
Chapter 7

Constructors and
Other Tools

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• Constructors
– Definitions

– Calling

• More Tools
– const parameter modifier

– Inline functions

– Static member data

• Vectors
– Introduction to vector class

7-2Copyright © 2016 Pearson Inc. All rights reserved.

Constructors

• Initialization of objects

– Initialize some or all member variables

– Other actions possible as well

• A special kind of member function

– Automatically called when object declared

• Very useful tool

– Key principle of OOP

7-3Copyright © 2016 Pearson Inc. All rights reserved.

Constructor Definitions

• Constructors defined like any
member function

– Except:

1. Must have same name as class

2. Cannot return a value; not even void!

7-4Copyright © 2016 Pearson Inc. All rights reserved.

Constructor Definition Example

• Class definition with constructor:
– class DayOfYear

{
public:

DayOfYear(int monthValue, int dayValue);
//Constructor initializes month and day

void input();
void output();
…

private:
int month;
int day;

}

7-5Copyright © 2016 Pearson Inc. All rights reserved.

Constructor Notes

• Notice name of constructor: DayOfYear

– Same name as class itself!

• Constructor declaration has no return-type

– Not even void!

• Constructor in public section

– It’s called when objects are declared

– If private, could never declare objects!

7-6Copyright © 2016 Pearson Inc. All rights reserved.

Calling Constructors

• Declare objects:
DayOfYear date1(7, 4),

date2(5, 5);

• Objects are created here
– Constructor is called

– Values in parens passed as arguments
to constructor

– Member variables month, day initialized:
date1.month  7 date2.month  5
date1.dat  4 date2.day  5

7-7Copyright © 2016 Pearson Inc. All rights reserved.

Constructor Equivalency

• Consider:

– DayOfYear date1, date2
date1.DayOfYear(7, 4); // ILLEGAL!
date2.DayOfYear(5, 5); // ILLEGAL!

• Seemingly OK…

– CANNOT call constructors like other member
functions!

7-8Copyright © 2016 Pearson Inc. All rights reserved.

Constructor Code

• Constructor definition is like all other
member functions:
DayOfYear::DayOfYear(int monthValue, int dayValue)
{

month = monthValue;
day = dayValue;

}

• Note same name around ::
– Clearly identifies a constructor

• Note no return type
– Just as in class definition

7-9Copyright © 2016 Pearson Inc. All rights reserved.

Alternative Definition

• Previous definition equivalent to:

DayOfYear::DayOfYear(int monthValue,
int dayValue)

: month(monthValue), day(dayValue) 
{…}

• Third line called "Initialization Section"

• Body left empty

• Preferable definition version

7-10Copyright © 2016 Pearson Inc. All rights reserved.

Constructor Additional Purpose

• Not just initialize data

• Body doesn’t have to be empty

– In initializer version

• Validate the data!

– Ensure only appropriate data is assigned to
class private member variables

– Powerful OOP principle

7-11Copyright © 2016 Pearson Inc. All rights reserved.

Overloaded Constructors

• Can overload constructors just like
other functions

• Recall: a signature consists of:
– Name of function

– Parameter list

• Provide constructors for all possible
argument-lists
– Particularly "how many"

7-12Copyright © 2016 Pearson Inc. All rights reserved.

Class with Constructors Example:
Display 7.1 Class with Constructors (1 of 3)

7-13Copyright © 2016 Pearson Inc. All rights reserved.

Class with Constructors Example:
Display 7.1 Class with Constructors (2 of 3)

7-14Copyright © 2016 Pearson Inc. All rights reserved.

Class with Constructors Example:
Display 7.1 Class with Constructors (3 of 3)

7-15Copyright © 2016 Pearson Inc. All rights reserved.

Constructor with No Arguments

• Can be confusing

• Standard functions with no arguments:
– Called with syntax: callMyFunction();

• Including empty parentheses

• Object declarations with no "initializers":
– DayOfYear date1; // This way!

– DayOfYear date(); // NO!
• What is this really?

• Compiler sees a function declaration/prototype!

• Yes! Look closely!

7-16Copyright © 2016 Pearson Inc. All rights reserved.

Explicit Constructor Calls

• Can also call constructor AGAIN

– After object declared
• Recall: constructor was automatically called then

– Can call via object’s name; standard member
function call

• Convenient method of setting
member variables

• Method quite different from standard
member function call

7-17Copyright © 2016 Pearson Inc. All rights reserved.

Explicit Constructor Call Example

• Such a call returns "anonymous object"

– Which can then be assigned

– In Action:
DayOfYear holiday(7, 4);
• Constructor called at object’s declaration

• Now to "re-initialize":
holiday = DayOfYear(5, 5);
– Explicit constructor call

– Returns new "anonymous object"

– Assigned back to current object

7-18Copyright © 2016 Pearson Inc. All rights reserved.

Default Constructor

• Defined as: constructor w/ no arguments

• One should always be defined

• Auto-Generated?
– Yes & No

– If no constructors AT ALL are defined  Yes

– If any constructors are defined  No

• If no default constructor:
– Cannot declare: MyClass myObject;

• With no initializers

7-19Copyright © 2016 Pearson Inc. All rights reserved.

Class Type Member Variables

• Class member variables can be any type

– Including objects of other classes!

– Type of class relationship

• Powerful OOP principle

• Need special notation for constructors

– So they can call "back" to member
object’s constructor

7-20Copyright © 2016 Pearson Inc. All rights reserved.

Class Member Variable Example:
Display 7.3 A Class Member Variable (1 of 5)

7-21Copyright © 2016 Pearson Inc. All rights reserved.

Class Member Variable Example:
Display 7.3 A Class Member Variable (2 of 5)

7-22Copyright © 2016 Pearson Inc. All rights reserved.

Class Member Variable Example:
Display 7.3 A Class Member Variable (3 of 5)

7-23Copyright © 2016 Pearson Inc. All rights reserved.

Class Member Variable Example:
Display 7.3 A Class Member Variable (4 of 5)

7-24Copyright © 2016 Pearson Inc. All rights reserved.

Class Member Variable Example:
Display 7.3 A Class Member Variable (5 of 5)

7-25Copyright © 2016 Pearson Inc. All rights reserved.

Parameter Passing Methods

• Efficiency of parameter passing
– Call-by-value

• Requires copy be made  Overhead

– Call-by-reference
• Placeholder for actual argument

• Most efficient method

– Negligible difference for simple types

– For class types  clear advantage

• Call-by-reference desirable
– Especially for "large" data, like class types

7-26Copyright © 2016 Pearson Inc. All rights reserved.

The const Parameter Modifier

• Large data types (typically classes)

– Desirable to use pass-by-reference

– Even if function will not make modifications

• Protect argument

– Use constant parameter
• Also called constant call-by-reference parameter

– Place keyword const before type

– Makes parameter "read-only"

– Attempt to modify parameter results in compiler error

7-27Copyright © 2016 Pearson Inc. All rights reserved.

Use of const

• All-or-nothing

• If no need for function modifications

– Protect parameter with const

– Protect ALL such parameters

• This includes class member function
parameters

7-28Copyright © 2016 Pearson Inc. All rights reserved.

Inline Functions

• For non-member functions:
– Use keyword inline in function declaration

and function heading

• For class member functions:
– Place implementation (code) for function IN

class definition  automatically inline

• Use for very short functions only

• Code actually inserted in place of call
– Eliminates overhead

– More efficient, but only when short!

7-29Copyright © 2016 Pearson Inc. All rights reserved.

Inline Member Functions

• Member function definitions

– Typically defined separately, in different file

– Can be defined IN class definition

• Makes function "in-line"

• Again: use for very short functions only

• More efficient

– If too long  actually less efficient!

7-30Copyright © 2016 Pearson Inc. All rights reserved.

Member Initializers

• C++11 supports a feature called member
initialization

– This feature allows you to set default values for
member variables

7-31Copyright © 2016 Pearson Inc. All rights reserved.

class Coordinate
{
public:

Coordinate();
private:

int x=1;
int y=2;

};

Coordinate::Coordinate()

{ }

Coordinate c1; Initializes c1.x to 1 and c1.y to 2

Member

Initializers

Constructor Delegation

• C++11 allows one constructor to invoke
another

• The default constructor invokes the
constructor to initialize x and y to 99,99

7-32Copyright © 2016 Pearson Inc. All rights reserved.

Coordinate::Coordinate(int xval, int yval) : x(xval), y(yval)
{ }

Coordinate::Coordinate() : Coordinate(99,99)

{ }

Static Members

• Static member variables

– All objects of class "share" one copy

– One object changes it  all see change

• Useful for "tracking"

– How often a member function is called

– How many objects exist at given time

• Place keyword static before type

7-33Copyright © 2016 Pearson Inc. All rights reserved.

Static Functions

• Member functions can be static
– If no access to object data needed

– And still "must" be member of the class

– Make it a static function

• Can then be called outside class
– From non-class objects:

• E.g., Server::getTurn();

– As well as via class objects
• Standard method: myObject.getTurn();

• Can only use static data, functions!

7-34Copyright © 2016 Pearson Inc. All rights reserved.

Static Members Example:
Display 7.6 Static Members (1 of 4)

7-35Copyright © 2016 Pearson Inc. All rights reserved.

Static Members Example:
Display 7.6 Static Members (2 of 4)

7-36Copyright © 2016 Pearson Inc. All rights reserved.

Static Members Example:
Display 7.6 Static Members (3 of 4)

7-37Copyright © 2016 Pearson Inc. All rights reserved.

Static Members Example:
Display 7.6 Static Members (4 of 4)

7-38Copyright © 2016 Pearson Inc. All rights reserved.

Vectors

• Vector Introduction

– Recall: arrays are fixed size

– Vectors: "arrays that grow and shrink"

• During program execution

– Formed from Standard Template Library
(STL)

• Using template class

7-39Copyright © 2016 Pearson Inc. All rights reserved.

Vector Basics

• Similar to array:
– Has base type

– Stores collection of base type values

• Declared differently:
– Syntax: vector<Base_Type>

• Indicates template class

• Any type can be "plugged in" to Base_Type

• Produces "new" class for vectors with that type

– Example declaration:
vector<int> v;

7-40Copyright © 2016 Pearson Inc. All rights reserved.

Vector Use

• vector<int> v;
– "v is vector of type int"

– Calls class default constructor
• Empty vector object created

• Indexed like arrays for access

• But to add elements:
– Must call member function push_back

• Member function size()
– Returns current number of elements

7-41Copyright © 2016 Pearson Inc. All rights reserved.

Vector Example:
Display 7.7 Using a Vector (1 of 2)

7-42Copyright © 2016 Pearson Inc. All rights reserved.

Vector Example:
Display 7.7 Using a Vector (2 of 2)

7-43Copyright © 2016 Pearson Inc. All rights reserved.

Vector Efficiency

• Member function capacity()
– Returns memory currently allocated

– Not same as size()

– Capacity typically > size
• Automatically increased as needed

• If efficiency critical:
– Can set behaviors manually

• v.reserve(32); //sets capacity to 32

• v.reserve(v.size()+10); //sets capacity to 10 more
than size

7-44Copyright © 2016 Pearson Inc. All rights reserved.

Summary 1

• Constructors: automatic initialization of
class data
– Called when objects are declared

– Constructor has same name as class

• Default constructor has no parameters
– Should always be defined

• Class member variables
– Can be objects of other classes

• Require initialization-section

7-45Copyright © 2016 Pearson Inc. All rights reserved.

Summary 2

• Constant call-by-reference parameters

– More efficient than call-by-value

• Can inline very short function definitions

– Can improve efficiency

• Static member variables

– Shared by all objects of a class

• Vector classes

– Like: "arrays that grow and shrink"

7-46Copyright © 2016 Pearson Inc. All rights reserved.

