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• Define: The total number of documents which contain 

the term in the corpus
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Corpus-wide statistics

Querying

• This suggests that df is better at discriminating between 

documents

• How do we use df?

Word Collection Frequency Document Frequency

insurance 10440 3997
try 10422 8760
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Corpus-wide statistics

Querying

• Term-Frequency, Inverse Document Frequency Weights

• “tf-idf”

• tf = term frequency

• some measure of term density in a document

• idf = inverse document frequency

• a measure of the informativeness of a term

• it’s rarity across the corpus

• could be just a count of documents with the term

• more commonly it is: idft = log

(
|corpus|

dft

)



TF-IDF Examples

Querying

idft = log

(
|corpus|

dft

)
idft = log10

(
1, 000, 000

dft

)

term dft idft

calpurnia 1
animal 10
sunday 1000

fly 10, 000
under 100, 000

the 1, 000, 000

6
4
3
2
1
0



TF-IDF Summary

Querying

• Assign  tf-idf weight for each term t in a document d:

• Increases with number of occurrences of term in a doc.

• Increases with rarity of term across entire corpus

• Three different metrics

• term frequency

• document frequency

• collection/corpus frequency

tfidf(t, d) = (1 + log(tft,d)) ∗ log

(
|corpus|

dft,d

)



Now, real-valued term-document matrices

Querying

• Bag of words model

• Each element of matrix is tf-idf value

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3
worser 1.2 0.0 0.6 0.6 0.6 0.0



Vector Space Scoring

Querying

• That is a nice matrix, but

• How does it relate to scoring?

• Next, vector space scoring



Vector Space Model

Vector Space Scoring

• Define: Vector Space Model

• Representing a set of documents as vectors in a 

common vector space.

• It is fundamental to  many operations

• (query,document) pair scoring

• document classification

• document clustering

• Queries are represented as a document

• A short one, but mathematically equivalent



Vector Space Model

Vector Space Scoring

• Define: Vector Space Model

• A document, d, is defined as a vector:

• One component for each term in the dictionary

• Assume the term is the tf-idf score

• A corpus is many vectors together.

• A document can be thought of as a point in a multi-

dimensional space, with axes related to terms.

!V (d)

!V (d)t = (1 + log(tft,d)) ∗ log

(
|corpus|

dft,d

)



Vector Space Model

Vector Space Scoring

• Recall our Shakespeare Example:

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3
worser 1.2 0.0 0.6 0.6 0.6 0.0
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Vector Space Model

Vector Space Scoring

• Recall our Shakespeare Example:

Hamlet

Antony and Cleopatra

Julius Caesar

Tempest
Othello

MacBeth

mercy

worser



Query as a vector

Vector Space Scoring

• So a query can also be plotted in the same space

• “worser mercy”

• To score, we ask:

• How similar are two points?

• How to answer?
Hamlet

Antony and Cleopatra

Julius Caesar

Tempest
Othello

MacBeth

mercy

worser

query



Score by magnitude

Vector Space Scoring

• How to answer?

• Similarity of magnitude?

• But, two documents, similar in 

content, different in length can have 

large differences in magnitude. !V (d1)

!V (d2)

!V (d3)

!V (d4)
!V (d5)



Score by angle

Vector Space Scoring

• How to answer?

• Similarity of relative positions, or

• difference in angle

• Two documents are similar if the 

angle between them is 0.

• As long as the ratios of the axes are 

the same, the documents will be 

scored as equal.

• This is measured by the dot product

!V (d1)

!V (d2)

!V (d3)

!V (d4)
!V (d5)

θ



Score by angle

Vector Space Scoring

• Rather than use angle

• use cosine of angle

• When sorting cosine and angle are 

equivalent

• Cosine is monotonically decreasing as 

a function of angle over (0 ... 180)

!V (d1)

!V (d2)

!V (d3)

!V (d4)
!V (d5)

θ



Big picture

Vector Space Scoring

• Why are we turning documents and queries into vectors

• Getting away from Boolean retrieval

• Developing ranked retrieval methods

• Developing scores for ranked retrieval

• Term weighting allows us to compute scores for 

document similarity

• Vector space model is a clean mathematical model to 

work with



Big picture

Vector Space Scoring

• Cosine similarity measure

• Gives us a symmetric score

• if d_1 is close to d_2, d_2 is close to d_1

• Gives us transitivity

• if d_1 is close to d_2, and d_2 close to d_3, then

• d_1 is also close to d_3

• No document is closer to d_1 than itself

• If vectors are normalized (length = 1) then

• The similarity score is just the dot product (fast)



Queries in the vector space model

Vector Space Scoring

• Central idea: the query is a vector

• We regard the query as a short document

• We return the documents ranked by the closeness of 

their vectors to the query (also a vector)

• Note that q is very sparse!

sim(q, di) =
!V (q) · !V (di)
|!V (q)||!V (di)|



Cosine Similarity Score

Vector Space Scoring

!V (d1)

!V (d2)

!V (d3)

!V (d4)
!V (d5)

θ

!V (d1) · !V (d2) = cos(θ) · |!V (d1)||!V (d2)|

cos(θ) =
!V (d1) · !V (d2)
|!V (d1)||!V (d2)|

sim(d1, d2) =
!V (d1) · !V (d2)
|!V (d1)||!V (d2)|



Cosine Similarity Score

Vector Space Scoring

• Define: dot product

!V (d1)

!V (d2)

!V (d3)

!V (d4)
!V (d5)

θ

!V (d1) · !V (d2) =
tn∑

i=t1

(!V (d1)i
!V (d2)i)

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3
worser 1.2 0.0 0.6 0.6 0.6 0.0

!V (d1) · !V (d2) = (13.1 ∗ 11.4) + (3.0 ∗ 8.3) + (2.3 ∗ 2.3) + (0 ∗ 11.2) + (17.7 ∗ 0) + (0.5 ∗ 0) + (1.2 ∗ 0)

= 179.53



Cosine Similarity Score

Vector Space Scoring

• Define: Euclidean Length

!V (d1)

!V (d2)

!V (d3)

!V (d4)
!V (d5)

θ

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3
worser 1.2 0.0 0.6 0.6 0.6 0.0

|!V (d1)| =

√√√√
tn∑

i=t1

(!V (d1)i
!V (d1)i)

|!V (d1)| =
√

(13.1 ∗ 13.1) + (3.0 ∗ 3.0) + (2.3 ∗ 2.3) + (17.7 ∗ 17.7) + (0.5 ∗ 0.5) + (1.2 ∗ 1.2)
= 22.38



Cosine Similarity Score

Vector Space Scoring

• Define: Euclidean Length

!V (d1)

!V (d2)

!V (d3)

!V (d4)
!V (d5)

θ

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3
worser 1.2 0.0 0.6 0.6 0.6 0.0

|!V (d1)| =

√√√√
tn∑

i=t1

(!V (d1)i
!V (d1)i)

|!V (d1)| =
√

(11.4 ∗ 11.4) + (8.3 ∗ 8.3) + (2.3 ∗ 2.3) + (11.2 ∗ 11.2)
= 18.15



Cosine Similarity Score

Vector Space Scoring

• Example

!V (d1)

!V (d2)

!V (d3)

!V (d4)
!V (d5)

θ

sim(d1, d2) =
!V (d1) · !V (d2)
|!V (d1)||!V (d2)|

=
179.53

22.38 ∗ 18.15
= 0.442



Exercise

Vector Space Scoring

• Rank the following by decreasing cosine similarity.

• Assume tf-idf weighting:

• Two docs that have only frequent words in common

• (the, a , an, of)

• Two docs that have no words in common

• Two docs that have many rare words in common

• (mocha, volatile, organic, shade-grown)



Spamming indices

Vector Space Scoring

• This was invented before spam

• Consider:

• Indexing a sensible passive document collection

• vs.

• Indexing an active document collection, where people, 

companies, bots are shaping documents to maximize 

scores

• Vector space scoring may not be as useful in this context.



Interaction: vectors and phrases

Vector Space Scoring

• Scoring phrases doesn’t naturally fit into the vector space 

world:

• How do we get beyond the “bag of words”?

• “dark roast” and “pot roast”

• There is no information on “dark roast” as a phrase in 

our indices.

• Biword index can treat some phrases as terms

• postings for phrases

• document wide statistics for phrases



Interaction: vectors and phrases

Vector Space Scoring

• Theoretical problem:

• Axes of our term space are now correlated

• There is a lot of shared information in “light roast” 

and “dark roast” rows of our index

• End-user problem:

• A user doesn’t know which phrases are indexed and 

can’t effectively discriminate results.



Multiple queries for phrases and vectors

Vector Space Scoring

• Query: “rising interest rates”

• Iterative refinement:

• Run the phrase query vector with 3 words as a term.

• If not enough results, run 2-phrase queries and fold into 

results: “rising interest” “interest rates”

• If still not enough results run query with three words as 

separate terms.



Vectors and Boolean queries

Vector Space Scoring

• Ranked queries and Boolean queries don’t work very 

well together

• In term space

• ranked queries select based on sector containment - 

cosine similarity

• boolean queries select based on rectangle unions 

and intersections

!V (d1)

!V (d2)

!V (d3)

!V (d4)
!V (d5)

θ

!V (d1) !V (d2)

!V (d3)

X ∩ Y
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Vectors and wild cards

Vector Space Scoring

• How could we work with the query, “quick* print*” ?

• Can we view this as a bag of words?

• What about expanding each wild-card into the 

matching set of dictionary terms?

• Danger: Unlike the boolean case, we now have tfs and 

idfs to deal with

• Overall, not a great idea



Vectors and other operators

Vector Space Scoring

• Vector space queries are good for no-syntax, bag-of-

words queries

• Nice mathematical formalism

• Clear metaphor for similar document queries

• Doesn’t work well with Boolean, wild-card or positional 

query operators

• But ...



Query language vs. Scoring

Vector Space Scoring

• Interfaces to the rescue

• Free text queries are often separated from operator 

query language

• Default is free text query

• Advanced query operators are available in “advanced 

query” section of interface

• Or embedded in free text query with special syntax

• aka -term -”terma termb”



Alternatives to tf-idf

Vector Space Scoring

• Sublinear tf scaling

• 20 occurrences of “mole” does not indicate 20 times 

the relevance

• This motivated the WTF score.

• There are other variants for reducing the impact of 

repeated terms

WTF(t, d)
1 if tft,d = 0
2 then return(0)
3 else return(1 + log(tft,d))




