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Learning Objectives

Constructors
— Definitions
— Calling

More Tools

— const parameter modifier
— Inline functions

— Static member data

Vectors
— Introduction to vector class
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Constructors

* |nitialization of objects
— Initialize some or all member variables
— Other actions possible as well

* A special kind of member function
— Automatically called when object declared

* Very useful tool
— Key principle of OOP



Constructor Definitions

 Constructors defined like any
member function
— Except:
1. Must have same name as class

2. Cannot return a value; not even void!



Constructor Definition Example

e (Class definition with constructor:

— class DayOfYear
{
public:
DayOfYear(int monthValue, int dayValue);
//Constructor initializes month and day
void input();
void output();

private:
int month;
int day;

}



Constructor Notes

* Notice name of constructor: DayOfYear

— Same name as class itself!

* Constructor declaration has no return-type
— Not even void!

e Constructor in public section
— It’s called when objects are declared
— If private, could never declare objects!



Calling Constructors

* Declare objects:
DayOfYear datel(7, 4),
date2(5, 5);

* Objects are created here
— Constructor is called

— Values in parens passed as arguments
to constructor

— Member variables month, day initialized:
datel.month = 7 date2.month =2 5
datel.dat = 4 date2.day 2 5



Constructor Equivalency

 Consider:

— DayOfYear datel, date2
datel.DayOfYear(7,4); //ILLEGAL!
date2.DayOfYear(5,5); //ILLEGAL!

* Seemingly OK...

— CANNQOT call constructors like other member
functions!



Constructor Code

Constructor definition is like all other

member functions:
DayOfYear::DayOfYear(int monthValue, int dayValue)

{

month = monthValue;
day = dayValue;
}

Note same name around ::
— Clearly identifies a constructor

Note no return type
— Just as in class definition



Alternative Definition

Previous definition equivalent to:

DayOfYear::DayOfYear( int monthValue,
int dayValue)
: month(monthValue), day(dayValue) <

{...}

Third line called "Initialization Section"
Body left empty

Preferable definition version



Constructor Additional Purpose

* Not just initialize data

* Body doesn’t have to be empty

— In initializer version

e Validate the data!

— Ensure only appropriate data is assigned to
class private member variables

— Powerful OOP principle



Overloaded Constructors

* Can overload constructors just like
other functions

* Recall: a signature consists of:
— Name of function
— Parameter list

* Provide constructors for all possible
argument-lists

— Particularly "how many"
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Class with Constructors Example:

Display 7.1 Class with Constructors (1 of 3)

Display 7.1 Class with Constructors
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#include <iostream> This definition of DayOfYear is an improved
#include <cstdlib> //for exit version of the class DayOfYear given in Display
using namespace std; 6.4

class DayOfYear

{

public:
DayOfYear(int monthValue, int dayValue);
//Initializes the month and day to arguments.

DayOfYear(int monthValue);
//Initializes the date to the first of the given month.

default constructor

DayOfYear( ); ™%
//Initializes the date to January 1.

void input();

void output();

int getMonthNumber();

//Returns 1 for January, 2 for February, etc.
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Class with Constructors Example:
Display 7.1 Class with Constructors (2 of 3)

17 int getDay();

18 private:

;g }nt Zoth; This causes a call to the default
1nF avs constructor. Notice that there

21 void testDate( J; are no parentheses

22} '

23  int main()

24 {

25 DayOfYear datel(2, 21), date2(5), date3;
26 cout << "Initialized dates:\n";

27 datel.output( ); cout << endl;

28 date2.output( ); cout << endl;

29 date3.output( ); cout << endl;

an explicit call to the

/ constructor
30 datel = DayOfYear(10, 31);

DayOfYear: :DayOfYear

31 cout << "datel reset to the following:\n";

32 datel.output( ); cout << endl;

33 return 0;

34}

35

36 DayOfYear::DayOfYear(int monthValue, int dayValue)

37 : month(monthValue), day(dayValue)
38 {

39 testDate( );

40 %
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Class with Constructors Example:
Display 7.1 Class with Constructors (3 of 3)

Display 7.1 Class with Constructors
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DayOfYear: :DayOfYear(int monthValue) : month(monthValue), day(1)
{
testDate( );

}

DayOfYear: :DayOfYear( ) : month(1l), day(1l)
{/*Body 1intentionally empty.*/}

//uses iostream and cstdlib:
void DayOfYear::testDate( )

{

if ((month < 1) || (month > 12))

{
cout << "Illegal month value!\n";
exit(l);

}

if ((day < 1) || (day > 31))

{ <Definitions of the other member
cout << "Illegal day value!\n"; functions are the same as in Display
exit(l); 6.4.

}

3

SAMPLE DIALOGUE

Initialized dates:

February 21

May 1

January 1

datel reset to the following:
October 31
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Constructor with No Arguments

e Can be confusing

e Standard functions with no arguments:

— Called with syntax: callMyFunction();
* Including empty parentheses

* Object declarations with no "initializers":
— DayOfYear datel; // This way!

— DayOfYear date(); // NO!
 What is this really?
* Compiler sees a function declaration/prototype!
* Yes! Look closely!



Explicit Constructor Calls

Can also call constructor AGAIN
— After object declared

e Recall: constructor was automatically called then

— Can call via object’s name; standard member
function call

Convenient method of setting
member variables

Method quite different from standard
member function call



Explicit Constructor Call Example

* Such a call returns "anonymous object"
— Which can then be assighed

— In Action:
DayOfYear holiday(7, 4);

* Constructor called at object’s declaration
* Now to "re-initialize":
holiday = DayOfYear(5, 5);
— Explicit constructor call

— Returns new "anonymous object"
— Assigned back to current object




Default Constructor

Defined as: constructor w/ no arguments
One should always be defined

Auto-Generated?

— Yes & No
— If no constructors AT ALL are defined = Yes
— If any constructors are defined =2 No

If no default constructor:

— Cannot declare: MyClass myObject;
* With no initializers



Class Type Member Variables

e Class member variables can be any type
— Including objects of other classes!
— Type of class relationship
* Powerful OOP principle
* Need special notation for constructors

— So they can call "back"” to member
object’s constructor
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Class Member Variable Example:

Display 7.3 A Class Member Variable (1 of 5)

Display 7.3 A Class Member Variable
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#include <iostream>
#include<cstdlib>
using namespace std;

class DayOfYear
{
public:
DayOfYear(int monthValue, int dayValue);
DayOfYear(int monthValue);
DayOfYear( );
void input( ); The class DayOfYear is the same as in
void output( ); Display 7.1, but we have repeated all the
int getMonthNumber( ); details you need for this discussion.
int getDay( );
private:
int month;
int day;
void testDate( );
};
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Class Member Variable Example:
Display 7.3 A Class Member Variable (2 of 5)

19 class Holiday

20 {

21  public:

22 Holiday( );//Initializes to January 1 with no parking enforcement
23 Holiday(int month, int day, bool theEnforcement);

24 ] void output( ); member variable of a class
25 private: / type

26 DayOfYear date;

27 bool parkingEnforcement;//true if enforced

28 1

29  int main( )

30 {

31 Holiday h(2, 14, true);

32 cout << "Testing the class Holiday.\n";

33 h.output( ); Invocations of constructors
from the class DayOfYear.

34 return 0;

35 }

36

i 37 Holiday::Holiday( ) : date(l, 1), parkingEnforcement(false)
| 38 {/*Intentionally empty*/}

39 Holiday::Holiday(int month, int day, bool theEnforcement)
40 : date(month, day), parkingEnforcement(theEnforcement)
41 {/*Intentionally empty*/}
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(continued)
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Class Member Variable Example:

Display 7.3 A Class Member Variable (3 of 5)

Display 7.3 A Class Member Variable
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void Holiday::output( )

{
date.output( );
cout << endl;
if (parkingEnforcement)
cout << "Parking laws will be enforced.\n";
else
cout << "Parking laws will not be enforced.\n";
}

DayOfYear: :DayOfYear(int monthValue, int dayValue)
: month(monthValue), day(dayValue)

{
testDate( );

}
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Class Member Variable Example:
Display 7.3 A Class Member Variable (4 of 5)
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//uses iostream and cstdlib:
void DayOfYear::testDate( )

{
if ((month < 1) || (month > 12))
{
cout << "Illegal month value!\n";
exit(l);
}
if ((day < 1) || (day > 31))
{
cout << "Illegal day value!\n";
exit(l);
}
}

//Uses iostream:
void DayOfYear::output( )
{
switch (month)
{
case 1:
cout << "January "; break;
case 2:
cout << "February "; break;
case 3:
cout << "March "; break;

Copyright © 2016 Pearson Inc. All rights reserved.
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Class Member Variable Example:
Display 7.3 A Class Member Variable (5 of 5)

Display 7.3 A Class Member Variable

82 case 11:

83 cout << "November "; break;

84 case 12:

85 cout << "December "; break;

86 default:

87 cout << "Error in DayOfYear::output. Contact software vendor.";
88 }

89 cout << day;

20 }

SAMPLE DIALOGUE

Testing the class Holiday.
February 14
Parking laws will be enforced.
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Parameter Passing Methods

* Efficiency of parameter passing
— Call-by-value

* Requires copy be made = Overhead

— Call-by-reference
* Placeholder for actual argument
* Most efficient method

— Negligible difference for simple types
— For class types = clear advantage

* Call-by-reference desirable
— Especially for "large" data, like class types



The const Parameter Modifier

* Large data types (typically classes)
— Desirable to use pass-by-reference
— Even if function will not make modifications

* Protect argument
— Use constant parameter

* Also called constant call-by-reference parameter
— Place keyword const before type
— Makes parameter "read-only"
— Attempt to modify parameter results in compiler error



Use of const

e All-or-nothing

* If no need for function modifications
— Protect parameter with const
— Protect ALL such parameters

 This includes class member function
parameters



Inline Functions

For non-member functions:

— Use keyword inline in function declaration
and function heading

For class member functions:

— Place implementation (code) for function IN
class definition 2 automatically inline

Use for very short functions only

Code actually inserted in place of call
— Eliminates overhead
— More efficient, but only when short!



Inline Member Functions

* Member function definitions
— Typically defined separately, in different file
— Can be defined IN class definition

e Makes function "in-line"

e Again: use for very short functions only

* More efficient
— If too long = actually less efficient!



Member Initializers

 C++11 supports a feature called member
initialization
— This feature allows you to set default values for
member variables

class Coordinate

public: ,
, Coordinate () ;
private:
1nt x=1; Member
int y=2; < e 1
Y Initializers

Coordinate: :Coordinate ()

{ }

Coordinate cl; Initializes cl.xto 1 and cl.y to 2
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Constructor Delegation

e C++11 allows one constructor to invoke
another

%o?rdinate::Coordinate(int xval, 1int yval) : x(xval), y(yval)

Coordinate: :Coordinate () : Coordinate (99, 99)

{ }

* The default constructor invokes the
constructor to initialize x and y to 99,99



Static Members

e Static member variables
— All objects of class "share" one copy
— One object changes it =2 all see change

e Useful for "tracking"
— How often a member function is called
— How many objects exist at given time

* Place keyword static before type



Static Functions

* Member functions can be static
— If no access to object data needed
— And still "must" be member of the class
— Make it a static function

e Can then be called outside class

— From non-class objects:
* E.g., Server::getTurn();

— As well as via class objects
* Standard method: myObject.getTurn();

* Can only use static data, functions!



Static Members Example:
Display 7.6 Static Members (1 of 4)

Display 7.6  Static Members
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#include <iostream>
using namespace std;

class Server
{
public:
Server(char letterName);
static int getTurn( );
void serveOne( );
static bool stillOpen( );
private:
static int turn;
static int lastServed;
static bool nowOpen;
char name;

};

int Server:: turn = 0;
int Server:: lastServed = 0;
bool Server::nowOpen = true;
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Static Members Example:
Display 7.6 Static Members (2 of 4)
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int main( )

{

Server s1(’A’), s2(’B’);
int number, count;

do
{

cout << "How many 1in your group? ";

cin >> number;

cout << "Your turns are: ";

for (count = 0; count < number; count++)
cout << Server::getTurn( ) << ' ';

cout << endl;

sl.serveOne( );

s2.serveOne( );

} while (Server::stillOpen( ));

cout << "Now closing service.\n";

return 0;
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Static Members Example:
Display 7.6 Static Members (3 of 4)

Display 7.6 Static Members

39 Server::Server(char letterName) : name(letterName)
40 {/*Intentionally empty*/}

41 int Server::getTurn( ) Since getTurn is static, only static
42 { members can be referenced in here.
43 turn++;

44 return turn;

45 }

46 bool Server::stillOpen( )

47 1

48 return nowOpen;

49 }

50 void Server::serveOne( )

51 {

52 if (nowOpen && lastServed < turn)

53 {

54 lastServed++;

55 cout << "Server " << name

56 << " now serving " << lastServed << endl;

57 }
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Static Members Example:
Display 7.6 Static Members (4 of 4)

58 if (lastServed >= turn) //Everyone served
59 nowOpen = false;
60 }

SAMPLE DIALOGUE

How many in your group? 3
Your turns are: 1 2 3

Server A now serving |
Server B now serving 2
How many in your group? 2
Your turns are: 4 5

Server A now serving 3
Server B now serving 4
How many in your group? 0
Your turns are:

Server A now serving 5
Now closing service.
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Vectors

* Vector Introduction
— Recall: arrays are fixed size

— Vectors: "arrays that grow and shrink”

* During program execution

— Formed from Standard Template Library
(STL)

* Using template class



Vector Basics

e Similar to array:

— Has base type
— Stores collection of base type values

e Declared differently:

— Syntax: vector<Base_Type>
* Indicates template class
* Any type can be "plugged in" to Base Type
* Produces "new" class for vectors with that type

— Example declaration:
vector<int> v;



Vector Use

vector<int> v;
— "vis vector of type int"

— Calls class default constructor
* Empty vector object created

Indexed like arrays for access

But to add elements:
— Must call member function push_back

Member function size()
— Returns current number of elements



Vector Example:
Display 7.7 Using a Vector (1 of 2)

Display 7.7 Using a Vector
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#include <iostream>
#include <vector>
using namespace std;

int main( )
{
vector<int> v;
cout << "Enter a list of positive numbers.\n"
<< "Place a negative number at the end.\n";

int next;
cin >> next;
while (next > 0)

{
v.push_back(next);
cout << next << " added. ";
cout << "v.size( ) = " << v.size( ) << endl;
cin >> next;
}
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Display 7.7 Using a Vector (2 of 2)
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}

Vector Example:

cout << "You entered:\n";

for (unsigned int 1 = 0; 1 < v.size( ); i++)
cout << v[i] << " ";

cout << endl;

return 0;

SAMPLE DIALOGUE

Enter a list of positive numbers.
Place a negative number at the end.
24638 -1

2 added. v.size = 1

4 added. v.size =2

6 added. v.size = 3

8 added. v.size = 4

You entered:

2468
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Vector Efficiency

 Member function capacity()
— Returns memory currently allocated
— Not same as size()
— Capacity typically > size
e Automatically increased as needed

* |f efficiency critical:

— Can set behaviors manually
* v.reserve(32); //sets capacity to 32

* v.reserve(v.size()+10); //sets capacity to 10 more
than size



Summary 1

e Constructors: automatic initialization of
class data

— Called when objects are declared
— Constructor has same name as class

* Default constructor has no parameters
— Should always be defined

e Class member variables

— Can be objects of other classes
e Require initialization-section



Summary 2

Constant call-by-reference parameters
— More efficient than call-by-value

Can inline very short function definitions
— Can improve efficiency

Static member variables

— Shared by all objects of a class

Vector classes

— Like: "arrays that grow and shrink"



