3SOLUTE C+
IJJ - \/JJ

SIXTH EDITION Chapter /

Constructors and
Other Tools

Walter Savitch

Copyright © 2016 Pearson, Inc.
All rights reserved. PEARSON

Learning Objectives

Constructors
— Definitions
— Calling

More Tools

— const parameter modifier
— Inline functions

— Static member data

Vectors
— Introduction to vector class

Copyright © 2016 Pearson Inc. All rights reserved.

7-2

Constructors

* |nitialization of objects
— Initialize some or all member variables
— Other actions possible as well

* A special kind of member function
— Automatically called when object declared

* Very useful tool
— Key principle of OOP

Constructor Definitions

 Constructors defined like any
member function
— Except:
1. Must have same name as class

2. Cannot return a value; not even void!

Constructor Definition Example

e (Class definition with constructor:

— class DayOfYear
{
public:
DayOfYear(int monthValue, int dayValue);
//Constructor initializes month and day
void input();
void output();

private:
int month;
int day;

}

Constructor Notes

* Notice name of constructor: DayOfYear

— Same name as class itself!

* Constructor declaration has no return-type
— Not even void!

e Constructor in public section
— It’s called when objects are declared
— If private, could never declare objects!

Calling Constructors

* Declare objects:
DayOfYear datel(7, 4),
date2(5, 5);

* Objects are created here
— Constructor is called

— Values in parens passed as arguments
to constructor

— Member variables month, day initialized:
datel.month = 7 date2.month =2 5
datel.dat = 4 date2.day 2 5

Constructor Equivalency

 Consider:

— DayOfYear datel, date2
datel.DayOfYear(7,4); //ILLEGAL!
date2.DayOfYear(5,5); //ILLEGAL!

* Seemingly OK...

— CANNQOT call constructors like other member
functions!

Constructor Code

Constructor definition is like all other

member functions:
DayOfYear::DayOfYear(int monthValue, int dayValue)

{

month = monthValue;
day = dayValue;
}

Note same name around ::
— Clearly identifies a constructor

Note no return type
— Just as in class definition

Alternative Definition

Previous definition equivalent to:

DayOfYear::DayOfYear(int monthValue,
int dayValue)
: month(monthValue), day(dayValue) <

{...}

Third line called "Initialization Section"
Body left empty

Preferable definition version

Constructor Additional Purpose

* Not just initialize data

* Body doesn’t have to be empty

— In initializer version

e Validate the data!

— Ensure only appropriate data is assigned to
class private member variables

— Powerful OOP principle

Overloaded Constructors

* Can overload constructors just like
other functions

* Recall: a signature consists of:
— Name of function
— Parameter list

* Provide constructors for all possible
argument-lists

— Particularly "how many"

I BEEEEEERUREERE

Class with Constructors Example:

Display 7.1 Class with Constructors (1 of 3)

Display 7.1 Class with Constructors

1

w N

o~ Oy 1B

10

11
12

13
14
15
16

#include <iostream> This definition of DayOfYear is an improved
#include <cstdlib> //for exit version of the class DayOfYear given in Display
using namespace std; 6.4

class DayOfYear

{

public:
DayOfYear(int monthValue, int dayValue);
//Initializes the month and day to arguments.

DayOfYear(int monthValue);
//Initializes the date to the first of the given month.

default constructor

DayOfYear(); ™%
//Initializes the date to January 1.

void input();

void output();

int getMonthNumber();

//Returns 1 for January, 2 for February, etc.

Copyright © 2016 Pearson Inc. All rights reserved.

7-13

Class with Constructors Example:
Display 7.1 Class with Constructors (2 of 3)

17 int getDay();

18 private:

;g }nt Zoth; This causes a call to the default
1nF avs constructor. Notice that there

21 void testDate(J; are no parentheses

22} '

23 int main()

24 {

25 DayOfYear datel(2, 21), date2(5), date3;
26 cout << "Initialized dates:\n";

27 datel.output(); cout << endl;

28 date2.output(); cout << endl;

29 date3.output(); cout << endl;

an explicit call to the

/ constructor
30 datel = DayOfYear(10, 31);

DayOfYear: :DayOfYear

31 cout << "datel reset to the following:\n";

32 datel.output(); cout << endl;

33 return 0;

34}

35

36 DayOfYear::DayOfYear(int monthValue, int dayValue)

37 : month(monthValue), day(dayValue)
38 {

39 testDate();

40 %

Copyright © 2016 Pearson Inc. All rights reserved.

7-14

Class with Constructors Example:
Display 7.1 Class with Constructors (3 of 3)

Display 7.1 Class with Constructors

41
42
43
44

45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60

DayOfYear: :DayOfYear(int monthValue) : month(monthValue), day(1)
{
testDate();

}

DayOfYear: :DayOfYear() : month(1l), day(1l)
{/*Body 1intentionally empty.*/}

//uses iostream and cstdlib:
void DayOfYear::testDate()

{

if ((month < 1) || (month > 12))

{
cout << "Illegal month value!\n";
exit(l);

}

if ((day < 1) || (day > 31))

{ <Definitions of the other member
cout << "Illegal day value!\n"; functions are the same as in Display
exit(l); 6.4.

}

3

SAMPLE DIALOGUE

Initialized dates:

February 21

May 1

January 1

datel reset to the following:
October 31

Copyright © 2016 Pearson Inc. All rights reserved. 7-15

Constructor with No Arguments

e Can be confusing

e Standard functions with no arguments:

— Called with syntax: callMyFunction();
* Including empty parentheses

* Object declarations with no "initializers":
— DayOfYear datel; // This way!

— DayOfYear date(); // NO!
 What is this really?
* Compiler sees a function declaration/prototype!
* Yes! Look closely!

Explicit Constructor Calls

Can also call constructor AGAIN
— After object declared

e Recall: constructor was automatically called then

— Can call via object’s name; standard member
function call

Convenient method of setting
member variables

Method quite different from standard
member function call

Explicit Constructor Call Example

* Such a call returns "anonymous object"
— Which can then be assighed

— In Action:
DayOfYear holiday(7, 4);

* Constructor called at object’s declaration
* Now to "re-initialize":
holiday = DayOfYear(5, 5);
— Explicit constructor call

— Returns new "anonymous object"
— Assigned back to current object

Default Constructor

Defined as: constructor w/ no arguments
One should always be defined

Auto-Generated?

— Yes & No
— If no constructors AT ALL are defined = Yes
— If any constructors are defined =2 No

If no default constructor:

— Cannot declare: MyClass myObject;
* With no initializers

Class Type Member Variables

e Class member variables can be any type
— Including objects of other classes!
— Type of class relationship
* Powerful OOP principle
* Need special notation for constructors

— So they can call "back"” to member
object’s constructor

_

BEEEEEEEEERE

Class Member Variable Example:

Display 7.3 A Class Member Variable (1 of 5)

Display 7.3 A Class Member Variable

w N

O 00 N Oy 1 N

10
11
12
13
14
15
16
17
18

#include <iostream>
#include<cstdlib>
using namespace std;

class DayOfYear
{
public:
DayOfYear(int monthValue, int dayValue);
DayOfYear(int monthValue);
DayOfYear();
void input(); The class DayOfYear is the same as in
void output(); Display 7.1, but we have repeated all the
int getMonthNumber(); details you need for this discussion.
int getDay();
private:
int month;
int day;
void testDate();
};

Copyright © 2016 Pearson Inc. All rights reserved.

7-21

Class Member Variable Example:
Display 7.3 A Class Member Variable (2 of 5)

19 class Holiday

20 {

21 public:

22 Holiday();//Initializes to January 1 with no parking enforcement
23 Holiday(int month, int day, bool theEnforcement);

24] void output(); member variable of a class
25 private: / type

26 DayOfYear date;

27 bool parkingEnforcement;//true if enforced

28 1

29 int main()

30 {

31 Holiday h(2, 14, true);

32 cout << "Testing the class Holiday.\n";

33 h.output(); Invocations of constructors
from the class DayOfYear.

34 return 0;

35 }

36

i 37 Holiday::Holiday() : date(l, 1), parkingEnforcement(false)
| 38 {/*Intentionally empty*/}

39 Holiday::Holiday(int month, int day, bool theEnforcement)
40 : date(month, day), parkingEnforcement(theEnforcement)
41 {/*Intentionally empty*/}

S EEE

Y
_

(continued)
Copyright © 2016 Pearson Inc. All rights reserved. 7-22

BRERE

Class Member Variable Example:

Display 7.3 A Class Member Variable (3 of 5)

Display 7.3 A Class Member Variable

42
43
44
45
46
47
48
49
50

51
52
53
54
55

void Holiday::output()

{
date.output();
cout << endl;
if (parkingEnforcement)
cout << "Parking laws will be enforced.\n";
else
cout << "Parking laws will not be enforced.\n";
}

DayOfYear: :DayOfYear(int monthValue, int dayValue)
: month(monthValue), day(dayValue)

{
testDate();

}

Copyright © 2016 Pearson Inc. All rights reserved.

7-23

BEEEEESR

Class Member Variable Example:
Display 7.3 A Class Member Variable (4 of 5)

56
57
58
59
60
6l
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

//uses iostream and cstdlib:
void DayOfYear::testDate()

{
if ((month < 1) || (month > 12))
{
cout << "Illegal month value!\n";
exit(l);
}
if ((day < 1) || (day > 31))
{
cout << "Illegal day value!\n";
exit(l);
}
}

//Uses iostream:
void DayOfYear::output()
{
switch (month)
{
case 1:
cout << "January "; break;
case 2:
cout << "February "; break;
case 3:
cout << "March "; break;

Copyright © 2016 Pearson Inc. All rights reserved.

The omitted lines are in Display
6.3, but they are obvious enough
that you should not have to look
there.

7-24

Class Member Variable Example:
Display 7.3 A Class Member Variable (5 of 5)

Display 7.3 A Class Member Variable

82 case 11:

83 cout << "November "; break;

84 case 12:

85 cout << "December "; break;

86 default:

87 cout << "Error in DayOfYear::output. Contact software vendor.";
88 }

89 cout << day;

20 }

SAMPLE DIALOGUE

Testing the class Holiday.
February 14
Parking laws will be enforced.

Copyright © 2016 Pearson Inc. All rights reserved. 7-25

Parameter Passing Methods

* Efficiency of parameter passing
— Call-by-value

* Requires copy be made = Overhead

— Call-by-reference
* Placeholder for actual argument
* Most efficient method

— Negligible difference for simple types
— For class types = clear advantage

* Call-by-reference desirable
— Especially for "large" data, like class types

The const Parameter Modifier

* Large data types (typically classes)
— Desirable to use pass-by-reference
— Even if function will not make modifications

* Protect argument
— Use constant parameter

* Also called constant call-by-reference parameter
— Place keyword const before type
— Makes parameter "read-only"
— Attempt to modify parameter results in compiler error

Use of const

e All-or-nothing

* If no need for function modifications
— Protect parameter with const
— Protect ALL such parameters

 This includes class member function
parameters

Inline Functions

For non-member functions:

— Use keyword inline in function declaration
and function heading

For class member functions:

— Place implementation (code) for function IN
class definition 2 automatically inline

Use for very short functions only

Code actually inserted in place of call
— Eliminates overhead
— More efficient, but only when short!

Inline Member Functions

* Member function definitions
— Typically defined separately, in different file
— Can be defined IN class definition

e Makes function "in-line"

e Again: use for very short functions only

* More efficient
— If too long = actually less efficient!

Member Initializers

 C++11 supports a feature called member
initialization
— This feature allows you to set default values for
member variables

class Coordinate

public: ,
, Coordinate () ;
private:
1nt x=1; Member
int y=2; < e 1
Y Initializers

Coordinate: :Coordinate ()

{ }

Coordinate cl; Initializes cl.xto 1 and cl.y to 2

Copyright © 2016 Pearson Inc. All rights reserved. 7-31

Constructor Delegation

e C++11 allows one constructor to invoke
another

%o?rdinate::Coordinate(int xval, 1int yval) : x(xval), y(yval)

Coordinate: :Coordinate () : Coordinate (99, 99)

{ }

* The default constructor invokes the
constructor to initialize x and y to 99,99

Static Members

e Static member variables
— All objects of class "share" one copy
— One object changes it =2 all see change

e Useful for "tracking"
— How often a member function is called
— How many objects exist at given time

* Place keyword static before type

Static Functions

* Member functions can be static
— If no access to object data needed
— And still "must" be member of the class
— Make it a static function

e Can then be called outside class

— From non-class objects:
* E.g., Server::getTurn();

— As well as via class objects
* Standard method: myObject.getTurn();

* Can only use static data, functions!

Static Members Example:
Display 7.6 Static Members (1 of 4)

Display 7.6 Static Members

N

O 0 N O U1 b W

10
11
12
13
14
15

16
17
18

#include <iostream>
using namespace std;

class Server
{
public:
Server(char letterName);
static int getTurn();
void serveOne();
static bool stillOpen();
private:
static int turn;
static int lastServed;
static bool nowOpen;
char name;

};

int Server:: turn = 0;
int Server:: lastServed = 0;
bool Server::nowOpen = true;

Copyright © 2016 Pearson Inc. All rights reserved.

7-35

Static Members Example:
Display 7.6 Static Members (2 of 4)

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

35
36
37
38

int main()

{

Server s1(’A’), s2(’B’);
int number, count;

do
{

cout << "How many 1in your group? ";

cin >> number;

cout << "Your turns are: ";

for (count = 0; count < number; count++)
cout << Server::getTurn() << ' ';

cout << endl;

sl.serveOne();

s2.serveOne();

} while (Server::stillOpen());

cout << "Now closing service.\n";

return 0;

Copyright © 2016 Pearson Inc. All rights reserved.

7-36

Static Members Example:
Display 7.6 Static Members (3 of 4)

Display 7.6 Static Members

39 Server::Server(char letterName) : name(letterName)
40 {/*Intentionally empty*/}

41 int Server::getTurn() Since getTurn is static, only static
42 { members can be referenced in here.
43 turn++;

44 return turn;

45 }

46 bool Server::stillOpen()

47 1

48 return nowOpen;

49 }

50 void Server::serveOne()

51 {

52 if (nowOpen && lastServed < turn)

53 {

54 lastServed++;

55 cout << "Server " << name

56 << " now serving " << lastServed << endl;

57 }

Copyright © 2016 Pearson Inc. All rights reserved. 7-37

Static Members Example:
Display 7.6 Static Members (4 of 4)

58 if (lastServed >= turn) //Everyone served
59 nowOpen = false;
60 }

SAMPLE DIALOGUE

How many in your group? 3
Your turns are: 1 2 3

Server A now serving |
Server B now serving 2
How many in your group? 2
Your turns are: 4 5

Server A now serving 3
Server B now serving 4
How many in your group? 0
Your turns are:

Server A now serving 5
Now closing service.

Copyright © 2016 Pearson Inc. All rights reserved.

7-38

Vectors

* Vector Introduction
— Recall: arrays are fixed size

— Vectors: "arrays that grow and shrink”

* During program execution

— Formed from Standard Template Library
(STL)

* Using template class

Vector Basics

e Similar to array:

— Has base type
— Stores collection of base type values

e Declared differently:

— Syntax: vector<Base_Type>
* Indicates template class
* Any type can be "plugged in" to Base Type
* Produces "new" class for vectors with that type

— Example declaration:
vector<int> v;

Vector Use

vector<int> v;
— "vis vector of type int"

— Calls class default constructor
* Empty vector object created

Indexed like arrays for access

But to add elements:
— Must call member function push_back

Member function size()
— Returns current number of elements

Vector Example:
Display 7.7 Using a Vector (1 of 2)

Display 7.7 Using a Vector

w N

Co NI Oy U1

10
11
12
13
14
15
16
17

#include <iostream>
#include <vector>
using namespace std;

int main()
{
vector<int> v;
cout << "Enter a list of positive numbers.\n"
<< "Place a negative number at the end.\n";

int next;
cin >> next;
while (next > 0)

{
v.push_back(next);
cout << next << " added. ";
cout << "v.size() = " << v.size() << endl;
cin >> next;
}

Copyright © 2016 Pearson Inc. All rights reserved.

7-42

Display 7.7 Using a Vector (2 of 2)

18
19
20
21

22
23

}

Vector Example:

cout << "You entered:\n";

for (unsigned int 1 = 0; 1 < v.size(); i++)
cout << v[i] << " ";

cout << endl;

return 0;

SAMPLE DIALOGUE

Enter a list of positive numbers.
Place a negative number at the end.
24638 -1

2 added. v.size = 1

4 added. v.size =2

6 added. v.size = 3

8 added. v.size = 4

You entered:

2468

Copyright © 2016 Pearson Inc. All rights reserved.

7-43

Vector Efficiency

 Member function capacity()
— Returns memory currently allocated
— Not same as size()
— Capacity typically > size
e Automatically increased as needed

* |f efficiency critical:

— Can set behaviors manually
* v.reserve(32); //sets capacity to 32

* v.reserve(v.size()+10); //sets capacity to 10 more
than size

Summary 1

e Constructors: automatic initialization of
class data

— Called when objects are declared
— Constructor has same name as class

* Default constructor has no parameters
— Should always be defined

e Class member variables

— Can be objects of other classes
e Require initialization-section

Summary 2

Constant call-by-reference parameters
— More efficient than call-by-value

Can inline very short function definitions
— Can improve efficiency

Static member variables

— Shared by all objects of a class

Vector classes

— Like: "arrays that grow and shrink"

