Vector Space Scoring
 Introduction to Information Retrieval INF 141
 Donald J. Patterson

Content adapted from Hinrich Schütze http://www.informationretrieval.org

Querying

Corpus-wide statistics

Querying

Corpus-wide statistics

- Collection Frequency, cf
- Define: The total number of occurences of the term in the entire corpus

Querying

Corpus-wide statistics

- Collection Frequency, cf
- Define: The total number of occurences of the term in the entire corpus
- Document Frequency, df
- Define: The total number of documents which contain the term in the corpus

Querying

Corpus-wide statistics

Word Collection Frequency Document Frequency

insurance	10440	3997
try	10422	8760

Querying

Corpus-wide statistics

Word Collection Frequency Document Frequency

insurance	10440	3997
try	10422	8760

- This suggests that df is better at discriminating between documents

Querying

Corpus-wide statistics

Word Collection Frequency Document Frequency

insurance	10440	3997
try	10422	8760

- This suggests that df is better at discriminating between documents
- How do we use df?

Querying

Corpus-wide statistics

Querying

Corpus-wide statistics

- Term-Frequency, Inverse Document Frequency Weights

Querying

Corpus-wide statistics

- Term-Frequency, Inverse Document Frequency Weights
- "tf-idf"

Querying

Corpus-wide statistics

- Term-Frequency, Inverse Document Frequency Weights
- "tfidf"
- tf = term frequency

Querying

Corpus-wide statistics

- Term-Frequency, Inverse Document Frequency Weights
- "tf-idf"
- $\mathrm{tf}=$ term frequency
- some measure of term density in a document

Querying

Corpus-wide statistics

- Term-Frequency, Inverse Document Frequency Weights
- "tf-idf"
- $\mathrm{tf}=$ term frequency
- some measure of term density in a document
- idf $=$ inverse document frequency

Querying

Corpus-wide statistics

- Term-Frequency, Inverse Document Frequency Weights
- "tf-idf"
- $\mathrm{tf}=$ term frequency
- some measure of term density in a document
- idf = inverse document frequency
- a measure of the informativeness of a term

Querying

Corpus-wide statistics

- Term-Frequency, Inverse Document Frequency Weights
- "tf-idf"
- $\mathrm{tf}=$ term frequency
- some measure of term density in a document
- idf = inverse document frequency
- a measure of the informativeness of a term
- it's rarity across the corpus

Querying

Corpus-wide statistics

- Term-Frequency, Inverse Document Frequency Weights
- "tf-idf"
- tf = term frequency
- some measure of term density in a document
- idf = inverse document frequency
- a measure of the informativeness of a term
- it's rarity across the corpus
- could be just a count of documents with the term

Querying

Corpus-wide statistics

- Term-Frequency, Inverse Document Frequency Weights
- "tf-idf"
- $\mathrm{tf}=$ term frequency
- some measure of term density in a document
- idf = inverse document frequency
- a measure of the informativeness of a term
- it's rarity across the corpus
- could be just a count of documents with the term
- more commonly it is:

Querying

Corpus-wide statistics

- Term-Frequency, Inverse Document Frequency Weights
- "tf-idf"
- $\mathrm{tf}=$ term frequency
- some measure of term density in a document
- idf = inverse document frequency
- a measure of the informativeness of a term
- it's rarity across the corpus
- could be just a count of documents with the term
- more commonly it is:

$$
i d f_{t}=\log \left(\frac{\mid \text { corpus } \mid}{d f_{t} \mid}\right)
$$

Querying

TF-IDF Examples

$$
\begin{array}{cc}
i d f_{t}=\log \left(\frac{\mid \text { corpus } \mid}{d f_{t}}\right) & i d f_{t}=\log _{10}\left(\frac{1,000,000}{d f_{t}}\right) \\
\text { term } \quad d f_{t} & i d f_{t} \\
\hline
\end{array}
$$

calpurnia	1	6
animal	10	4
sunday	1000	3
fly	10,000	2
under	100,000	1
the	$1,000,000$	0

Querying

TF-IDF Summary

- Assign tf-idf weight for each term t in a document d:

$$
t f i d f(t, d)=\left(1+\log \left(t f_{t, d}\right)\right) * \log \left(\frac{|\operatorname{corpus}|}{d f_{t, d}}\right)
$$

- Increases with number of occurrences of term in a doc.
- Increases with rarity of term across entire corpus
- Three different metrics
- term frequency
- document frequency

Querying

Now, real-valued term-document matrices

- Bag of words model
- Each element of matrix is tf-idf value

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	13.1	11.4	0.0	0.0	0.0	0.0
Brutus	3.0	8.3	0.0	1.0	0.0	0.0
Caesar	2.3	2.3	0.0	0.5	0.3	0.3
Calpurnia	0.0	11.2	0.0	0.0	0.0	0.0
Cleopatra	17.7	0.0	0.0	0.0	0.0	0.0
mercy	0.5	0.0	0.7	0.9	0.9	0.3
worser	1.2	0.0	0.6	0.6	0.6	0.0

Querying

Vector Space Scoring

- That is a nice matrix, but
- How does it relate to scoring?
- Next, vector space scoring

Vector Space Scoring

Vector Space Model

- Define: Vector Space Model
- Representing a set of documents as vectors in a common vector space.
- It is fundamental to many operations
- (query,document) pair scoring
- document classification
- document clustering
- Queries are represented as a document
- A short one, but mathematically-equivalent

Vector Space Scoring

Vector Space Model

- Define: Vector Space Model
- A document, d, is defined as a vector: $\vec{V}(d)$
- One component for each term in the dictionary
- Assume the term is the tf-idf score

$$
\vec{V}(d)_{t}=\left(1+\log \left(t f_{t, d}\right)\right) * \log \left(\frac{|\operatorname{corpus}|}{d f_{t, d}}\right)
$$

- A corpus is many vectors together.
- A document can be thought of as a point in a multidimensional space, with axes related to terms.

Vector Space Scoring

Vector Space Model

- Recall our Shakespeare Example:

Antony and Julius The Tempest Hamlet Othello Macbeth Cleopatra Caesar

Antony	13.1	11.4	0.0	0.0	0.0	0.0
Brutus	3.0	8.3	0.0	1.0	0.0	0.0
Caesar	2.3	2.3	0.0	0.5	0.3	0.3
Calpurnia	0.0	11.2	0.0	0.0	0.0	0.0
Cleopatra	17.7	0.0	0.0	0.0	0.0	0.0
mercy	0.5	0.0	0.7	0.9	0.9	0.3
worser	1.2	0.0	0.6	0.6	0.6	0.0

Vector Space Scoring

Vector Space Model

- Recall our Shakespeare Example:

$$
\vec{V}\left(d_{1}\right)
$$

Antony and Julius The Tempest Hamlet Othello Macbeth Cleopatra Caesar

Antony	13.1	11.4	0.0	0.0	0.0	0.0
Brutus	3.0	8.3	0.0	1.0	0.0	0.0
Caesar	2.3	2.3	0.0	0.5	0.3	0.3
Calpurnia	0.0	11.2	0.0	0.0	0.0	0.0
Cleopatra	17.7	0.0	0.0	0.0	0.0	0.0
mercy	0.5	0.0	0.7	0.9	0.9	0.3
worser	1.2	0.0	0.6	0.6	0.6	0.0

Vector Space Scoring

Vector Space Model

- Recall our Shakespeare Example:

$$
\vec{V}\left(d_{1}\right) \quad \vec{V}\left(d_{2}\right) \quad \vec{V}\left(d_{6}\right)
$$

Antony and Julius The Tempest Hamlet Othello Macbeth Cleopatra Caesar

Antony	13.1	11.4	0.0	0.0	0.0	0.0
Brutus	3.0	8.3	0.0	1.0	0.0	0.0
Caesar	2.3	2.3	0.0	0.5	0.3	0.3
Calpurnia	0.0	11.2	0.0	0.0	0.0	0.0
Cleopatra	17.7	0.0	0.0	0.0	0.0	0.0
mercy	0.5	0.0	0.7	0.9	0.9	0.3
worser	1.2	0.0	0.6	0.6	0.6	0.0

Vector Space Scoring

Vector Space Model

- Recall our Shakespeare Example:

$$
\vec{V}\left(d_{1}\right) \quad \vec{V}\left(d_{2}\right) \quad \vec{V}\left(d_{6}\right)
$$

Antony and Julius The Tempest Hamlet Othello Macbeth Cleopatra Caesar

Antony	13.1	11.4	0.0	0.0	0.0	0.0
Brutus	3.0	8.3	0.0	1.0	0.0	0.0
Caesar	2.3	2.3	0.0	0.5	0.3	0.3
Calpurnia	0.0	11.2	0.0	0.0	0.0	0.0
Cleopatra	17.7	0.0	0.0	0.0	0.0	0.0
mercy	0.5	0.0	0.7	0.9	0.9	0.3
worser	1.2	0.0	0.6	0.6	0.6	0.0

Vector Space Scoring

Vector Space Model

- Recall our Shakespeare Example:

	$\vec{V}\left(d_{1}\right)$	$\vec{V}\left(d_{2}\right)$				$\vec{V}\left(d_{6}\right)$
	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	13.1	11.4	0.0	0.0	0.0	0.0
Brutus	3.0	8.3	0.0	1.0	0.0	0.0
Caesar	2.3	2.3	0.0	0.5	0.3	0.3
Calpurnia	0.0	11.2	0.0	0.0	0.0	0.0
Cleopatra	17.7	0.0	0.0	0.0	0.0	0.0
mercy	0.5	0.0	0.7	0.9	0.9	0.3
worser	1.2	0.0	0.6	0.6	0.6	0.0

Vector Space Scoring

Vector Space Model

- Recall our Shakespeare Example:

Vector Space Scoring

Vector Space Model

- Recall our Shakespeare Example:

$$
\vec{V}\left(d_{1}\right) \quad \vec{V}\left(d_{2}\right) \quad \vec{V}\left(d_{6}\right)
$$

Antony and Julius The Tempest Hamlet Othello Macbeth Cleopatra Caesar

Antony	13.1	11.4	0.0	0.0	0.0	0.0
Brutus	3.0	8.3	0.0	1.0	0.0	0.0
Caesar	2.3	2.3	0.0	0.5	0.3	0.3
Calpurnia	0.0	11.2	0.0	0.0	0.0	0.0
Cleopatra	17.7	0.0	0.0	0.0	0.0	0.0
mercy	0.5	0.0	0.7	0.9	0.9	0.3
worser	1.2	0.0	0.6	0.6	0.6	0.0

Vector Space Scoring

Vector Space Model

- Recall our Shakespeare Example:

Vector Space Scoring

Query as a vector

- So a query can also be plotted in the same space
- "worser mercy"
- To score, we ask:
worser
- How similar are two points?
- How to answer?

Antony and Cleopatra
\bigcirc query
mercy

Vector Space Scoring

Score by magnitude

- How to answer?
- Similarity of magnitude?
- But, two documents, similar in content, different in length can have large differences in magnitude.

Vector Space Scoring

Score by angle

- How to answer?
- Similarity of relative positions, or
- difference in angle
- Two documents are similar if the angle between them is 0 .
- As long as the ratios of the axes are the same, the documents will be
 scored as equal.
- This is measured by the dot product

Vector Space Scoring

Score by angle

- Rather than use angle
- use cosine of angle
- When sorting cosine and angle are equivalent
- Cosine is monotonically decreasing as
 a function of angle over (0 ... 180)

Vector Space Scoring

Big picture

- Why are we turning documents and queries into vectors
- Getting away from Boolean retrieval
- Developing ranked retrieval methods
- Developing scores for ranked retrieval
- Term weighting allows us to compute scores for document similarity
- Vector space model is a clean mathematical model to work with

Vector Space Scoring

Big picture

- Cosine similarity measure
- Gives us a symmetric score
- if $d_{-} 1$ is close to $d_{-} 2, d_{-} 2$ is close to $d_{-} 1$
- Gives us transitivity
- if d_1 is close to $d _2$, and $d _2$ close to $d _3$, then
- d_1 is also close to d_3
- No document is closer to d_1 than itself
- If vectors are normalized (length $=1$) then
- The similarity score is just the dot product (fast)

Vector Space Scoring

Queries in the vector space model

- Central idea: the query is a vector
- We regard the query as a short document
- We return the documents ranked by the closeness of their vectors to the query (also a vector)

$$
\operatorname{sim}\left(q, d_{i}\right)=\frac{\vec{V}(q) \cdot \vec{V}\left(d_{i}\right)}{|\vec{V}(q)|\left|\vec{V}\left(d_{i}\right)\right|}
$$

- Note that q is very sparse!

Vector Space Scoring

Cosine Similarity Score

$$
\begin{aligned}
\vec{V}\left(d_{1}\right) \cdot \vec{V}\left(d_{2}\right) & =\cos (\theta) \cdot\left|\vec{V}\left(d_{1}\right)\right|\left|\vec{V}\left(d_{2}\right)\right| \\
\cos (\theta) & =\frac{\vec{V}\left(d_{1}\right) \cdot \vec{V}\left(d_{2}\right)}{\left|\vec{V}\left(d_{1}\right)\right| \vec{V}\left(d_{2}\right) \mid} \\
\operatorname{sim}\left(d_{1}, d_{2}\right) & =\frac{\vec{V}\left(d_{1}\right) \cdot \vec{V}\left(d_{2}\right)}{\left|\vec{V}\left(d_{1}\right)\right| \vec{V}\left(d_{2}\right) \mid}
\end{aligned}
$$

Vector Space Scoring

Cosine Similarity Score

- Define: dot product

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	13.1	11.4	0.0	0.0	0.0	0.0
Brutus	3.0	8.3	0.0	1.0	0.0	0.0
Caesar	2.3	2.3	0.0	0.5	0.3	0.3
Calpurnia	0.0	11.2	0.0	0.0	0.0	0.0
Cleopatra	17.7	0.0	0.0	0.0	0.0	0.0
mercy	0.5	0.0	0.7	0.9	0.9	0.3
worser	1.2	0.0	0.6	0.6	0.6	0.0

$\vec{V}\left(d_{1}\right) \cdot \vec{V}\left(d_{2}\right)=(13.1 * 11.4)+(3.0 * 8.3)+(2.3 * 2.3)+(0 * 11.2)+(17.7 * 0)+(0.5 * 0)+(1.2 * 0)$
$=179.53$

Vector Space Scoring

Cosine Similarity Score

- Define: Euclidean Length

Antony and Julius The Tempest Hamlet Othello Macbeth

| Cleopatra | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Caesar |
| :---: |
| Antony | | 13.1 | 11.4 | 0.0 | 0.0 | 0.0 | 0.0 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Brutus | 3.0 | 8.3 | 0.0 | 1.0 | 0.0 | 0.0 |
| Caesar | 2.3 | 2.3 | 0.0 | 0.5 | 0.3 | 0.3 |
| Calpurnia | 0.0 | 11.2 | 0.0 | 0.0 | 0.0 | 0.0 |
| Cleopatra | 17.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| mercy | 0.5 | 0.0 | 0.7 | 0.9 | 0.9 | 0.3 |
| worser | 1.2 | 0.0 | 0.6 | 0.6 | 0.6 | 0.0 |

$$
=22.38
$$

Vector Space Scoring

Cosine Similarity Score

- Define: Euclidean Length

$=18.15$

Vector Space Scoring

Cosine Similarity Score

- Example

$$
\begin{aligned}
\operatorname{sim}\left(d_{1}, d_{2}\right) & =\frac{\vec{V}\left(d_{1}\right) \cdot \vec{V}\left(d_{2}\right)}{\left|\vec{V}\left(d_{1}\right)\right|\left|\vec{V}\left(d_{2}\right)\right|} \\
& =\frac{179.53}{22.38 * 18.15} \\
& =0.442
\end{aligned}
$$

Vector Space Scoring

Exercise

- Rank the following by decreasing cosine similarity.
- Assume tf-idf weighting:
- Two docs that have only frequent words in common
- (the, a, an, of)
- Two docs that have no words in common
- Two docs that have many rare words in common
- (mocha, volatile, organic, shade-grown)

Vector Space Scoring

Spamming indices

- This was invented before spam
- Consider:
- Indexing a sensible passive document collection
- vs.
- Indexing an active document collection, where people, companies, bots are shaping documents to maximize

scores

- Vector space scoring may not be as useful in this context.

Vector Space Scoring

Interaction: vectors and phrases

- Scoring phrases doesn't naturally fit into the vector space world:
- How do we get beyond the "bag of words"?
- "dark roast" and "pot roast"
- There is no information on "dark roast" as a phrase in our indices.
- Biword index can treat some phrases as terms
- postings for phrases
- document wide statistics for phrases

Vector Space Scoring

Interaction: vectors and phrases

- Theoretical problem:
- Axes of our term space are now correlated
- There is a lot of shared information in "light roast" and "dark roast" rows of our index
- End-user problem:
- A user doesn't know which phrases are indexed and can't effectively discriminate results.

Vector Space Scoring

Multiple queries for phrases and vectors

- Query: "rising interest rates"
- Iterative refinement:
- Run the phrase query vector with 3 words as a term.
- If not enough results, run 2-phrase queries and fold into results: "rising interest" "interest rates"
- If still not enough results run query with three words as separate terms.

Vector Space Scoring

Vectors and Boolean queries

- Ranked queries and Boolean queries don't work very well together
- In term space
- ranked queries select based on sector containment cosine similarity
- boolean queries select based op matonaln ynions

Vector Space Scoring

Vectors and wild cards

Vector Space Scoring

Vectors and wild cards

- How could we work with the query, "quick* print*" ?

Vector Space Scoring

Vectors and wild cards

- How could we work with the query, "quick* print*" ?
- Can we view this as a bag of words?

Vector Space Scoring

Vectors and wild cards

- How could we work with the query, "quick* print*" ?
- Can we view this as a bag of words?
- What about expanding each wild-card into the matching set of dictionary terms?

Vector Space Scoring

Vectors and wild cards

- How could we work with the query, "quick* print*" ?
- Can we view this as a bag of words?
- What about expanding each wild-card into the matching set of dictionary terms?
- Danger: Unlike the boolean case, we now have tfs and idfs to deal with

Vector Space Scoring

Vectors and wild cards

- How could we work with the query, "quick* print*" ?
- Can we view this as a bag of words?
- What about expanding each wild-card into the matching set of dictionary terms?
- Danger: Unlike the boolean case, we now have tfs and idfs to deal with
- Overall, not a great idea

Vector Space Scoring

Vectors and other operators

- Vector space queries are good for no-syntax, bag-ofwords queries
- Nice mathematical formalism
- Clear metaphor for similar document queries
- Doesn't work well with Boolean, wild-card or positional query operators
- But...

Vector Space Scoring

Query language vs. Scoring

- Interfaces to the rescue
- Free text queries are often separated from operator query language
- Default is free text query
- Advanced query operators are available in "advanced query" section of interface
- Or embedded in free text query with special syntax
- aka -term -"terma termb"

Vector Space Scoring

Alternatives to tf-idf

- Sublinear tf scaling
- 20 occurrences of "mole" does not indicate 20 times the relevance
- This motivated the WTF score.

```
\(\operatorname{WTF}(t, d)\)
    1 if \(t f_{t, d}=0\)
    2 then return (0)
    \(3 \quad\) else \(\operatorname{return}\left(1+\log \left(t f_{t, d}\right)\right)\)
```

- There are other variants for reducing the impact of
repeated terms

