 1:

43 cout << "January "; break;
44 case 2:

45 cout << "February "; break;
46 case 3:

47 cout << "March "; break;
48 case 4:

49 cout << "April "; break;

Copyright © 2016 Pearson Inc. All rights reserved.

--—— Member function definition

6-21

Complete Class Example:

Display 6.3 Class With a Member Function (3 of

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

case 5:
cout
case 6:
cout
case 7:
cout
case 8:
cout
case 9:
cout
case 10:
cout
case 11:
cout
case 12:
cout
default:
cout

}

cout << day;

}

4)

"May "; break;
"June "; break;
"July "; break;
"August "; break;

"September "; break;
"October "; break;
"November "; break;

"December "; break;

"Error in DayOfYear::output. Contact software vendor.";

Copyright © 2016 Pearson Inc. All rights reserved.

6-22

Complete Class Example:
Display 6.3 Class With a Member Function (4 of
4)

Display 6.3 Class with a Member Function

SAMPLE DIALOGUE

Enter today’s date:

Enter month as a number: 10
Enter the day of the month: 15
Enter your birthday:

Enter month as a number: 2
Enter the day of the month: 21
Today’s date is October 15
Your birthday is February 21
Happy Unbirthday!

Copyright © 2016 Pearson Inc. All rights reserved. 6-23

Dot and Scope Resolution Operator

e Used to specify "of what thing" they are
members

* Dot operator:
— Specifies member of particular object

* Scope resolution operator:

— Specifies what class the function
definition comes from

A Class’s Place

Class is full-fledged type!
— Just like data types int, double, etc.

Can have variables of a class type
— We simply call them "objects"

Can have parameters of a class type
— Pass-by-value
— Pass-by-reference

Can use class type like any other type!

Encapsulation

* Any data type includes
— Data (range of data)
— Operations (that can be performed on data)

 Example:
int data type has:
Data: -2147483648 to 2147483647 (for 32 bit int)

Operations: +,-,*,/,%,logical,etc.

e Same with classes

— But WE specify data, and the operations to
be allowed on our data!

Abstract Data Types

e "Abstract”
— Programmers don’t know details

e Abbreviated "ADT"

— Collection of data values together with set
of basic operations defined for the values

 ADT’s often "language-independent”

— We implement ADT’s in C++ with classes
e C++ class "defines" the ADT

— Other languages implement ADT’s as well

More Encapsulation

* Encapsulation

— Means "bringing together as one"
* Declare a class = get an object

* Objectis "encapsulation” of
— Data values
— Operations on the data (member functions)

Principles of OOP

* Information Hiding

— Details of how operations work not known to "user" of
class

e Data Abstraction

— Details of how data is manipulated within
ADT/class not known to user

* Encapsulation

— Bring together data and operations, but keep "details"
hidden

Public and Private Members

* Data in class almost always designated
private in definition!
— Upholds principles of OOP
— Hide data from user

— Allow manipulation only via operations
* Which are member functions

e Public items (usually member functions)
are "user-accessible"

Public and Private Example

* Modify previous example:
class DayOfYear

{
public:
void input();
void output();
private:
int month;
int day;
Iy

* Data now private

* Objects have no direct access

Public and Private Example 2

Given previous example

Declare object:
DayOfYear today;

Object today can ONLY access
public members

— cin >> today.month; // NOT ALLOWED!
— cout << today.day; // NOT ALLOWED!

— Must instead call public operations:
* today.input();
e today.output();

Public and Private Style

* Can mix & match public & private

* More typically place public first

— Allows easy viewing of portions that can be
USED by programmers using the class

— Private data is "hidden", so irrelevant to users

e Qutside of class definition, cannot change
(or even access) private data

Accessor and Mutator Functions

* Object needs to "do something" with its data

e Call accessor member functions
— Allow object to read data
— Also called "get member functions"
— Simple retrieval of member data

* Mutator member functions
— Allow object to change data
— Manipulated based on application

Separate Interface
and Implementation

e User of class need not see details of how
class is implemented

— Principle of OOP - encapsulation

e User only needs "rules”

— Called "interface" for the class

* In C++ = public member functions and
associated comments

* Implementation of class hidden
— Member function definitions elsewhere
— User need not see them

Structures versus Classes

 Structures

— Typically all members public
— No member functions

* Classes
— Typically all data members private
— Interface member functions public

* Technically, same
— Perceptionally, very different mechanisms

Thinking Objects

* Focus for programming changes

— Before > algorithms center stage
— OOP - data is focus

e Algorithms still exist
— They simply focus on their data
— Are "made" to "fit" the data

* Designing software solution

— Define variety of objects and how they interact

Summary 1

Structure is collection of different types

Class used to combine data and functions
into single unit -> object

Member variables and member functions

— Can be public = accessed outside class

— Can be private = accessed only in a member
function’s definition

Class and structure types can be formal
parameters to functions

Summary 2

e C++ class definition

— Should separate two key parts
* Interface: what user needs

* Implementation: details of how class works

Copyright © 2016 Pearson Inc. All rights reserved. 6-39

