Chapter 15

Polymorphism and
Virtual Functions

Walter Savitch

Copyright © 2016 Pearson, Inc.
All rights reserved. PEARSON

Learning Objectives

* Virtual Function Basics
— Late binding
— Implementing virtual functions
— When to use a virtual function
— Abstract classes and pure virtual functions

e Pointers and Virtual Functions
— Extended type compatibility

— Downcasting and upcasting
— C++ "under the hood" with virtual functions

Virtual Function Basics

* Polymorphism
— Associating many meanings to one function
— Virtual functions provide this capability

— Fundamental principle of object-oriented
programming!

* Virtual
— Existing in "essence" though not in fact

e Virtual Function
— Can be "used" before it’s "defined"

Figures Example

Best explained by example:

Classes for several kinds of figures

— Rectangles, circles, ovals, etc.

— Each figure an object of different class
* Rectangle data: height, width, center point
 Circle data: center point, radius

All derive from one parent-class: Figure

Require function: draw()
— Different instructions for each figure

Figures Example 2

e Each class needs different draw function

e Can be called "draw" in each class, so:

Rectangle r;

Circle c;

r.draw(); //Calls Rectangle class’s draw
c.draw(); //Calls Circle class’s draw

* Nothing new here yet...

Figures Example: center()

e Parent class Figure contains functions
that apply to "all" figures; consider:
center(): moves a figure to center of screen

— Erases 1%, then re-draws

— So Figure::center() would use function draw()
to re-draw

— Complications!
* Which draw() function?

* From which class?

Figures Example: New Figure

Consider new kind of figure comes along:

Triangle class
derived from Figure class

Function center() inherited from Figure
— Will it work for triangles?
— It uses draw(), which is different for each figure!
— It will use Figure::draw() = won’t work for triangles

Want inherited function center() to use function
Triangle::draw() NOT function Figure::draw()

— But class Triangle wasn’t even WRITTEN when
Figure::center() was! Doesn’t know "triangles"!

Figures Example: Virtual!

* Virtual functions are the answer

* Tells compiler:
— "Don’t know how function is implemented"
— "Wait until used in program”

— "Then get implementation from object
instance”

* Called late binding or dynamic binding
— Virtual functions implement late binding

Virtual Functions: Another Example

* Bigger example best to demonstrate

* Record-keeping program for automotive
parts store

— Track sales

— Don’t know all sales yet

— 15t only regular retail sales

— Later: Discount sales, mail-order, etc.

* Depend on other factors besides just price, tax

Virtual Functions: Auto Parts

* Program must:
— Compute daily gross sales
— Calculate largest/smallest sales of day
— Perhaps average sale for day

e All come from individual bills

— But many functions for computing bills will
be added "later"!

 When different types of sales added!

* So function for "computing a bill" will
be virtual!

Class Sale Definition

e class Sale
{
public:
Sale();
Sale(double thePrice);
double getPrice() const;
virtual double bill() const;
double savings(const Sale& other) const;
private:
double price;

5

Member Functions
savings and operator <

* double Sale::savings(const Sale& other) const

{
return (bill() — other.bill());
}
* bool operator < (const Sale& first,
const Sale& second)
{
return (first.bill() < second.bill());
}

* Notice BOTH use member function bill()!

Class Sale

* Represents sales of single item with no
added discounts or charges.

 Notice reserved word "virtual" in
declaration of member function bill

— Impact: Later, derived classes of Sale can
define THEIR versions of function bill

— Other member functions of Sale will use
version based on object of derived class!

— They won’t automatically use Sale’s version!

Derived Class DiscountSale Defined

e class DiscountSale : public Sale

{

public:
DiscountSale();
DiscountSale(double thePrice,

double the Discount);

double getDiscount() const;
void setDiscount(double newDiscount);
double bill() const;

private:
double discount;

5

DiscountSale’s Implementation

of bill()
* double DiscountSale::bill() const
{
double fraction = discount/100:;
return (1 — fraction)*getPrice();
}

e Qualifier "virtual” does not go in actual
function definition
— "Automatically" virtual in derived class

— Declaration (in interface) not required to have
"virtual" keyword either (but usually does)

DiscountSale’s Implementation
of bill()

e Virtual function in base class:

— "Automatically" virtual in derived class

* Derived class declaration (in interface)
— Not required to have "virtual" keyword

— But typically included anyway,
for readability

Derived Class DiscountSale

* DiscountSale’s member function bill()
implemented differently than Sale’s

— Particular to "discounts"

* Member functions savings and "<"

— Will use this definition of bill() for all objects
of DiscountSale class!

— Instead of "defaulting" to version defined in
Sales class!

Virtual: Wow!

e Recall class Sale written long before
derived class DiscountSale

— Members savings and "<" compiled before
even had ideas of a DiscountSale class

* Yetin a call like:
DiscountSale d1, d2;
d1.savings(d2);

— Call in savings() to function bill() knows to
use definition of bill() from DiscountSale class

e Powerful!

Virtual: How?

* To write C++ programs:
— Assume it happens by "magic"!

* But explanation involves late binding
— Virtual functions implement late binding

— Tells compiler to "wait" until function is used in
program

— Decide which definition to use based on
calling object

* Very important OOP principle!

Overriding

* Virtual function definition changed in a
derived class

— We say it’s been "overidden"

* Similar to redefined
— Recall: for standard functions
* So:
— Virtual functions changed: overridden
— Non-virtual functions changed: redefined

C++11 override keyword

e C++11 includes the override keyword to make
it clear if a function is overridden or redefined

class Sale

{
public:

virtual double bill() const;
_—

| | Makes it
?lass DiscountSale : public Sale explicit that this
public: *///////////funC“On
. | overrides bill()
double bi1ll () const override; in the Sale
I class

Copyright © 2016 Pearson Inc. All rights reserved. 15-21

C++11 final keyword

e C++11 includes the final keyword to prevent a
function from being overridden. Useful if a function
is overridden but don’t want a derived classes to
override it again.

class Sale Ca””Pt
{ / override
public:
virtual double bill () const final;
o
class DiscountSale : public Sale Results in

{ :
public: k//////////////'ConumerENOF

double bill () const;
. ..

Copyright © 2016 Pearson Inc. All rights reserved. 15-22

Virtual Functions: Why Not All?

Clear advantages to virtual functions as
we’ve seen

One major disadvantage: overhead!

— Uses more storage

— Late binding is "on the fly", so programs run slower

So if virtual functions not needed, should
not be used

Pure Virtual Functions

Base class might not have "meaningful
definition for some of it’'s members!

— It’s purpose solely for others to derive from

Recall class Figure
— All figures are objects of derived classes

* Rectangles, circles, triangles, etc.

— Class Figure has no idea how to draw!

Make it a pure virtual function:
virtual void draw() = 0;

Abstract Base Classes

* Pure virtual functions require no definition
— Forces all derived classes to define "their
own'" version

* (Class with one or more pure virtual
functions is: abstract base class
— Can only be used as base class

— No objects can ever be created from it

* Since it doesn’t have complete "definitions" of all
it’s members!

* If derived class fails to define all pure’s:
— It’s an abstract base class too

Extended Type Compatibility

e Given:
Derived is derived class of Base

— Derived objects can be assignhed to objects
of type Base

— But NOT the other way!
* Consider previous example:

— A DiscountSale "is a" Sale, but reverse
not true

Extended Type
Compatibility Example

e class Pet
{
public:
string name;
virtual void print() const;
5
class Dog : public Pet
{
public:
string breed;
virtual void print() const;

Copyright © 2016 Pearson Inc. All rights reserved. 15-27

Classes Pet and Dog

* Now given declarations:
Dog vdog;
Pet vpet;

e Notice member variables name and breed are
public!
— For example purposes only! Not typicall

Using Classes Pet and Dog

* Anything that "is a" dog "is a" pet:

— vdog.name = "Tiny";
vdog.breed = "Great Dane";
vpet = vdog;

— These are allowable

* Can assign values to parent-types, but
not reverse
— A pet "is not 2" dog (not necessarily)

Slicing Problem

* Notice value assigned to vpet "loses" it’s
breed field!

— cout << vpet.breed;
* Produces ERROR msg!

— Called slicing problem
 Might seem appropriate

— Dog was moved to Pet variable, so it should
be treated like a Pet

* And therefore not have "dog" properties
— Makes for interesting philosphical debate

Slicing Problem Fix

* |[n C++, slicing problem is nuisance
— It still "is a" Great Dane named Tiny

— We'd like to refer to it’s breed even if it’s been
treated as a Pet

 Can do so with pointers to
dynamic variables

Slicing Problem Example

* Pet *ppet;

Dog *pdog;

pdog = new Dog;

pdog->name = "Tiny";
pdog->breed = "Great Dane";

ppet = pdog;
e Cannot access breed field of object

pointed to by ppet:
cout << ppet->breed; //ILLEGAL!

Slicing Problem Example

e Must use virtual member function:
ppet->print();

— Calls print member function in Dog class!

* Because it’s virtual

— C++ "waits" to see what object pointer ppet is
actually pointing to before "binding" call

Virtual Destructors

e Recall: destructors needed to de-allocate
dynamically allocated data

* Consider:
Base *pBase = new Derived;

delete pBase;

— Would call base class destructor even though
pointing to Derived class object!

— Making destructor virtual fixes this!
e Good policy for all destructors to be virtual

Casting

 Consider:
Pet vpet;
Dog vdog;

vdog = static_cast<Dog>(vpet); //ILLEGAL!

 Can’t cast a pet to be a dog, but:
vpet = vdog; // Legal!
vpet = static_cast<Pet>(vdog); //Also legall!

* Upcasting is OK

— From descendant type to ancestor type

Copyright © 2016 Pearson Inc. All rights reserved. 15-35

Downcasting

 Downcasting dangerous!
— Casting from ancestor type to descended type
— Assumes information is "added"

— Can be done with dynamic_cast:
Pet *ppet;
ppet = new Dog;
Dog *pdog = dynamic_cast<Dog*>(ppet);

* Legal, but dangerous!
 Downcasting rarely done due to pitfalls

— Must track all information to be added
— All member functions must be virtual

Inner Workings of Virtual Functions

* Don’t need to know how to use it!
— Principle of information hiding

* Virtual function table

— Compiler creates it

— Has pointers for each virtual member function

— Points to location of correct code for that function
* Objects of such classes also have pointer

— Points to virtual function table

Summary 1

* Late binding delays decision of which
member function is called until runtime

— In C++, virtual functions use late binding

e Pure virtual functions have no definition
— Classes with at least one are abstract

— No objects can be created from
abstract class

— Used strictly as base for others to derive

Summary 2

Derived class objects can be assigned to
base class objects

— Base class members are lost; slicing problem

Pointer assignments and dynamic objects
— Allow "fix" to slicing problem

Make all destructors virtual
— Good programming practice
— Ensures memory correctly de-allocated

