
Chapter 11

Separate 
Compilation 

and Namespaces

Copyright © 2016 Pearson, Inc. 
All rights reserved.



Learning Objectives

• Separate Compilation

– Encapsulation reviewed

– Header and implementation files

• Namespaces

– using directives

– Qualifying names

– Unnamed namespaces

– Hiding helping functions

– Nested namespaces

11-2Copyright © 2016 Pearson Inc. All rights reserved.



Separate Compilation

• Program Parts

– Kept in separate files

– Compiled separately

– Linked together before program runs

• Class definitions

– Separate from "using" programs

– Build library of classes
• Re-used by many different programs

• Just like predefined libraries

11-3Copyright © 2016 Pearson Inc. All rights reserved.



Class Separation

• Class Independence
– Separate class definition/specification

• Called "interface"

– Separate class implementation

– Place in two files

• If implementation changes  only that
file need be changed

• Class specification need not change

• "User" programs need not change

11-4Copyright © 2016 Pearson Inc. All rights reserved.



Encapsulation Reviewed

• Encapsulation principle:

– Separate how class is used by programmer
from details of class’s implementation

• "Complete" separation

– Change to implementation  NO impact on
any other programs

• Basic OOP principle

11-5Copyright © 2016 Pearson Inc. All rights reserved.



Encapsulation Rules

• Rules to ensure separation:

1. All member variables should be private

2. Basic class operations should be:
• Public member functions

• Friend or ordinary functions

• Overloaded operators

Group class definition and prototypes together
• Called "interface" for class

3. Make class implementation unavailable to
users of class

11-6Copyright © 2016 Pearson Inc. All rights reserved.



More Class Separation

• Interface File

– Contains class definition with function and
operator declarations/prototypes

– Users "see" this

– Separate compilation unit

• Implementation File

– Contains member function definitions

– Separate compilation unit

11-7Copyright © 2016 Pearson Inc. All rights reserved.



Class Header Files

• Class interface always in header file
– Use .h naming convention

• Programs that use class will "include" it
– #include "myclass.h"

– Quotes indicate you wrote header
• Find it in "your" working directory

– Recall library includes, e.g., <iostream>
• < > indicate predefined library header file

• Find it in library directory

11-8Copyright © 2016 Pearson Inc. All rights reserved.



Class Implementation Files

• Class implementation in .cpp file
– Typically give interface file and implementation file same 

name
• myclass.h and myclass.cpp

– All class’s member function defined here

– Implementation file must #include class’s 
header file

• .cpp files in general, typically contain
executable code
– e.g., Function definitions, including main()

11-9Copyright © 2016 Pearson Inc. All rights reserved.



Class Files

• Class header file #included by:
– Implementation file

– Program file
• Often called "application file" or "driver file"

• Organization of files is system dependent
– Typical IDE has "project" or "workspace"

• Implementation files "combined" here

• Header files still "#included"

11-10Copyright © 2016 Pearson Inc. All rights reserved.



Multiple Compiles of Header Files

• Header files

– Typically included multiple times
• e.g., class interface included by class implementation and program 

file

– Must only be compiled once!

– No guarantee "which #include" in which file,
compiler might see first

• Use preprocessor

– Tell compiler to include header only once 

11-11Copyright © 2016 Pearson Inc. All rights reserved.



Using #ifndef

• Header file structure:
– #ifndef FNAME_H

#define FNAME_H
… //Contents of header file
…
#endif

• FNAME typically name of file for 
consistency, readability

• This syntax avoids multiple definitions
of header file

11-12Copyright © 2016 Pearson Inc. All rights reserved.



Other Library Files

• Libraries not just for classes

• Related functions

– Prototypes  header file

– Definitions  implementation file

• Other type definitions

– structs, simple typedefs  header file

– Constant declarations  header file

11-13Copyright © 2016 Pearson Inc. All rights reserved.



Namespaces

• Namespace defined:
A collection of name definitions

– Class definitions

– Variable declarations

• Programs use many classes, functions

– Commonly have same names

– Namespaces deal with this

– Can be "on" or "off"
• If names might conflict  turn off

11-14Copyright © 2016 Pearson Inc. All rights reserved.



using Directive

• using namespace std;

– Makes all definitions in std namespace
available

• Why might you NOT want this?

– Can make cout, cin have non-standard
meaning

• Perhaps a need to redefine cout, cin

– Can redefine any others

11-15Copyright © 2016 Pearson Inc. All rights reserved.



Namespace std

• We’ve used namespace std

• Contains all names defined in many standard library 
files

• Example:
#include <iostream>
– Places all name definitions (cin, cout, etc.)

into std namespace

– Program doesn’t know names

– Must specify this namespace for program
to access names

11-16Copyright © 2016 Pearson Inc. All rights reserved.



Global Namespace

• All code goes in some namespace

• Unless specified  global namespace

– No need for using directive

– Global namespace always available

– Implied "automatic" using directive

11-17Copyright © 2016 Pearson Inc. All rights reserved.



Multiple Names

• Multiple namespaces

– e.g., global, and std typically used

• What if name defined in both?

– Error

– Can still use both namespaces

– Must specify which namespace used at
what time

11-18Copyright © 2016 Pearson Inc. All rights reserved.



Specifying Namespaces

• Given namespaces NS1, NS2

– Both have void function myFunction()
defined differently
{

using namespace NS1;
myFunction();

}
{

using namespace NS2;
myFunction();

}

– using directive has block-scope

11-19Copyright © 2016 Pearson Inc. All rights reserved.



Creating a Namespace

• Use namespace grouping:
namespace Name_Space_Name
{

Some_Code
}

• Places all names defined in Some_Code
into namespace Name_Space_Name

• Can then be made available:
using namespace Name_Space_Name

11-20Copyright © 2016 Pearson Inc. All rights reserved.



Creating a Namespace Example

• Function declaration:
namespace Space1
{

void greeting();
}

• Function definition:
namespace Space1
{

void greeting()
{

cout << "Hello from namespace Space1.\n";
}

}

11-21Copyright © 2016 Pearson Inc. All rights reserved.



using Declarations

• Can specify individual names 
from namespace

• Consider:
Namespaces NS1, NS2 exist
Each have functions fun1(), fun(2)

– Declaration syntax:
using Name_Space::One_Name;

– Specify which name from each:
using NS1::fun1;
using NS2::fun2;

11-22Copyright © 2016 Pearson Inc. All rights reserved.



using Definitions and Declarations

• Differences:

– using declaration

• Makes ONE name in namespace available

• Introduces names so no other uses of name 
are allowed

– using directive

• Makes ALL names in namespace available

• Only "potentially" introduces names

11-23Copyright © 2016 Pearson Inc. All rights reserved.



Qualifying Names

• Can specify where name comes from
– Use "qualifier" and scope-resolution operator

– Used if only intend one use (or few)

• NS1::fun1();
– Specifies that fun() comes from namespace

NS1

• Especially useful for parameters:
int getInput(std::istream inputStream);

– Parameter found in istream’s std namespace

– Eliminates need for using directive or declaration

11-24Copyright © 2016 Pearson Inc. All rights reserved.



Naming Namespaces

• Include unique string
– Like last name

• Reduces chance of other namespaces
with same name

• Often multiple programmers write
namespaces for same program
– Must have distinct names

– Without multiple definitions of same name
in same scope
• Results in error

11-25Copyright © 2016 Pearson Inc. All rights reserved.



Class Namespace Example: 
Display 11.6 Placing a Class 

in a Namespace (Header File) 

11-26Copyright © 2016 Pearson Inc. All rights reserved.



Class Namespace Example: 
Display 11.7 Placing a Class 

in a Namespace (Implementation File) 

11-27Copyright © 2016 Pearson Inc. All rights reserved.



Unnamed Namespaces

• Compilation unit defined:
– A file, along with all files #included in file

• Every compilation unit has unnamed namespace
– Written same way, but with no name

– All names are then local to compilation unit

• Use unnamed namespace to keep 
things "local"

• Scope of unnamed namespace is 
compilation unit

11-28Copyright © 2016 Pearson Inc. All rights reserved.



Global vs. Unnamed Namespaces

• Not same

• Global namespace:

– No namespace grouping at all

– Global scope

• Unnamed namespace:

– Has namespace grouping, just no name

– Local scope

11-29Copyright © 2016 Pearson Inc. All rights reserved.



Nested Namespaces

• Legal to nest namespaces
namespace S1
{

namespace S2
{

void sample()
{

…
}

}

• Qualify names twice:
– S1::S2::sample();

11-30Copyright © 2016 Pearson Inc. All rights reserved.



Hiding Helping Functions

• Recall helping function:
– Low-level utility

– Not for public use

• Two ways to hide:
– Make private member function

• If function naturally takes calling object

– Place in class implementation’s unnamed namespace!
• If function needs no calling object

• Makes cleaner code (no qualifiers)

11-31Copyright © 2016 Pearson Inc. All rights reserved.



Summary 1

• Can separate class definition and implementation 
separate files

– Separate compilation units

• Namespace is a collection of name definitions

• Three ways to use name from namespace:

– Using directive

– Using declaration

– Qualifying

11-32Copyright © 2016 Pearson Inc. All rights reserved.



Summary 2

• Namespace definitions are placed
inside namespace groupings

• Unnamed namespace
– Used for local name definitions

– Scope is compilation unit

• Global namespace
– Items not in a namespace grouping at all

– Global scope

11-33Copyright © 2016 Pearson Inc. All rights reserved.


