Advancesin Distributed Branch and Bound

LarsOtten and Rina Dechter!

Abstract. We describe a distributed version of an advanced branch @ @
and bound algorithm over graphical models. The crucial issue of load
balancing is addressed by estimating subproblem complexity throug & @
learning, yielding impressive speedups on various hard problems us-
ing hundreds of parallel CPUs.

1 Introduction

Parallelizing search algorithms such as branch and bound pairg
allel tree searct{4], distributing conditioned subproblems to differ- Figure 1: Example problem graph (left) and possible parallel search
ent CPUs, is highly challenging. Large variance and therefore unspace with eight parallel subproblems (right).
predictability of subproblem complexities makes load balancing ex-
tremely elusive, which can be devastating to parallel performanceare processed in parallel. In our context we solve the resulting condi-
As documented in earlier work [9], this is particularly difficult for tioned subproblems using a grid of computers. Figure 1 demonstrates
advanced algorithms geared towards sequential execution that agigis concept on an example problem with six variables: conditioning
typically far from embarrassingly parallel. One such state-of-the-arpn 4 and B (in gray) yields eight independent subproblems.
algorithm is AND/OR Branch and Bound [8], which has been very The central decision in this parallelization scheme is clearly where
competitive in recent inference competiticns. to place theparallelization frontier which will determine the number
This paper reports on a new distributed version of AOBB runningand shape of the parallel jobs. To establish the best possible overall
on a computational grid (a set of autonomous, loosely connected sygerformance this choice needs to ensure effective load balancing, i.e

tems) using hundreds of CPUs — the only parallel search scheme ¥preading the parallel workload evenly across all available CPUs.
a general graphical model framework to date that we are aware of

([1] is related, but parallelizes variable elimination and only provides

simulated results). Our load balancing is based on a complexity es3 L oad Balancing for Distributed AOBB

timator learned offline from previously solved subproblems of the . L L)

same problem class. Preliminary results on a set of instances frofd first, natural choice for the parallelization frontier is a fixed depth

the domain of genetics are encouraging, in some cases reducing coﬁl'—';thebﬁond'tt'onmg sear(I:lh spﬁtcglthgtpegsulres a ngc'ﬁnt numbcta':_of
putation time from many days to less than an hour. subproblems 1o occupy all avariable S. In practice, however, this

is often detrimental: even when the underlying subgraph structure is
identical across subproblems, the size of the explored subproblem
2 Background search spaces rooted at the same ddpthfar from uniform due,

)) in large part, to the pruning power of AOBB. Thus often very few
AND/OR Branch and Bound (AOBB) is an adaptation of branch g, -oh1ems dominate the overall runtime (cf. results in Section 4).

and bound search to the framework of AND/OR search spaces pgyacting and mitigating these extreme cases requires more de-

over graphical models such as Bayegian net\(\{orks gr weighted C,OQéiIed knowledge about a subproblem beforehand, namely we aim to
straint satisfaction problem_s_. It explon_s conditional mdependgnme@stimate its complexity. Prior work in this area goes back to [6] and
throughproblem decon_1p05|_t|oand avoids redundant compu_tatlons more recently [5], which predict the size of general backtrack trees
via cachingof context-identical subproblems; worst-case time andy, o ,qh random probing. Similar schemes were devised for Branch
space complexity is exponential in the problem’s induced width [3], 5,4 Bound algorithms [2], where search is run for a limited time and
which can imply exponential savings over traditional search SPacegye partially explored tree is extrapolated. All of these, however, de-

A mi.ni .buc.ket heu.ristic Is used to provide upper bognds (assuming Pend to a large extent on a substantial sample of the (sub)problem in

maximization setting) on subproblem solutions which, together W'thquestion, which quickly becomes prohibitive in our setup with hun-

a lower bound from the current best solution maintained by the algog,4s if not thousands of subproblems to consider.

rithm, al!ovys prun!ng of unpromising parts of the search space [8],' Our key progress in load balancing is due to an offline learning
Our dlstrlbuteq implementation of AND/OR Branch and BOU“‘?‘ IS step similar in spirit to [7]: we collect a set of several thousand sam-

based on the notion glarallel tree searct], where a search tree is ple subproblems from past experiments, extract a number of feature

explored centrally up to a certain depth and the remaining subtreef%r each of them, and record their complexities using our AOBB al-

I University of California, Irvine {lotten,dechter@ics.uci.edu. Supported 901ithm. The features are structural (e.g., subproblem variabiet cou
in part by NSF grant 11S-0713118 and NIH grant 5SRO1HG00435-0 and induced width) as well as cost function-related (e.g., subprob-

2 cf. UAI' Inference Evaluation '10 and Pascal Inference Gévage '11 lem upper/lower bound). We apply statistical feature selection and

Number of CPUs 300
inst | nk w h[seq] 10 20 50 100 200 300 4¢

ped7 [1068 4 32 90 26:11]02:49 01:29 00:39 00:21 00:12 00:09 00
ped9 (1118 7 27 100 16:26/01:57 00:59 00:24 00:13 00:07 00:06 00
ped131077 3 32 102 28:4202:51 01:28 00:42 00:24 00:16 00:13 0O}
pedld 793 5 25 98105:1113:48 07:38 03:17 01:56 01:14 00:50 0O}
ped311183 5 30 85121:2512:43 06:38 02:43 01:23 00:43 00:31 00}
ped341160 5 31 102 12:34/02:05 00:54 00:24 00:13 00:08 00:06 00
ped411062 5 33 100 13:07/01:34 00:48 00:23 00:16 00:10 00:11 0O
ped44 811 4 25 65 26:5203:28 01:58 00:54 00:32 00:18 00:13 0O}
ped511152 5 39 98 46:1304:54 02:31 01:06 00:36 00:22 00:21 00} eSSt

Number of CPUs

N

%

=)
T

N

=]

o
T

—

o

o
T

Parallel speedup factor
=
w
o
T

u
=)
T

Figure 2: Parallel performance (left, times ih:mn) and corresponding parallel speedup (right) on nine pedigree irstéoicvarying number
of CPUs.seq is time of sequential AOBBg no. of problem variables; max. domain sizey induced width/ guiding pseudo tree height.

learn a linear regression model with subproblem log complexity as. oad balancing. Figure 3 compares the two alternative policies for
the target, to account for the exponential nature of the search. Th&ubproblem selection, fixed-depth (top) and using the complexity es-
resulting regression model can then be used by the parallel schentienates to build the frontier (bottom). We notice a handful of sub-
to very quickly compute complexity estimates; our policy is to iter- problems that clearly dominate overall performance for the fixed-
atively grow the frontier by splitting the (estimated) most complex depth frontier (note the log scale); using the regression estimates
subproblem, until the desired number of subproblems is obtained. avoids these extreme outliers, thereby reducing overall runtime by
over 40%. A number of other test cases exhibited similar behavior.

4 Experimental Results

We note that “perfect” load balancing is not attainable in practice5 Summary & Future Work

even if we had full prior knowledge of subproblem complexities (a We have presented a new distributed branch and bound scheme over
hard problem we aim to solve as well), since splitting a given sub-graphical models that works on hundreds of computers, to our knowl-
problem into its children often yields large jumps in complexity. This edge the first of its kind. The crucial issue of load balancing is ad-
also makes perfect, linear speedup elusive, which is further impededressed through offline learning of a complexity model, which has
by grid-induced overhead and delays. yielded impressive speedups on several hard problem instances.

Overall parallel performance. Figure 2 shows parallel performance O_ngoing and _future research di_rection; in_clude extending anc_i an-
and speedup on nine very hard pedigree instances (encoding gene"i’ilé(z'ng the quality of the complexity prediction as well as studying

haplotyping problems) for different number of CPUs. The hardestits applicability across problem domains. More generally we plan to

problems ped19 and ped31 in particular show impressive improvee_zvaluate the distributed scheme on a wider range of problems and

ments from 4.5 and 5 days, respectively, to under one hour each. Fngestigate how varying levels of parallelism impact performance.

easier problems the impact of the parallelization overhead is morgor_lnstancs, gll\)/leﬂl’ CPUs WE can generafsepl s_u_bprobleﬂws ':'_m_d .
pronounced and speedups level off somewnhat, as expected. assignk subpro lems to each processor, exp oiting stochasticity in
subproblem runtime for better load balancing.

pedigree4l, 50 CPUs, 64 subproblems, fixed depth d=5

4716 sec overall ® Subproblem runtimes REFERENCES
| [4704 max. job | H —— Overall runtime i

[1] David Allouche, Simon de Givry, and Thomas Schiex, ‘Towaparallel

—
o
ES

8 " = non serial dynamic programming for solving hard weighted C8P’,
_g 10 b e S lligiimeggiiiiL . Principles and Practice of Constraint Programming (CE)010).
5 Y e ° . o o o .o “e.o .o [2] Gérard Corngjols, Miroslav Karamanov, and Yanjun Li, ‘Early esti-
ERNR ° ®4000% °, mates of the size of branch-and-bound treéSFFORMS Journal on
B A gt i St G DU [® Computing 18(1), 86-96, (2006).
""""""""""""""""" o -ie%® [3] Rina Dechter and Robert Mateescu, ‘AND/OR search speregraph-
o | [Mean: 267 Avg: 793.3 Stdv: 1339.6] ‘ ‘ ical models’ Artif. Intell., 171(2-3), 73-106, (2007).
0 10 202 s 50 60 [4] Ananth Grama and Vipin Kumar, ‘State of the art in paralledisch tech-
pedigr§e41, 50 QPUs, 64 ;ubproblerps, regres‘sion-base‘d Elr?gejs_lf(?_; (ggct??ée(({ggg])lzatlon PropIemeEEE Trans. fnowl. Data

e Zprn,),ble";- runcimes [5] Philip Kilby, John Slaney, Sylvie Tibaux, and Toby Walsh, ‘Estimat-
F o8 1 ' vera” untme ; ing search tree size’, iNational Conference on Atrtificial Intelligence

(AAAI), (20086).

—
o
ES

N

g W F ‘_-; AT PR YS! S a———— [6] Donald E. Knuth, ‘Estimating the efficiency of backtrackograms’,
A O O R e . %o I w, ® ° Mathematics of Computatio@9(129), 121-136, (1975).

2 r- R SRR L Rl ° R -~ [7] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham, ‘Emp
Y el e Rl Bl e - 8- - -

r i : ; ; y cal hardness models: Methodology and a case study on comf@hato
auctions’, Journal of the ACM56(4), 1-52, (2009).

—
S}

.| Mean: 517 Avg: 8039 Stdv: 645.3] [8] Radu Marinescu and Rina Dechter, ‘AND/OR Branch-andxBisearch
1075 10 20 30 20 50 60 for combinatorial optimization in graphical modelsArtif. Intell.,
Subproblems 173(16-17), 1457—1491, (2009)

Figure 3: Subproblem statistics for fixed-depth (top) and regression!®] 'i-na'gsrg;?:a?rr‘goggl‘g Diﬁﬁ?é?r:'a ggf‘:‘ﬁgﬁ/ﬁggﬂ:E'rnsiiri‘r’mmlz?éitoe“i
based frontier (bottom). Dashed lines: 0, 20, 80 and 100 percentile. gence and Mathematics (ISAIMR010).

