
13

 

 Introduction 1

1.1 Abstract
This specification describes the objectives and functionality of the JavaTM 
Message Service (JMS).

JMS provides a common way for Java programs to create, send, receive and 
read an enterprise messaging system’s messages.

1.2 Overview
Enterprise messaging products (or as they are sometimes called, Message 
Oriented Middleware products) are becoming an essential component for 
integrating intra-company operations. They allow separate business 
components to be combined into a reliable, yet flexible, system.

In addition to the traditional MOM vendors, enterprise messaging products are 
also provided by several database vendors and a number of internet related 
companies.

Java language clients and Java language middle tier services must be capable 
of using these messaging systems. JMS provides a common way for Java 
language programs to access these systems.

JMS is a set of interfaces and associated semantics that define how a JMS client 
accesses the facilities of an enterprise messaging product.



14 Java Message Service — Version 1.1 April 12, 2002

1

Since messaging is peer-to-peer, all users of JMS are referred to generically as 
clients. A JMS application is made up of a set of application defined messages 
and a set of clients that exchange them.

Products that implement JMS do this by supplying a provider that implements 
the JMS interfaces.

1.2.1  Is This a Mail API?

The term messaging is quite broadly defined in computing. It is used for 
describing various operating system concepts; it is used to describe email and 
fax systems; and here, it is used to describe asynchronous communication 
between enterprise applications.

Messages, as described here, are asynchronous requests, reports or events that 
are consumed by enterprise applications, not humans. They contain vital 
information needed to coordinate these systems. They contain precisely 
formatted data that describe specific business actions. Through the exchange of 
these messages each application tracks the progress of the enterprise.

1.2.2  Existing Messaging Systems

Messaging systems are peer-to-peer facilities. In general, each client can send 
messages to, and receive messages from any client. Each client connects to a 
messaging agent which provides facilities for creating, sending and receiving 
messages.

Each system provides a way of addressing messages. Each provides a way to 
create a message and fill it with data.

Some systems are capable of broadcasting a message to many destinations. 
Others only support sending a message to a single destination.

Some systems provide facilities for asynchronous receipt of messages 
(messages are delivered to a client as they arrive). Others support only 
synchronous receipt (a client must request each message).

Each messaging system typically provides a range of service that can be 
selected on a per message basis. One important attribute is the lengths to 
which the system will go to insure delivery. This varies from simple best effort 
to guaranteed, only once delivery. Other important attributes are message 
time-to-live, priority and whether a response is required.



Introduction— April 12, 2002 15

1

1.2.3  JMS Objectives

If JMS provided a union of all the existing features of messaging systems it 
would be much too complicated for its intended users. On the other hand, JMS 
is more than an intersection of the messaging features common to all products. 
It is crucial that JMS include the functionality needed to implement 
sophisticated enterprise applications. 

JMS defines a common set of enterprise messaging concepts and facilities. It 
attempts to minimize the set of concepts a Java language programmer must 
learn to use enterprise messaging products. It strives to maximize the 
portability of messaging applications.

1.2.3.1  JMS Provider

As noted earlier, a JMS provider is the entity that implements JMS for a 
messaging product.

Ideally, JMS providers will be written in 100% Pure Java so they can run in 
applets; simplify installation; and, work across architectures and OS’s.

An important goal of JMS is to minimize the work needed to implement a 
provider.

1.2.3.2  JMS Messages

JMS defines a set of message interfaces. 

Clients use the message implementations supplied by their JMS provider. 

A major goal of JMS is that clients have a consistent API for creating and 
working with messages that is independent of the JMS provider. 

1.2.3.3  JMS Domains

Messaging products can be broadly classified as either point-to-point or publish-
subscribe systems.

Point-to-point (PTP) products are built around the concept of message queues. 
Each message is addressed to a specific queue; clients extract messages from 
the queue(s) established to hold their messages.



16 Java Message Service — Version 1.1 April 12, 2002

1

Publish and subscribe (Pub/Sub) clients address messages to some node in a 
content hierarchy. Publishers and subscribers are generally anonymous and 
may dynamically publish or subscribe to the content hierarchy. The system 
takes care of distributing the messages arriving from a node’s multiple 
publishers to its multiple subscribers.

JMS provides a set of interfaces that allow the client to send and receive 
messages in both domains, while supporting the semantics of each domain. 
JMS also provides client interfaces tailored for each domain. Prior to version 
1.1 of the JMS specification, only the client interfaces that were tailored to each 
domain were available. These interfaces continue to be supported to provide 
backward compatibility for those who have already implemented JMS clients 
using them. The preferred approach for implementing clients is to use the 
domain-independent interfaces. These interfaces, referred to as the “common 
interfaces”, are parents of the domain-specific interfaces.

1.2.3.4  Portability

The primary portability objective is that new, JMS only, applications are 
portable across products within the same messaging domain.

This is in addition to the expected portability of a JMS client across machine 
architectures and operating systems (when using the same JMS provider).

Although JMS is designed to allow clients to work with existing message 
formats used in a mixed language application, portability of such clients is not 
generally achievable (porting a mixed language application from one product 
to another is beyond the scope of JMS).

1.2.4  What JMS Does Not Include

JMS does not address the following functionality:

• Load Balancing/Fault Tolerance - Many products provide support for 
multiple, cooperating clients implementing a critical service. The JMS API 
does not specify how such clients cooperate to appear to be a single, unified 
service.

• Error/Advisory Notification - Most messaging products define system 
messages that provide asynchronous notification of problems or system 
events to clients. JMS does not attempt to standardize these messages. By 
following the guidelines defined by JMS, clients can avoid using these 
messages and thus prevent the portability problems their use introduces. 



Introduction— April 12, 2002 17

1

• Administration - JMS does not define an API for administering messaging 
products.

• Security - JMS does not specify an API for controlling the privacy and 
integrity of messages. It also does not specify how digital signatures or keys 
are distributed to clients. Security is considered to be a JMS provider-
specific feature that is configured by an administrator rather than controlled 
via the JMS API by clients. 

• Wire Protocol - JMS does not define a wire protocol for messaging.

• Message Type Repository - JMS does not define a repository for storing 
message type definitions and it does not define a language for creating 
message type definitions.

1.3 What Is Required by JMS
The functionality discussed in the specification is required of all JMS providers 
unless it is explicitly noted otherwise.

Providers of JMS point-to-point functionality are not required to provide 
publish/subscribe functionality and vice versa.

JMS is also used within the Java 2, Enterprise Edition (J2EETM) platform. See 
Section 1.4, “Relationship to Other Java APIs” for additional requirements for 
JMS when it is integrated in that software environment.

1.4 Relationship to Other Java APIs

1.4.1  Java DataBase Connectivity (JDBCTM) Software

JMS clients may also use the JDBC API. They may desire to include the use of 
both the JDBC API and the JMS API in the same transaction. In most cases, this 
will be achieved automatically by implementing these clients as Enterprise 
JavaBeansTM components. It is also possible to do this directly with the Java 
Transaction API (JTA).



18 Java Message Service — Version 1.1 April 12, 2002

1

1.4.2  JavaBeansTM Components

JavaBeans components can use a JMS session to send/receive messages. JMS 
itself is an API and the interfaces it defines are not designed to be used directly 
as JavaBeans components.

1.4.3  Enterprise JavaBeansTM Component Model

The JMS API is an important resource available to Enterprise Java Beans 
(EJBTM) component developers. It can be used in conjunction with other 
resources like JDBC to implement enterprise services.

The EJB 2.0 specification defines beans that are invoked synchronously via 
method calls from EJB clients. It also defines a form of asynchronous bean that 
is invoked when a JMS client sends it a message, called a message-driven bean. 
The EJB specification supports both synchronous and asynchronous message 
consumption. In addition, EJB 2.0 specifies how the JMS API participates in 
bean-managed or container-managed transactions. The EJB 2.0 specification 
restricts how to use JMS interfaces when implementing EJB clients. Refer to the 
EJB 2.0 specification for the details.

1.4.4  Java Transaction API (JTA)

The javax.transaction package provides a client API for delimiting distributed 
transactions and an API for accessing a resource’s ability to participate in a 
distributed transaction. 

A JMS client may use JTA to delimit distributed transactions; however, this is a 
function of the transaction environment the client is running in. It is not a 
feature of JMS. 

A JMS provider can optionally support distributed transactions via JTA.

1.4.5  Java Transaction Service (JTS)

JMS can be used in conjunction with JTS to form distributed transactions that 
combine message sends and receives with database updates and other JTS 
aware services. Distributed transactions should be handled automatically when 
a JMS client is run from within an application server such as an Enterprise 
JavaBeans server; however, it is also possible for JMS clients to program them 
explicitly.



Introduction— April 12, 2002 19

1

1.4.6  Java Naming and Directory InterfaceTM (JNDI) API

JMS clients look up configured JMS objects using the JNDI API. JMS 
administrators use provider-specific facilities for creating and configuring 
these objects. 

This division of work maximizes the portability of clients by delegating 
provider-specific work to the administrator. It also leads to more administrable 
applications because clients do not need to embed administrative values in 
their code.

1.4.7  Java 2, Enterprise Edition (J2EE) Platform

The J2EE platform specification (version 1.3) requires support for the JMS API 
as part of the J2EE platform. The J2EE platform specification places certain 
additional requirements on the implementation of JMS beyond those described 
in the JMS specification, including the support of both Point-to-Point and 
Publish/Subscribe domains.

1.4.8  Integration of JMS with the EJB Components

The J2EE platform and EJB specifications describe additional requirements for 
a JMS provider that is integrated into the J2EE platform. One of the key set of 
requirements is how JMS message production and JMS message consumption 
interact with the transactional requirements of container-managed transactions 
in enterprise beans. Refer to these two specification for full requirements for 
JMS integration.

This JMS API specification does not address a model for implementing these 
requirements for integration. Therefore, different JMS provider 
implementations may implement integration with the J2EE platform and 
support EJB requirements in different ways. 

In the future, an integration point for JMS integration into J2EE platforms will 
be provided using the J2EE Connector Architecture.

1.5 What is New in JMS 1.1?
In previous versions of JMS, client programming for the Point-to-Point and 
Pub/Sub domains was done using similar but separate class hierarchies. In 



20 Java Message Service — Version 1.1 April 12, 2002

1

JMS 1.1, there is now a domain-independent approach to programming the 
client application. This provides several benefits:

• For the client programmer, a simpler programming model 

• The ability to engage queues and topics in the same transaction, now that 
they can be created in the same session

• For the JMS provider, increased opportunity to optimize implementations by 
pooling thread management

To take advantage of these features, the developer of JMS clients needs to use 
the domain-independent or “common” APIs. In the future, some of the 
domain-specific APIs may be deprecated.

In JMS 1.1, all of the classes and methods from JMS 1.0.2b are retained to 
provide backward compatibility. The semantics of the two messaging domains 
are retained; the expected behavior of a Point-to-Point domain and a Pub/Sub 
domain remain the same, as described in Chapter 5, “JMS Point-to-Point 
Model,” and Chapter 6, “JMS Publish/Subscribe Model.”

To see details of the changes made to this specification, see Chapter 11, 
“Change History.”



21

 Architecture 2

2.1 Overview
This chapter describes the environment of message-based applications and the 
role JMS plays in this environment. 

2.2 What is a JMS Application?
A JMS application is composed of the following parts:

• JMS Clients - These are the Java language programs that send and receive 
messages.

• Non-JMS Clients - These are clients that use a message system’s native client 
API instead of JMS. If the application predated the availability of JMS it is 
likely that it will include both JMS and non-JMS clients.

• Messages - Each application defines a set of messages that are used to 
communicate information between its clients. 

• JMS Provider - This is a messaging system that implements JMS in addition 
to the other administrative and control functionality required of a full-
featured messaging product.

• Administered Objects - Administered objects are preconfigured JMS objects 
created by an administrator for the use of clients.



22 Java Message Service —Version 1.1 April 12, 2002

2

2.3 Administration
It is expected that JMS providers will differ significantly in their underlying 
messaging technology. It is also expected there will be major differences in how 
a provider’s system is installed and administered.

If JMS clients are to be portable, they must be isolated from these proprietary 
aspects of a provider. This is done by defining JMS administered objects that 
are created and customized by a provider ’s administrator and later used by 
clients. The client uses them through JMS interfaces that are portable. The 
administrator creates them using provider-specific facilities.

 There are two types of JMS administered objects:

• ConnectionFactory - This is the object a client uses to create a connection 
with a provider.

• Destination - This is the object a client uses to specify the destination of 
messages it is sending and the source of messages it receives.

Administered objects are placed in a JNDI namespace by an administrator. A 
JMS client typically notes in its documentation the JMS administered objects it 
requires and how the JNDI names of these objects should be provided to it. 
Figure 2-1 illustrates how JMS administration ordinarily works.

Figure 2-1  JMS Administration 



Architecture—April 12, 2002 23

2

2.4 Two Messaging Styles
A JMS application can use either the point-to-point (PTP) and the publish-and-
subscribe (Pub/Sub) style of messaging, which are described in more detail 
later in this specification. An application can also combine both styles of 
messaging in one application. These two styles of messaging are often referred 
to as messaging domains. JMS provides these two messaging domains because 
they represent two common models for messaging.

When using the JMS API, a developer can use interfaces and methods that 
support both models of messaging. When using these interfaces, the behavior 
of the messaging system may be somewhat different, because the two 
messaging domains have different semantics. These semantic differences are 
described in Chapter 5,  “JMS Point-to-Point Model,” and Chapter 6,  “JMS 
Publish/Subscribe Model.”

2.5 JMS Interfaces
JMS is based on a set of common messaging concepts. Each JMS messaging 
domain - PTP and Pub/Sub - also defines a customized set of interfaces for 
these concepts.

The JMS common interfaces provide a domain-independent view of the PTP 
and Pub/Sub messaging domains. JMS client programmers are encouraged to 
use these interfaces to create their client programs.

The following list provides a brief definition of these JMS concepts. See 
Chapter 4,   “JMS Common Facilities,” for more details about these concepts. 

Table 2-1 Relationship of PTP and Pub/Sub Interfaces

JMS Common Interfaces PTP-specific Interfaces Pub/Sub-specific 
interfaces

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver, 
QueueBrowser

TopicSubscriber



24 Java Message Service —Version 1.1 April 12, 2002

2

For the details about the differences in the two messaging domains, see 
Chapter 5,   “JMS Point-to-Point Model,” and Chapter 6,  “JMS 
Publish/Subscribe Model.”

• ConnectionFactory - an administered object used by a client to create a 
Connection

• Connection - an active connection to a JMS provider
• Destination - an administered object that encapsulates the identity of a 

message destination
• Session - a single-threaded context for sending and receiving messages
• MessageProducer - an object created by a Session that is used for sending 

messages to a destination
• MessageConsumer - an object created by a Session that is used for receiving 

messages sent to a destination

Figure 2-1  Overview of JMS object relationships

The term consume is used in this document to mean the receipt of a message by 
a JMS client; that is, a JMS provider has received a message and has given it to 
its client. Since JMS supports both synchronous and asynchronous receipt of 
messages, the term consume is used when there is no need to make a distinction 
between them.

The term produce is used as the most general term for sending a message. It 
means giving a message to a JMS provider for delivery to a destination.



Architecture—April 12, 2002 25

2

2.6 Developing a JMS Application
Broadly speaking, a JMS application is one or more JMS clients that exchange 
messages. The application may also involve non-JMS clients; however, these 
clients use the JMS provider’s native API in place of JMS.

A JMS application can be architected and deployed as a unit. In many cases, 
JMS clients are added incrementally to an existing application.

The message definitions used by an application may originate with JMS, or 
they may have been defined by the non-JMS part of the application.

2.6.1  Developing a JMS Client

A typical JMS client executes the following JMS setup procedure:

• Use JNDI to find a ConnectionFactory object

• Use JNDI to find one or more Destination objects

• Use the ConnectionFactory to create a JMS Connection with message 
delivery inhibited



26 Java Message Service —Version 1.1 April 12, 2002

2

• Use the Connection to create one or more JMS Sessions

• Use a Session and the Destinations to create the MessageProducers and 
MessageConsumers needed

• Tell the Connection to start delivery of messages

At this point a client has the basic JMS setup needed to produce and consume 
messages.

2.7 Security
JMS does not provide features for controlling or configuring message integrity 
or message privacy.

It is expected that many JMS providers will provide such features. It is also 
expected that configuration of these services will be handled by provider-
specific administration tools. Clients will get the proper security configuration 
as part of the administered objects they use.

2.8 Multithreading
JMS could have required that all its objects support concurrent use. Since 
support for concurrent access typically adds some overhead and complexity, 
the JMS design restricts its requirement for concurrent access to those objects 
that would naturally be shared by a multithreaded client. The remainder are 
designed to be accessed by one logical thread of control at a time.

JMS defines some specific rules that restrict the concurrent use of Sessions. 
Since they require more knowledge of JMS specifics than we have presented at 

Table 2-2 JMS Objects that Support Concurrent Use

JMS Object Supports Concurrent Use

Destination YES

ConnectionFactory YES

Connection YES

Session NO

MessageProducer NO

MessageConsumer NO



Architecture—April 12, 2002 27

2

this point, they will be described later. Here we will describe the rationale for 
imposing them.

There are two reasons for restricting concurrent access to Sessions. First, 
Sessions are the JMS entity that supports transactions. It is very difficult to 
implement transactions that are multithreaded. Second, Sessions support 
asynchronous message consumption. It is important that JMS not require that 
client code used for asynchronous message consumption be capable of 
handling multiple, concurrent messages. In addition, if a Session has been set 
up with multiple, asynchronous consumers, it is important that the client is not 
forced to handle the case where these separate consumers are concurrently 
executing. These restrictions make JMS easier to use for typical clients. More 
sophisticated clients can get the concurrency they desire by using multiple 
sessions.

2.9 Triggering Clients
Some clients are designed to periodically wake up and process messages 
waiting for them. A message-based application triggering mechanism is often 
used with this style of client. The trigger is typically a threshold of waiting 
messages, etc.

JMS does not provide a mechanism for triggering the execution of a client. 
Some providers may supply such a triggering mechanism via their 
administrative facilities.

2.10 Request/Reply
JMS provides the JMSReplyTo message header field for specifying the 
Destination where a reply to a message should be sent. The JMSCorrelationID 
header field of the reply can be used to reference the original request. See 
Section 3.4, “Message Header Fields,” for more information. 

In addition, JMS provides a facility for creating temporary queues and topics 
that can be used as a unique destination for replies.

Enterprise messaging products support many styles of request/reply, from the 
simple “one message request yields a one message reply” to “one message 
request yields streams of messages from multiple respondents.” Rather than 
architect a specific JMS request/reply abstraction, JMS provides the basic 
facilities on which many can be built. 



28 Java Message Service —Version 1.1 April 12, 2002

2

For convenience, JMS defines request/reply helper classes (classes written 
using JMS) for both the PTP and Pub/Sub domains that implement a basic 
form of request/reply. JMS providers and clients may provide more specialized 
implementations.



75

 JMS Point-to-Point Model 5

5.1 Overview
Point-to-point systems are about working with queues of messages. They are 
point-to-point in that a client sends a message to a specific queue. Some PTP 
systems blur the distinction between PTP and Pub/Sub by providing system 
clients that automatically distribute messages.

It is common for a client to have all its messages delivered to a single queue.

Like any generic mailbox, a queue can contain a mixture of messages. And, like 
real mailboxes, creating and maintaining each queue is somewhat costly. Most 
queues are created administratively and are treated as static resources by their 
clients.

The JMS PTP model defines how a client works with queues: how it finds 
them, how it sends messages to them, and how it receives messages from them.

This chapter describes the semantics of the Point-to-Point model. A JMS 
provider that supports the Point-to-Point model must deliver the semantics 
described here.

Whether a JMS client program uses the PTP domain-specific interfaces, or the 
common interfaces that are described in Chapter 4, “JMS Common Facilities,” 
the client program must be guaranteed the same behavior.

Table 5-1 shows the interfaces that are specific to the PTP domain and the JMS 
common interfaces. The common interfaces are preferred for creating JMS 
application programs, because they are domain-independent.



76 Java Message Service -Version 1.1 April 12, 2002

5

Table 5-1 PTP Domain Interfaces and JMS Common Interfaces

5.2 Queue Management
JMS does not define facilities for creating, administering, or deleting long-lived 
queues (it does provide such a mechanism for TemporaryQueues). Since most 
clients use statically defined queues, this is not a problem.

5.3 Queue
A Queue object encapsulates a provider-specific queue name. It is the way a 
client specifies the identity of a queue to JMS methods. 

The actual length of time messages are held by a queue and the consequences 
of resource overflow are not defined by JMS.

See Section 4.2, “Administered Objects,” for more information about JMS 
Destination objects. 

5.4 TemporaryQueue
A TemporaryQueue is a unique Queue object created for the duration of a 
Connection or QueueConnection. It is a system-defined queue that can be 
consumed only by the Connection or QueueConnection that created it.

See Section 4.4.3, “Creating Temporary Destinations,” for more information.

PTP Domain Interfaces JMS Common Interfaces 
Preferred

QueueConnectionFactory ConnectionFactory

QueueConnection Connection

Queue Destination

QueueSession Session

QueueSender MessageProducer

QueueReceiver MessageConsumer



JMS Point-to-Point Model—April 12, 2002 77

5

5.5 QueueConnectionFactory
A client uses a QueueConnectionFactory to create QueueConnections with a JMS 
PTP provider. 

See Section 4.2, “Administered Objects,” for more information about JMS 
ConnectionFactory objects.

5.6 QueueConnection
A QueueConnection is an active connection to a JMS PTP provider. A client uses 
a QueueConnection to create one or more QueueSessions for producing and 
consuming messages.

See Section 4.3, “Connection,” for more information. 

5.7 QueueSession
A QueueSession provides methods for creating QueueReceivers, QueueSenders, 
QueueBrowsers, and TemporaryQueues.

If there are messages that have been received but not acknowledged when a 
QueueSession terminates, these messages must be retained and redelivered 
when a consumer next accesses the queue.

See Section 4.4, “Session,” for more information. 

5.8 QueueReceiver
A client uses a QueueReceiver for receiving messages that have been delivered 
to a queue.

Although it is possible to have two sessions with a QueueReceiver for the same 
queue, JMS does not define how messages are distributed between the 
QueueReceivers.

If a QueueReceiver specifies a message selector, the messages that are not 
selected remain on the queue. By definition, a message selector allows a 
QueueReceiver to skip messages. This means that when the skipped messages 
are eventually read, the total ordering of the reads does not retain the partial 
order defined by each message producer. Only QueueReceivers without a 
message selector will read messages in message producer order.



78 Java Message Service -Version 1.1 April 12, 2002

5

For more information, see Section 4.5, “MessageConsumer.” If 
MessageConsumer is consuming messages from a Queue, then it must behave as 
described here in Section 5.8, “QueueReceiver.”

A client uses a MessageProducer or QueueSender to send messages to a Queue.

For more information, see Section 4.6, “MessageProducer.”

5.9 QueueBrowser
A client uses a QueueBrowser to look at messages on a queue without removing 
them. A QueueBrowser can be created from a Session or a QueueSession.

The browse methods return a java.util.Enumeration that is used to scan the 
queue’s messages. It may be an enumeration of the entire content of a queue, 
or it may contain only the messages matching a message selector. 

Messages may be arriving and expiring while the scan is done. JMS does not 
require the content of an enumeration to be a static snapshot of queue content. 
Whether these changes are visible or not depends on the JMS provider.

5.10 QueueRequestor
JMS provides a QueueRequestor helper class to simplify making service 
requests. 

The QueueRequestor constructor is given a QueueSession and a destination 
queue. It creates a TemporaryQueue for the responses and provides a request 
method that sends the request message and waits for its reply.

This is a basic request/reply abstraction that should be sufficient for most uses. 
JMS providers and clients can create more sophisticated versions.

5.11 Reliability
A queue is typically created by an administrator and exists for a long time. It is 
always available to hold messages sent to it, whether or not the client that 
consumes its messages is active. For this reason, a client does not have to take 
any special precautions to insure that it does not miss messages.



79

 JMS Publish/Subscribe Model 6

6.1 Overview
The JMS Pub/Sub model defines how JMS clients publish messages to, and 
subscribe to messages from, a well-known node in a content-based hierarchy. 
JMS calls these nodes topics.

In this section, the terms publish and subscribe are used in place of the more 
generic terms produce and consume used previously.

A topic can be thought of as a mini message broker that gathers and distributes 
messages addressed to it. By relying on the topic as an intermediary, message 
publishers are kept independent of subscribers and vice versa. The topic 
automatically adapts as both publishers and subscribers come and go.

Publishers and subscribers are active when the Java objects that represent them 
exist. JMS also supports the optional durability of subscribers that ‘remembers’ 
the existence of them while they are inactive.

This chapter describes the semantics of the Publish/Subscribe model. A JMS 
provider that supports the Publish/Subscribe model must deliver the 
semantics described here.

Whether a JMS client program uses the Pub/Sub domain-specific interfaces, or 
the common interfaces that are described in Chapter 4, “JMS Common 
Facilities,” the clien program must be guaranteed the same behavior.



80 Java Message Service—Version 1.1 April 12, 2002

6

Table 6-1 shows the interfaces that are specific to the PTP domain and the JMS 
common interfaces. The common interfaces are preferred for creating JMS 
application programs, because they are domain-independent.

Table 6-1 Pub/Sub Domain Interfaces and JMS Common Interfaces

6.2 Pub/Sub Latency
Since there is typically some latency in all pub/sub systems, the exact 
messages seen by a subscriber may vary depending on how quickly a JMS 
provider propagates the existence of a new subscriber and the length of time a 
provider retains messages in transit.

For instance, some messages from a distant publisher may be missed because it 
may take a second for the existence of a new subscriber to be propagated 
system-wide. When a new subscriber is created, it may receive messages sent 
earlier because a provider may still have them available.

JMS does not define the exact semantics that apply during the interval when a 
pub/sub provider is adjusting to a new client. JMS semantics only apply once 
the provider has reached a ‘steady state’ with respect to a new client.

6.3 Durable Subscription
Nondurable subscriptions last for the lifetime of their subscriber object. This 
means that a client will only see the messages published on a topic while its 

Pub/Sub Domain interfaces JMS Common interfaces
Preferred

TopicConnectionFactory ConnectionFactory

TopicConnection Connection

Topic Destination

TopicSession Session

TopicPublisher MessageProducer

TopicSubscriber MessageConsumer



JMS Publish/Subscribe Model—April 12, 2002 81

6

subscriber is active. If the subscriber is not active, it is missing messages 
published on its topic. 

At the cost of higher overhead, a subscriber can be made durable. A durable 
subscriber registers a durable subscription with a unique identity that is retained 
by JMS. Subsequent subscriber objects with the same identity resume the 
subscription in the state it was left in by the prior subscriber. If there is no 
active subscriber for a durable subscription, JMS retains the subscription’s 
messages until they are received by the subscription or until they expire.

All JMS providers must be able to run JMS applications that dynamically create 
and delete durable subscriptions. Some JMS providers may, in addition, 
provide facilities to administratively configure durable subscriptions. If a 
durable subscription has been administratively configured, it is valid for it to 
silently override the subscription specified by the client.

An inactive durable subscription is one that exists but does not currently have a 
message consumer subscribed to it. 

6.4 Topic Management
Some products require that topics be statically defined with associated 
authorization control lists, and so on; others don’t even have the concept of 
topic administration.

JMS does not define facilities for creating, administering, or deleting topics. 

A special type of topic called a TemporaryTopic is provided for creating a Topic 
that is unique to a TopicConnection. See Section 6.6, “TemporaryTopic,” for more 
details.

6.5 Topic
A Topic object encapsulates a provider-specific topic name. It is the way a client 
specifies the identity of a topic to JMS methods. 

Many Pub/Sub providers group topics into hierarchies and provide various 
options for subscribing to parts of the hierarchy. JMS places no restrictions on 
what a Topic object represents. It might be a leaf in a topic hierarchy, or it might 
be a larger part of the hierarchy (for subscribing to a general class of 
information).



82 Java Message Service—Version 1.1 April 12, 2002

6

The organization of topics and the granularity of subscriptions to them is an 
important part of a Pub/Sub application’s architecture. JMS does not specify a 
policy for how this should be done. If an application takes advantage of a 
provider-specific topic grouping mechanism, it should document this. If the 
application is installed using a different provider, it is the job of the 
administrator to construct an equivalent topic architecture and create 
equivalent Topic objects.

6.6 TemporaryTopic
A TemporaryTopic is a unique Topic object created for the duration of a 
Connection or TopicConnection. It is a system-defined Topic that can be consumed 
only by the Connection or TopicConnection that created it.

By definition, it does not make sense to create a durable subscription to a 
temporary topic. To do this is a programming error that may or may not be 
detected by a JMS provider.

See Section 4.4.3, “Creating Temporary Destinations,” for more information.

6.7 TopicConnectionFactory
A client uses a TopicConnectionFactory to create TopicConnections with a JMS 
Pub/Sub provider. 

See Section 4.2, “Administered Objects,” for more information about JMS 
ConnectionFactory objects.

6.8 TopicConnection
A TopicConnection is an active connection to a JMS Pub/Sub provider. A client 
uses a TopicConnection to create one or more TopicSessions for producing and 
consuming messages.

See Section 4.3, “Connection,” for more information. 

6.9 TopicSession
A TopicSession provides methods for creating TopicPublishers, TopicSubscribers, 
and TemporaryTopics. It also provides the unsubscribe method for deleting its 
client’s durable subscriptions.



JMS Publish/Subscribe Model—April 12, 2002 83

6

If there are messages that have been received but not acknowledged when a 
TopicSession terminates, a durable TopicSubscriber must retain and redeliver 
them; a nondurable subscriber need not do so.

See Section 4.4, “Session,” for more information. 

6.10 TopicPublisher
A client uses a TopicPublisher for publishing messages on a topic. TopicPublisher 
is the Pub/Sub variant of a JMS MessageProducer. Messages can also be sent to 
a Topic using a MessageProducer. See Section 4.6, “MessageProducer,” for a 
description of its common features.

6.11 TopicSubscriber
A client uses a TopicSubscriber for receiving messages that have been published 
to a topic. TopicSubscriber is the Pub/Sub variant of a JMS MessageConsumer. For 
more information, see Section 4.5, “MessageConsumer.”

Ordinary TopicSubscribers are not durable. They only receive messages that are 
published while they are active.

Messages filtered out by a subscriber’s message selector will never be 
delivered to the subscriber. From the subscriber’s perspective, they simply 
don’t exist.

In some cases, a connection may both publish and subscribe to a topic. The 
subscriber NoLocal attribute allows a subscriber to inhibit the delivery of 
messages published by its own connection.

A TopicSession allows the creation of multiple TopicSubscribers per destination, it 
will deliver each message for a destination to each TopicSubscriber eligible to 
receive it. Each copy of the message is treated as a completely separate 
message. Work done on one copy has no effect on any other; acknowledging 
one does not acknowledge any other; one message may be delivered 
immediately, while another waits for its consumer to process messages ahead 
of it.

6.11.1  Durable TopicSubscriber

If a client needs to receive all the messages published on a topic, including the 
ones published while the subscriber is inactive, it uses a durable 



84 Java Message Service—Version 1.1 April 12, 2002

6

TopicSubscriber. A durable TopicSubscriber can be created by a Session or by a 
TopicSession. JMS retains a record of this durable subscription and insures that 
all messages from the Topic’s publishers are retained until either they are 
acknowledged by this durable subscriber or they have expired.

Sessions with durable subscribers must always provide the same client 
identifier. In addition, each client must specify a name that uniquely identifies 
(within client identifier) each durable subscription it creates. Only one session 
at a time can have a TopicSubscriber for a particular durable subscription. See 
Section 4.3.2, “Client Identifier,” for more information.

A client can change an existing durable subscription by creating a durable 
TopicSubscriber with the same name and a new topic and/or message selector, 
or NoLocal attribute. Changing a durable subscription is equivalent to deleting 
and recreating it.

Sessions and TopicSessions provide the unsubscribe method for deleting a durable 
subscription created by their client. This deletes the state being maintained on 
behalf of the subscriber by its provider. It is erroneous for a client to delete a 
durable subscription while it has an active TopicSubscriber for it or while a 
message received by it is part of a current transaction or has not been 
acknowledged in the session. 

6.12 Recovery and Redelivery
Unacknowledged messages of a nondurable subscriber should be able to be 
recovered for the lifetime of that nondurable subscriber. When a nondurable 
subscriber terminates, messages waiting for it will likely be dropped whether 
or not they have been acknowledged.

Only durable subscriptions are reliably able to recover unacknowledged 
messages.

Sending a message to a topic with a delivery mode of PERSISTENT does not 
alter this model of recovery and redelivery. To ensure delivery, a TopicSubscriber 
should establish a durable subscription.

6.13 Administering Subscriptions
Ideally, publishers and subscribers are dynamically registered by a provider 
when they are created. From the client viewpoint this is always the case. From 



JMS Publish/Subscribe Model—April 12, 2002 85

6

the administrator ’s viewpoint, other tasks may be needed to support the 
creation of publishers and subscribers.

The amount of resources allocated for message storage and the consequences 
of resource overflow are not defined by JMS.

6.14 TopicRequestor
JMS provides a TopicRequestor helper class to simplify making service requests. 

The TopicRequestor constructor is given a TopicSession and a destination topic. It 
creates a TemporaryTopic for the responses and provides a request() method that 
sends the request message and waits for its reply.

This is a basic request/reply abstraction that should be sufficient for most uses. 
JMS providers and clients are free to create more sophisticated versions.

6.15 Reliability
When all messages for a topic must be received, a durable subscriber should be 
used. JMS insures that messages published while a durable subscriber is 
inactive are retained by JMS and delivered when the subscriber subsequently 
becomes active.

Nondurable subscribers should be used only when missed messages are 
tolerable.

Table 6-2 Pub/Sub Reliability

How Published Nondurable Subscriber Durable Subscriber

NON_PERSISTENT at-most-once
(missed if inactive)

at-most-once

PERSISTENT once-and-only-once
 (missed if inactive)

once-and-only-once



86 Java Message Service—Version 1.1 April 12, 2002

6



99

 JMS Example Code 9

This chapter gives some code examples that show how a JMS client could use 
the JMS API. It also demonstrates how to use several message types. The 
examples use methods that support a unified messaging model: these 
examples work with either Point-to-Point or Publish/Subscribe messaging. 
This is the recommended approach to working with the JMS API. 

In earlier versions of the JMS Specification, only the separate interfaces for each 
messaging domain (Point-to-Point or Pub/Sub) were supported, and the client 
was programmed to use one messaging domain or the other. Now, the JMS 
client can be programmed using the JMS common interfaces. 

In the example program, a client application sends and receives stock quote 
information. The messages the client application receives are from a stock 
quote service that sends out stock quote messages. The stock quote service is 
not described in the example.

To simplify the example, no exception-handling code is included. 

This chapter describes the steps for creating the correct environment for 
sending and receiving a message.

After describing these basic functions, this chapter describes how to perform 
some other common functions, such as using message selectors.

9.1 Preparing to Send and Receive Messages
Here are the basic steps to establish a connection and prepare to send and 
receive messages.



100 Java Message Service—Version 1.1 April 12, 2002

9

• Get a ConnectionFactory and Destination
• Create a Connection and Session
• Create a MessageConsumer
• Create a MessageProducer

9.1.1  Getting a ConnectionFactory

Both the message producer and message consumer (the sender and receiver) 
need to get a ConnectionFactory and use it to set up both a Connection and a 
Session.

An administrator typically has created and configured a ConnectionFactory for 
the JMS client’s use. The client program typically uses the JNDI API to look up 
the ConnectionFactory. 

import javax.naming.*;
import javax.jms.*;

ConnectionFactory connectionFactory;

Context messaging = new InitialContext();
connectionFactory = (ConnectionFactory) 
    messaging.lookup("ConnectionFactory");

9.1.2  Getting a Destination

An administrator has created and configured a Queue named “StockSource” 
which is where stock quote messages are sent and received. Again, the 
destination can be looked up using the JNDI API.

Queue stockQueue;

stockQueue = (Queue)messaging.lookup("StockSource"); 

9.1.3  Creating a Connection

Having obtained the ConnectionFactory, the client program uses it to create a 
Connection.

Connection connection;

connection = ConnectionFactory.createConnection();



JMS Example Code—April 12, 2002 101

9

9.1.4  Creating a Session

Having obtained the Connection, the client program uses it to create a Session. 
The Session is used to create a MessageProducer (to send messages) or a 
MessageConsumer (to receive messages).

The Connection.createSession method takes two parameters:

• A boolean indicating whether this session is transacted or not

• The mode of acknowledging message receipt

Session session;

/* Session is not transacted, 
*  uses AUTO_ACKNOWLEDGE for message
*  acknowledgement
*/
session = connection.createSession(false,
    Session.AUTO_ACKNOWLEDGE);

9.1.5  Creating a MessageProducer

Having obtained the Session, the client program uses the Session to create a 
MessageProducer. The MessageProducer object is used to send messages to the 
destination. The MessageProducer is created by using the Session.createProducer 
method, supplying as a parameter the destination to which the messages are 
sent. 

MessageProducer sender;

/* Value in stockQueue previously looked up in the JNDI
*  createProducer takes a Destination
*/

sender = session.createProducer(stockQueue); 

9.1.6  Creating a MessageConsumer

Messages can be consumed either synchronously or asynchronously. This 
example shows how to create a message consumer that consumes messages 
synchronously. See Section 9.3.1, “Receiving Messages Asynchronously,” to 
learn more about consuming messages asynchronously.



102 Java Message Service—Version 1.1 April 12, 2002

9

A MessageConsumer is used to receive messages from the destination, which in 
this example is the Queue “StockQuote.” A MessageConsumer is created using 
the Session.createConsumer method, supplying one parameter, the destination 
from which messages are received.

MessageConsumer receiver;

/* Value in stockQueue previously looked up in the JNDI
*  createConsumer takes a Destination
*/

receiver = session.createConsumer(stockQueue);

9.1.7  Starting Message Delivery 

Up until this point, delivery of messages has been inhibited so that the 
preceding setup could be done without being interrupted with asynchronously 
delivered messages. Now that the setup is complete, the Connection is told to 
begin the delivery of messages to its MessageConsumer.

connection.start();

9.1.8  Using a TextMessage

There are several JMS Message formats. For this example, the stock quote 
information is sent as a text string that is read and displayed by the client.

The following demonstrates how to create such a message:

String        stockData;    /* Stock information as a string */
TextMessage  message;

/* Set the message’s text to be the stockData string */
message = session.createTextMessage();
message.setText(stockData);

9.2 Sending and Receiving Messages
Now that the setup of the Session is complete, you can send and receive 
messages. This section describes how to:

• Create a message
• Send a message



JMS Example Code—April 12, 2002 103

9

• Receive a message synchronously

9.2.1  Sending a Message

To send a message, use the MessageProducer.send method, supplying a Message 
object for the method’s parameter.

/* Send the message */
sender.send(message);

9.2.2  Receiving a Message Synchronously

To receive the next message in the Queue, you can use the 
MessageConsumer.receive method. This call blocks indefinitely until a message 
arrives on the Queue. The same method can be used to receive from a Topic.

TextMessage stockMessage;
stockMessage = (TextMessage)receiver.receive();

To limit the amount of time that the client blocks, use a timeout parameter with 
the receive method. If no messages arrive by the end of the timeout, then the 
receive method returns. The timeout parameter is expressed in milliseconds.

TextMessage stockMessage;

/* Wait 4 seconds for a message */
TextMessage = (TextMessage)receiver.receive(4000);

9.2.3  Unpacking a TextMessage

The stock quote information is sent using a TextMessage. To get the information 
from the message, use the TextMessage.getText method. It returns the message 
content as a string.

String newStockData;    /* Stock information as a string */

newStockData = message.getText();

9.3 Other Messaging Features
This section goes beyond basic messaging functions, and describes how to 
perform some other common messaging functions:



104 Java Message Service—Version 1.1 April 12, 2002

9

• Create an asynchronous MessageListener
• Use a message selector to filter message delivery
• Create a durable subscription to a Topic
• Re-connect to a Topic using a durable subscription

9.3.1  Receiving Messages Asynchronously

In order to receive message asynchronously as they are delivered to the 
message consumer, the client program needs to create a message listener that 
implements the MessageListener interface. An implementation of the 
MessageListener interface, called StockListener.java, might look like this:

import javax.jms.*;

public class StockListener implements MessageListener 
{

public void onMessage(Message message) {
 /* Unpack and handle the messages received */

...
}

 }

The client program registers the MessageListener object with the 
MessageConsumer object in the following way:

StockListener myListener = new StockListener();

/* Receiver is MessageConsumer object */
receiver.setMessageListener(myListener);

The Connection must be started for the message delivery to begin. The 
MessageListener is asynchronously notified whenever a message has been 
published to the Queue. This is done via the onMessage method in the 
MessageListener interface. It is up to the client to process the message there.



JMS Example Code—April 12, 2002 105

9

public void onMessage(Message message) 

{

String newStockData;

/* Unpack and handle the messages received */

newStockData = message.getText();
if(...)
{

 /* Logic related to the data */

}

}

9.3.2  Using Message Selection

A client program may be interested in receiving only certain stock quotes. A 
message selector can be used to achieve this goal. Message selectors work 
against properties that are assigned to the message.

In this example, the client program is only interested in technology related 
stocks. The sender of the messages assigns a value to a message property called 
StockSector. The values the sender assigns include “Technology”, “Financial”, 
“Manufacturing”, “Emerging”, and “Global”. The message sender  assigns 
these property values by using the Message.setStringProperty method.

String stockData;    /* Stock information as a String */
TextMessage message;

/* Set the message’s text to be the stockData string */

message = session.createTextMessage();
message.setText(stockData);

/* Set the message property ‘StockSector’ */
message.setStringProperty("StockSector", "Technology");

When the client program that receives the stock quote messages creates 
MessageConsumer is created, the client program can create a message selector 
string to determine which messages it will receive.



106 Java Message Service—Version 1.1 April 12, 2002

9

String selector;

selector = new String("(StockSector = ’Technology’)");

This string is specified when the MessageConsumer is created:

MessageConsumer receiver;
receiver = session.createConsumer(stockQueue, selector);

The client program receives only messages related to the Technology sector.

9.3.3  Using Durable Subscriptions

Durable subscriptions are used to receive messages from a Topic. When a JMS 
client creates a durable subscription, the client can later disconnect from the 
Topic. When the client program re-connects, it can receive the messages that 
arrived while it was disconnected. In this example, the Destination provides 
information about news updates.

9.3.3.1  Creating a Durable Subscription

The following example sets up durable subscription that gets messages from a 
Topic. First, the client program must perform the usual setup steps of looking 
up ConnectionFactory and a Destination, and creating a Connection and Session, 
as described in Section 9.1, “Preparing to Send and Receive Messages.”

import javax.naming.*;
import javax.jms.*;

/* Look up connection factory */
ConnectionFactory connectionFactory;
Context messaging = new InitialContext();
connectionFactory = 
(ConnectionFactory) Messaging.lookup("ConnectionFactory")

/* Look up destination */
Topic newsFeedTopic;
newsFeedTopic = messaging.lookup("BreakingNews");

/* Create connection and session */

Connection connection;
Session session;
connection = ConnectionFactory.createConnection();



JMS Example Code—April 12, 2002 107

9

session = connection.createSession(false,
    Session.AUTO_ACKNOWLEDGE);

Having performed the normal setup, the client program can now create a 
durable subscriber to the destination. To do this, the client program creates a 
durable TopicSubscriber, using session.CreateDurableSubscriber. The name 
mySubscription is used as an identifier of the durable subscription.

session.createDurableSubscriber(newsFeedTopic,"mySubscription");

At this point, the client program can start the connection and start to receive 
messages. 

9.3.3.2  Reconnecting to a Topic using a Durable Subscription

To re-connect to a Topic that has an existing durable subscription, the client 
program can simply call session.CreateDurableSubscriber again, using the same 
parameters that it previously used. A client program may be intermittently 
connected. Using durable subscriptions allows messages to still be available to 
a client program that consumes from a Topic, even though the client program 
was not continuously connected.

/* Reconnect to a durable subscription */
session.createDurableSubscriber(newsFeedTopic, "mySubscription");

This reconnects the client program to the Topic, and any messages that arrived 
while the client was disconnected are delivered. However, there are some 
important restrictions to be aware of:

• The client must be attached to the same Connection.
• The Destination and subscription name must be the same.
• If a message selector was specified, it must also be the same.

If these conditions are not met, then the durable subscription is deleted, and a 
new subscription is created.

9.4 JMS Message Types
There are five JMS message types. This section provides an example of how to 
create and unpack each of these types. In each example, the data sent in the 
message is stock-quote-related data. In all cases, the code that creates the actual 
content of the messages is omitted.



108 Java Message Service—Version 1.1 April 12, 2002

9

9.4.1  Creating a TextMessage

In this example, the stock quote information is sent as a TextMessage. A 
TextMessage carries the message as a text string that can be read by the client.

The following code demonstrates how to create such a message:

String        stockData;    /* Stock information as a string */
TextMessage  message;

message = session.createTextMessage();

/* Set the stockData string to the message body */

message.setText(stockData);

9.4.2  Unpacking a TextMessage

To unpack a TextMessage, the client uses the Message.getText method.

String stockInfo;    /* String to hold stock info */

stockInfo = message.getText();

9.4.3  Creating a BytesMessage

The stock quote information could be in a binary format that the server knows 
how to construct and that the client program knows how to interpret and 
display as a stock quote. This is sent as a BytesMessage.

Such a message can be constructed in the following way:

byte[]            stockData;     /* Stock information as a byte array */
BytesMessage  message;

message = session.createBytesMessage();
message.writeBytes(stockData);

9.4.4  Unpacking a BytesMessage

When the BytesMessage is received, it can be unpacked in the following 
manner:



JMS Example Code—April 12, 2002 109

9

byte[]      stockInfo; /* Byte array to hold stock information */
int       length;

length = message.readBytes(stockData);

The message body is copied to the byte array. The client program can then 
begin reading and interpreting the data.

9.4.5  Creating a MapMessage

Each stock message sent by the server could be a map of various stock quote 
name/value pairs, using a MapMessage. For example, it could contain entries 
for:

• Stock quote name - represented as a String
• Current value - represented as a double
• Time of quote - represented as a long
• Last change - represented as a double
• Stock information - represented as a String

To construct the MapMessage, the client program uses the various set method 
(setString, setLong, and so forth) that are associated with MapMessage, and sets 
each named value in the MapMessage. 

String stockName;     /* Name of the stock */
double stockValue;    /* Current value of the stock */
long   stockTime;      /* Time the stock quote was updated */
double stockDiff;     /* the +/- change in the stock quote*/
String stockInfo;     /* Other information on this stock */
MapMessage message;

message = session.createMapMessage();

Note that the following can be set in any order.

/* First parameter is the name of the map element, 
*  second is the value
*/

message.setString("Name",  "SUNW");
message.setDouble("Value", stockValue);
message.setLong("Time",    stockTime);
message.setDouble("Diff",  stockDiff);



110 Java Message Service—Version 1.1 April 12, 2002

9

message.setString("Info",  "Recent server announcement causes market
                 interest");

9.4.6  Unpacking a MapMessage

To unpack the MapMessage, the client program uses the various get methods 
associated with MapMessage to get the values in the named MapMessage 
elements. In the following example, the client program expects certain 
MapMessage elements.

String stockName;      /*Name of the stock */
double stockValue;     /* Current value of the stock */
long   stockTime;      /* Time of the stock update */
double stockDiff;      /* +/- change in the stock */
String stockInfo;      /* Information on this stock */

The data is retrieved from the message by using a get method and providing 
the name of the value desired. The elements from the MapMessage can be 
obtained in any order. 

stockName  = message.getString("Name");
stockDiff  = message.getDouble("Diff");
stockValue = message.getDouble("Value");
stockTime  = message.getLong("Time");

If a client program needs to get a list of the elements in a MapMessage, it can 
use the method MapMessage.getMapNames. 

9.4.7  Creating a StreamMessage

In a similar fashion to the MapMessage, an application could send a message 
consisting of various fields written in sequence to the message, each in their 
own primitive type. To do this, the would use a StreamMessage. Here’s the 
primitive types assigned to each item in the stock quote message.

• Stock quote name - String
• Current value - double
• Time of quote - long
• Last change - double
• Stock information - String



JMS Example Code—April 12, 2002 111

9

The client program might be interested in only some of the message fields, but 
in the case of a StreamMessage, the client has to read and potentially discard 
each field in turn.

In the following example, the values for each of the following has already been 
set.:

String stockName;      /* Name of the stock */
double stockValue;     /* Current value of the stock */
long   stockTime;      /* Time of the stock update */
double stockDiff;      /* +/- change in the stock quote */
String stockInfo;      /* Information on this stock*/
StreamMessage message;

/* Create message */
message = session.createStreamMessage();

The following elements have to be written to the StreamMessage in the order 
they will be read. Notice that they are not separately named properties, as in 
MapMessage.

/* Set data for message */
message.writeString(stockName);
message.writeDouble(stockValue); 
message.writeLong(stockTime); 
message.writeDouble(stockDiff); 
message.writeString(stockInfo); 

9.4.8  Unpacking a StreamMessage

The elements of a StreamMessage have to be read in the order they were 
written.

String stockName;      /* Name of the stock quote */
double stockValue;     /* Current value of the stock */
long   stockTime;      /* Time of the stock update */
double stockDiff;      /* +/- change in the stock quote */
String stockInfo;      /* Information on this stock */

stockName  = message.readString();
stockValue = message.readDouble();
stockTime  = message.readLong();
stockDiff  = message.readDouble();
stockInfo  = message.readString();



112 Java Message Service—Version 1.1 April 12, 2002

9

9.4.9  Creating an ObjectMessage

The stock information could be sent in the form of a special StockObject Java 
object. This object can then be sent as the body of a ObjectMessage. The 
ObjectMessage can be used to sent Java objects.

These values are set using methods that are unique to the StockObject 
implementation. For example, the StockObject may have methods that set the 
various data values. An application using StockObject might look like this:

String stockName;      /* Name of the stock quote */
double stockValue;     /* Current value of the stock */
long   stockTime;      /* Time of the stock update */
double stockDiff;      /* +/- change in the stock quote */
String stockInfo;      /* Information on this stock */

/* Create a StockObject */
StockObject stockObject = new StockObject();

/* Establish the values for the StockObject */

stockObject.setName(stockName); 
stockObject.setValue(stockValue); 
stockObject.setTime(stockTime); 
stockObject.setDiff(stockDiff); 
stockObject.setInfo(stockInfo);

To create an ObjectMessage, to pass the StockObject in the message, you would 
do the following:

/* Create an ObjectMessage */

ObjectMessage message;
message = session.createObjectMessage();

/* Set the body of the message to the StockObject */
message.setObject(stockObject);

9.4.10  Unpacking an ObjectMessage

To unpack an ObjectMessage, use the ObjectMessage.getObject method to get the 
object. Once the object is retrieved, the client program can use methods 
appropriate to that object type to retrieve data from the object.



JMS Example Code—April 12, 2002 113

9

StockObject stockObject;

/* Retrieve the StockObject from the message */
stockObject = (StockObject)message.getObject();

/* Extract data from the StockObject by using StockObject methods */

String stockName;      /* Name of the stock quote */
double stockValue;     /* Current value of the stock */
long   stockTime;      /* Time of the stock update */
double stockDiff;      /* +/- change in the stock quote */
String stockInfo;      /* Information on this stock */

stockName =  stockObject.getName();
stockValue = stockObject.getValue();
stockTime =  stockObject.getTime();
stockDiff =  stockObject.getDiff();
stockInfo =  stockObject.getInfo();




