IEEE INFOCOM 2001

Tutorial T5

Video Over IP

Magda El-Zarki (University of California at Irvine)

Monday, 23 April, 2001 - Morning
MPEG-4 over IP - Part 1

Magda El Zarki
Dept. of ICS
UC, Irvine
elzarki@uci.edu
Outline of Tutorial

1. Part 1:
 1. Overview of Video Compression
 2. The MPEG suite
 3. Video Quality

2. Part 2:
 1. MPEG-4

3. Part 3:
 1. MPEG-4 Delivery over IP
 2. Conclusions
1. Video Compression: Goal

- Goal of video compression is to minimize the bit rate in the digital representation of the video signal while:
 - Maintaining required levels of signal quality
 - Minimizing the complexity of the codec
 - Containing the delay
1. Video Compression: Tradeoffs

- The choice of a compression method involves a tradeoff along the following 4 dimensions:

 - **Signal Quality** (PSNR, MOS, etc.)
 - **Efficiency** (bpp, bpf, etc.)
 - **Complexity** (MIPs, memory, etc.)
 - **Coding delay**
1. Video Compression: Why?

- Video signals are amenable to compression due to the following factors:
 - Spatial correlation: correlation among neighboring pixels
 - Spectral correlation: color images
 - Temporal correlation: correlation among pixels in different frames
- There is considerable irrelevant (from a perceptual viewpoint) information contained in video data.
1. Video Compression: Lossless Coding

- Lossless coding is a reversible process - perfect recovery of data -> before and after are identical in value. Used regardless of media’s specific characteristics. Low compression ratios.
 - Example: Entropy Coding
 - data taken as a simple digital sequence
 - decompression process regenerates data completely
 - e.g. run-length coding (RLC), Huffman coding, Arithmetic coding
1. Video Compression: Lossy Coding

- Lossy coding is an irreversible process - recovered data is degraded -> the reconstructed video is numerically not identical to the original. Takes into account the semantics of the data. Quality is dependent on the compression method and the compression ratio.
 - Example: Source Coding
 - degree of compression depends on data content.
 - E.g. content prediction technique - DPCM, delta modulation
1. Video Compression: Hybrid Coding

• Used by most multimedia systems
 – combines entropy with source encoding
 – E.g. JPEG, H.263, MPEG-1, MPEG-2, MPEG-4
1. Video Compression: Degree/Ratio

- The degree of compression achieved depends on the quality of the input data:
 - Acquisition noise (timing jitters, poor A/D, etc.)
 - Sampling (affects spatial and temporal correlation)
 - Bits per pixel
1. Video Compression: Design Choices

- Lossless or lossy or both
- Compression ratio
- Variability in compression ratio (fixed or variable)
- Resilience to transmission errors
- Complexity tradeoffs in codec
- Nature of degradations
- Hierarchical representation
1. Video Compression: Spatial - Block Coding

- Image is decomposed into blocks of 8x8 pixels.
- Pixel values range between 0 - 255 (8 bits per pixel). These values are shifted to -128 - 127 (centered around zero).
- Discrete Cosine Transform (DCT) maps the spatial data to the frequency domain (64 coefficients). The (0,0) coeff. represents the DC value.
- The DCT coefficients are then quantized (Q= 1 - 255) to reduce their spread (essentially zeroing out the higher frequencies).
1. Video Compression: Block -> Vector

- A zigzag pattern is then used to scan the block to create a 64 element vector in preparation for entropy coding.
1. Video Compression: Run Length Coding

- Run Length Coding (RLC) replaces the sequence of same consecutive bytes with the number of occurrences.
- Variation - Zero Suppression: Used to encode long binary bit strings containing mostly zeros.
 - Each k-bit symbol tells how many 0’s occurred between consecutive 1’s.
 - e.g. 0000000 - max. runs of zeros to be encoded is 7.
 - xxx (3 bit symbol)
 - e.g. 000100000001101 (using 3 bit symbol)
 - 011 111 000 001 (3-7-0-1 zeros between 1s)
1. Video Compression: Temporal - Macro Blocks

• 16x16 pixels (2x2 blocks) are used as the basic unit for motion prediction - matches based on macro-blocks

• Search window can be any size - larger window better motion estimation but higher computation cost (longer delays)
1. Video Compression - Standards

- Broadcast (high bit rate):
 - MPEG-1
 - MPEG-2

- Video Conferencing (low bit rate):
 - H.261
 - H.263

- Interactive (full range of bit rates):
 - MPEG-4
1. Video Compression: H.261

- Designed for video phone and video conference over ISDN
- Bit rate: n x 64kbps, n∈[1,30]
- QCIF (172x144), CIF (352x288)
- Coding Scheme
 - DCT based compression to reduce spatial redundancy (similar to JPEG)
 - Block based motion compensation to reduce temporal redundancy
1. Video Compression: H.263

- Designed for low bitrate video applications
- Bit rate: 10 ~ 384kbps
- SQCIF (128x96) ~ 16CIF (1408x1152)
- Coding similar to H.261 but more efficient
1. Video Compression: H.261 vs. H.263

<table>
<thead>
<tr>
<th>Picture format</th>
<th>Luminance pixels</th>
<th>Luminance lines</th>
<th>H.261 support</th>
<th>H.263 support</th>
<th>Uncompressed bitrate (Mbit/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 frames/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grey</td>
</tr>
<tr>
<td>SQ CIF</td>
<td>128</td>
<td>96</td>
<td>Yes</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>QCIF</td>
<td>176</td>
<td>144</td>
<td>Yes</td>
<td>Yes</td>
<td>2.0</td>
</tr>
<tr>
<td>CIF</td>
<td>352</td>
<td>288</td>
<td>Optional</td>
<td>Optional</td>
<td>8.1</td>
</tr>
<tr>
<td>4CIF</td>
<td>704</td>
<td>576</td>
<td>Optional</td>
<td></td>
<td>32.4</td>
</tr>
<tr>
<td>16CIF</td>
<td>1408</td>
<td>1152</td>
<td>Optional</td>
<td></td>
<td>129.8</td>
</tr>
</tbody>
</table>
1. Video Compression: MPEG-1

- Designed for storage/retrieval of VHS quality video on CD-ROM
- Bit rate: ~1.5Mbps
- Similar Coding scheme to H.261 with:
 - Random access support
 - Fast forward/backward support
1. Video Compression: MPEG-1 vs H.261

<table>
<thead>
<tr>
<th></th>
<th>MPEG</th>
<th>H.261</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>CIF and higher resolution</td>
<td>QCIF & CIF</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>Variable image aspect ratio defined in header</td>
<td>Fixed 4:3</td>
</tr>
<tr>
<td>GOP</td>
<td>Use GOP</td>
<td>No GOP</td>
</tr>
<tr>
<td>Macro-blocks</td>
<td>I,P and B macro-blocks</td>
<td>No B macro-blocks</td>
</tr>
<tr>
<td>Bitrate</td>
<td>Typically 1.1Mbps</td>
<td>Typically 384kbps</td>
</tr>
<tr>
<td>Skipped</td>
<td>No restrictions on skipped picture</td>
<td>Only 1, 2, or 3 skipped pictures allowed</td>
</tr>
<tr>
<td>Motion</td>
<td>Sub pixel motion vector</td>
<td>Pixel accurate motion vector</td>
</tr>
<tr>
<td>Vector Range</td>
<td>Motion vector range ±15 pixels</td>
<td>Motion vector range ±7 pixels</td>
</tr>
<tr>
<td>Delay</td>
<td>coding delay is not critical</td>
<td>End-to-end delay is very critical</td>
</tr>
</tbody>
</table>
1. Video Compression: MPEG-2

- Designed for broadcast quality video storage and transport
- HDTV support
- Bit rate: 2Mbps or higher (CBR/VBR)
- Two system bit streams: Packet Stream & Transport Stream
- Used for:
 - DVD
 - DirecTV
 - Digital CATV
1. Video Compression: Deficiencies of existing standards

- Designed for specific usage
 - H.263 cannot be stored (no random access)
 - MPEG-1 & MPEG-2: not optimized for IP transport
- No universal file format for both local storage and network streaming
- Output cannot be reused efficiently after composition - encoded once, no versatility
1. Video Compression: Requirements for New Standard

- Efficient coding scheme
 - Code once, use and reuse everywhere
 - Optimized for both local access and network streaming
- Works well in both error prone and error free environment
 - Scalable for different bandwidth usage
 - Video format can be changed on the fly
 - Transparent to underlying transport network
- Support efficient interactivity over network
1. Video Compression: The solution: MPEG-4

- Internet in the future
 - Not only text and graphics, but also audio and video
- Fast and versatile interactivity
 - Zoom in, zoom out (remote monitoring)
 - Fast forward and fast backward (video on demand)
 - Change viewing point (online shopping, sports)
 - Trigger a series of events (distance learning)
 - On the fly composition
 - Virtual environments
- Support both low bandwidth connections (wireless/mobile) and high bit rates (fixed/wireline)
1. Video Compression: What is MPEG-4

“A coded, streamable representation of audio-visual objects and their associated time-variant data along with a description of how they are combined.”
2. MPEG: Overview

- MPEG exploits temporal (i.e. frame-to-frame) redundancy present in all video sequences.
- Two Categories: intra-frame and inter-frame encoding
 - Intra: DCT based compression for the reduction of spatial redundancy
 - Inter: Block-based motion compensation for exploiting temporal redundancy
 - Causal (predictive coding) - current picture is modeled as transformation of picture at some previous time
 - Non-causal (interpolative coding) - uses past and future picture reference
2. MPEG: Motion Representation

- Predictive and interpolative coding
 - Good compression but requires storage
 - Often makes sense for parts of an image and not the whole image.
- Each image is divided into areas called macro-blocks (motion compensation units)
 - Choice of macro-block size is a tradeoff between gain from motion compensation and cost of motion estimation.
 - In MPEG, each macro-block is partitioned into 16x16 pixels for luminance and 8x8 for each of the chrominance components.
2. MPEG: Video Processing

- MPEG stream includes 3 types of image coding:
 - I-frames - Intra-coded frames - access points for random access, yields moderate compression
 - P-frames - Predictive-coded frames - encoded with reference to a previous I or P frame.
 - B-frames - Bi-directionally predictive coded frames - encoded using previous/next I and P frame, maximum compression

- Motivation for types of frames
 - Fast random access
 - More efficient coding scheme
 - temporal redundancies of both previous and subsequent pictures must be exploited
2. MPEG: Stream Components
2. MPEG: Video Decoding

- Using B-frames, the order of images in a MPEG-coded stream differs from the actual decoding order.

<table>
<thead>
<tr>
<th>Display Order</th>
<th>Decoding Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of frame: B B I B B P B B P</td>
<td>Type of frame: I B B P B B P B B</td>
</tr>
<tr>
<td>Frame Number: 0 1 2 3 4 5 6 7 8</td>
<td>Frame Number: 2 0 1 5 3 4 8 6 7</td>
</tr>
</tbody>
</table>
2. MPEG: I-Frames

- I-frames (intra-coded images) are self-contained without any references to other images -> can be treated as still images.
- Need efficient compression scheme
 - Compression must be executed in real-time -> compression of individual frames must occur within a requested time interval.
- As only spatial compression is used -> low compression ratio when compared to other MPEG frames
- I-frames are points for random-access in an MPEG stream.
2. MPEG: Compression for I-frames

- Use 8x8 blocks defined within a macro-block
 - Perform DCT on these blocks
 - Quantization is done by a constant value for all DCT coefficients.
2. MPEG: P-frames

- P-frames (Predictive Coded Frames)
 - require information of the previous I-frame and/or previous P-frames for encoding and decoding.
- Motion estimation method at encoder:
 - Methods that are computation intensive often give better results. Tradeoff b/w cost and video quality.
 - MPEG does not specify a motion estimation method, it specifies the coding of the result.
2. MPEG: Compression for P-frames

Encode:
(a) motion vector - difference in spatial location of macroblocks
(b) Small difference in content of the macro-blocks

Reference image (previous image)

Motion vector

Difference

Huffman Code

01001100

Infocom 2001
VIP - Magda El Zarki
I.35
2. MPEG: Motion Computation for P-frames

• Look for match window within search window
 – Match window corresponds to macro-block
 – Search window corresponds to arbitrary window size
 – Larger search window, better motion estimation
2. MPEG: Matching Methods

• Matching methods
 – SSD (Sum of squared differences)
 • SSD = \(\sum_i (x_i - y_i)^2 \):
 – subtract pixel by pixel
 – square the residuals
 – sum them
 – find minimal SSD correlation among matching windows.
 – SAD (Sum of absolute differences)
 • SAD = \(\sum_i |x_i - y_i| \)
 – correlation is absolute value of residuals
 – Can deal with outliers - In SSD, one bad point gives large
difference which skews the decision of picking correct match
windows.
2. MPEG: Finding minimal SSD

\[
\begin{align*}
8 & \ 7 & \ 9 \\
6 & \ 5 & \ 4 \\
10 & \ 7 & \ 1 \\
7 & \ 9 & \ 8 \\
5 & \ 4 & \ 6 \\
9 & \ 8 & \ 2 \\
\end{align*}
\]

versus

\[
\begin{align*}
7 & \ 9 & \ 9 \\
7 & \ 5 & \ 4 \\
7 & \ 5 & \ 4 \\
7 & \ 9 & \ 8 \\
5 & \ 4 & \ 6 \\
9 & \ 8 & \ 2 \\
\end{align*}
\]

\[
SSD = (7-8)^2 + (9-7)^2 + (8-9)^2 + (5-7)^2 + (4-5)^2 + (6-4)^2 + (9-7)^2 + (8-5)^2 + (2-4)^2
\]

\[1+4+1+4+1+4+9+4 = 32\]

SSD = 32

\[
\begin{align*}
8 & \ 7 & \ 10 \\
6 & \ 5 & \ 4 \\
10 & \ 7 & \ 1 \\
7 & \ 9 & \ 8 \\
5 & \ 4 & \ 6 \\
9 & \ 8 & \ 2 \\
\end{align*}
\]

versus

\[
\begin{align*}
8 & \ 7 & \ 9 \\
7 & \ 5 & \ 4 \\
7 & \ 5 & \ 4 \\
7 & \ 9 & \ 8 \\
5 & \ 4 & \ 6 \\
9 & \ 8 & \ 2 \\
\end{align*}
\]

SSD = 18

Min SSD = 18

Take match windows

\[
\begin{align*}
7 & \ 9 & \ 8 \\
5 & \ 4 & \ 6 \\
9 & \ 8 & \ 2 \\
\end{align*}
\]

versus

\[
\begin{align*}
8 & \ 7 & \ 10 \\
6 & \ 5 & \ 4 \\
10 & \ 7 & \ 1 \\
\end{align*}
\]
2. MPEG: Comparing SAD and SSD

SSD:

\[
\begin{align*}
 \begin{array}{ccc}
 7 & 9 & 8 \\
 5 & 4 & 6 \\
 9 & 8 & 2 \\
 \end{array}
 & \text{versus} &
 \begin{array}{ccc}
 8 & 7 & 10 \\
 6 & 5 & 4 \\
 10 & 7 & 1 \\
 \end{array}
 & \rightarrow \text{SSD} = 18 \\

 \begin{array}{ccc}
 7 & 9 & 8 \\
 5 & 4 & 6 \\
 9 & 8 & 2 \\
 \end{array}
 & \text{versus} &
 \begin{array}{ccc}
 8 & 7 & 10 \\
 6 & 5 & 4 \\
 10 & 7 & 202 \\
 \end{array}
 & \rightarrow \text{SSD} = 40,017
\end{align*}
\]

SAD:

\[
\begin{align*}
 \begin{array}{ccc}
 7 & 9 & 8 \\
 5 & 4 & 6 \\
 9 & 8 & 2 \\
 \end{array}
 & \text{versus} &
 \begin{array}{ccc}
 8 & 7 & 10 \\
 6 & 5 & 4 \\
 10 & 7 & 202 \\
 \end{array}
 & \rightarrow \text{SAD} = 211
\end{align*}
\]
2. MPEG: Video Processing of P-frames

- Apply 2D DCT to macro-blocks not reduced by motion compensation.
- Motion vector of adjacent macro blocks often differs slightly, hence apply DPCM.
 - Maximum size of motion vector not defined in standard.
- P-frames consist of I-frame macro blocks and predictive macro-blocks.
- P-frames are quantized and entropy encoded using run length coding.
2. MPEG: B frames

- B-frames (Bidirectionally predictive coded frames)
 - requires information of previous and following I and/or P frame

\[
\text{Past reference} \quad \begin{array}{c}
\text{motion vectors} \\
(\text{two})
\end{array} \quad \begin{array}{c}
\text{target} \\
\text{DCT + Quant + RLC}
\end{array} \quad \begin{array}{c}
\text{future reference}
\end{array}
\]

\[
- \left[\frac{1}{2} \times \left(+ \right) \right] = 000111010\ldots
\]

Huffman Code
2. MPEG: Variable Quantization

- AC coefficients of B and P-frames are usually large
- I-frames have smaller values
- MPEG quantization is adjusted as follows:
 - If data rate increases over threshold, then quantization enlarges the step size
 - If data rate decreases, then quantization is performed with finer granularity
2. MPEG: System Data Stream

- Video Stream is interleaved with audio.
- Video Stream consists of 6 layers
 - Sequence layer
 - Group of pictures layer
 - Video Param - width, height, aspect ratio, picture rate
 - Bitstream Param - bitrate, bufsize
 - QT - intracoded blocks, intercoded blocks
 - Picture layer
 - Time code - hours, minutes, seconds
 - Slice layer
 - Type - I, P, B
 - Buffer Param - decoder’s bufsize
 - Encode Param - indicates info about motion vectors
 - Macro-block layer
 - Vertical Position - what line does this slice start on?
 - Qscale - how is the quantization table scaled in this slice?
- Block layer
2. MPEG: Video Data Stream

Sequence Layer

<table>
<thead>
<tr>
<th>Seq</th>
<th>Seq</th>
<th>Seq</th>
<th>...</th>
<th>Seq</th>
</tr>
</thead>
</table>

GOP Layer

<table>
<thead>
<tr>
<th>Seq</th>
<th>Video Bitstream</th>
<th>QT, misc</th>
<th>GOP</th>
<th>...</th>
<th>GOP</th>
</tr>
</thead>
</table>

Picture Layer

<table>
<thead>
<tr>
<th>GOP</th>
<th>Time Code</th>
<th>GOP Param</th>
<th>Pict</th>
<th>...</th>
<th>Pict</th>
</tr>
</thead>
</table>

Slice Layer

<table>
<thead>
<tr>
<th>PSC</th>
<th>Type</th>
<th>Buffer Param</th>
<th>Encode Param</th>
<th>Slice</th>
<th>...</th>
<th>Slice</th>
</tr>
</thead>
</table>

Macro-block Layer

<table>
<thead>
<tr>
<th>SSC</th>
<th>Vert Pos</th>
<th>QScale</th>
<th>MB</th>
<th>...</th>
<th>MB</th>
</tr>
</thead>
</table>

Block Layer

<table>
<thead>
<tr>
<th>Addr</th>
<th>Type</th>
<th>Motion Vector</th>
<th>QScale</th>
<th>CBP</th>
<th>b0</th>
<th>...</th>
<th>b5</th>
</tr>
</thead>
</table>

Infocom 2001 VIP - Magda El Zarki 1.44
3. Quality

- What is video quality?
 - Generally judged using PSNR
 - Easy to compute
 - BUT
 - Not a good estimate of quality
 - New objective quality measurements
 - Hard to compute
 - BUT
 - More accurate
3. Quality: Assessment Techniques

- Traditional Objective Assessment - Peak Signal to Noise Ratio (PSNR)
- Subjective Assessment – DSCQS (Double Stimulus Continuous Quality Scale)
- Perceptual Objective Assessment -
 - Human visual perception based
 - Capturing image imperfections
3. Quality: Peak Signal to Noise Ratio

- For a video sequence of K frames of NxM dimension with 8 bit depth:

\[
\text{PSNR} = 10 \times \log_{10} \left(\frac{255^2}{\sum_{i,j,k} |x_{ij,k} - \hat{x}_{ij,k}|^2} \right)
\]
3. Quality: Advantages of PSNR

- Very easy to compute
- Well understood by most researchers
- Results are close to DSCQS but they do not translate accurately to human perception
3. Quality: Disadvantages of PSNR

Some reconstructed images with different errors have the same PSNR values.
3. Quality: Subjective Assessment: DSCQS

- Source (A) and Processed (B) video clips are presented in pairs.
- The video presentation sequences are randomized.
3. Quality: DSCQS scoring

- Viewers grade each clip’s quality
- Data is gathered in pairs

<table>
<thead>
<tr>
<th>Excellent</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
</tr>
</thead>
</table>

A | B |
3. Quality: Issues with DSCQS

- Until now the most reliable quality measurement method
- Requires special viewing room and equipment
- Needs a large group of people
- Large amount of post processing on data
3. Quality: Objective Assessment (OA)

- Establish a good quality assessment model
- The model takes as inputs the source and the processed video clips.
- Compare the model output to DSCQS test score
- If the result is consistent with DSCQS measurement, the model can substitute DSCQS
3. Quality: OA Requirements

- Ability to predict subjective quality with low error
- Predictions agree monotonically with the relative magnitudes of subjective quality ratings
- Prediction is robust with respect to a variety of video impairments
3. Design: OA Models - 2 approaches

1. Establish a model that simulates the human visual stimulation

2. Find the relationship between measurable parameters and perceptual distortion (blurring, tiling, noise)
3. Quality: EPFL model
3. Quality: Issues related to EPFL Model

- **Advantages:**
 - Considers both luminance and chrominance
 - Very high correlation with DSCQS for some video sequences

- **Disadvantages:**
 - Not capable of in-service evaluation
 - Not consistent over all video bit rate ranges
 - Computationally complex
3. Quality: ITS Model

- Institute for Telecommunication Studies (ITS) were the first group to propose an objective measure several years ago.
- They have since refined (or fine tuned) the model to capture more of the image imperfections.
- They map image imperfections onto measurable mathematical parameters.
3. Quality: Perceptual Impairment Factor Vs. A Measurable Parameter

<table>
<thead>
<tr>
<th>Quality Factor</th>
<th>Measurable Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image blur</td>
<td>Step response rise time</td>
</tr>
<tr>
<td>Perceptual Impairment</td>
<td>Granular noise</td>
</tr>
<tr>
<td>Factor</td>
<td>False contouring</td>
</tr>
<tr>
<td></td>
<td>Sp-p to minimum</td>
</tr>
<tr>
<td></td>
<td>Quantizing p-p</td>
</tr>
<tr>
<td></td>
<td>Equivalent analog signal SNR</td>
</tr>
<tr>
<td></td>
<td>Dirty Window</td>
</tr>
<tr>
<td></td>
<td>Maximum noise amplitude</td>
</tr>
<tr>
<td></td>
<td>Rise time of a moving edge</td>
</tr>
<tr>
<td></td>
<td>Jerkiness</td>
</tr>
<tr>
<td></td>
<td>Field or frame difference in</td>
</tr>
<tr>
<td></td>
<td>terms of moving edge position</td>
</tr>
</tbody>
</table>
3. Quality: Perceptual Impairment Factor

a) Original, b) Blur, c) Tiling, d) Noise
3. Quality: ITS Algorithm
3. Quality: Advantages of ITS Model

- Works well for a wide range of bit rates
- Produces results that are consistent with subjective tests (DSCQS)
- Computationally efficient
- Bandwidth efficient (384:1)
- In service quality monitoring
3. Quality: Disadvantages of ITS Model

- Based on no visual model (vs. EPFL)
- Only considers luminance value
3. Quality: Video Quality Experts Group (VQEG)

• Several models have been under evaluation
• Tested video bit rate from 768 kbps to 50Mbps (4:2:0 - 4:2:2 MPEG-2)
• Both NTSC and PAL signals tested
• Viewing Distance limit to 6:1
• Carefully calibrated and aligned display equipment
3. Quality: DSCQS vs ITS
3. Quality: Conclusions

- All models have strengths and weaknesses, not one can substitute DSCQS
- Some display fairly consistent behavior for different video resources