Outline of Tutorial

1. Part 1:
 1. Overview of Video Compression
 2. The MPEG suite
 3. Video Quality

2. Part 2:
 1. MPEG-4

3. Part 3:
 1. MPEG-4 Delivery over IP

4. Conclusions
MPEG-4

- 1999-2000: MPEG-4 Standard
 - Flexible Multimedia Communications
 - 5kbps - 50Mbps
 - Video object Compression
 - Audio object compression
 - Synthetic Audio/Speech and Video
 - Systems: multiplexing and flexible composition
MPEG-4 Goal

• To become THE standard for streaming AV media on the Internet and wireless networks
 – Better Audio/Video compression
 – Robustness against packet loss
 – Scalability of bit rate vs. quality
What’s new in MPEG-4

• Content-based Interactivity
 – Does not deem video frame as a whole anymore
 – Code each Audio-Visual (AV) object (AVO) into independent stream
 – More freedom to flexibly interact with what is within scenes

• Support integration of natural and synthetic AV media (“Virtual Playground”)

• Universal Access
 – Robust, independent of environment
 – Content-based scalability based on client’s request
 – Dynamically adaptive to available network bandwidth
Audio-Visual Objects (AVOs)

- Natural video sequence with/without shape information
- General 3D animation
- Still image
- Natural audio
- Structured Audio such as MIDI
- Text to speech (TTS)
Pros of Content based Coding

• Improves reusability and coding efficiency of individual components
 – Apply different coding algorithms on different AVOs
• Allows content-based scalability
 – High resolution only on interesting part
 – Streaming object, pre downloaded object and local object can work together
 – Object based QoS support
Integration of Natural and Synthetic Content
Augmented Reality
Tele Presence
Scene-Composition

• A ‘compositor’ composes objects in a scene (A&V, 2&3D) creating a composite scene
• A scene description defines how AVOs appear on End User screen (composition view)
• With the scene description an End User can
 – change the position of individual video object
 – Zoom in/out interesting object
 – Choose different audio track (language, music)
 – Turn on/off individual object

• *Binary Format for Scene Description : ‘BIFS’*
AVO Scene Composition

Speech

Video Object

2D Background

AV Presentation

3D Furniture
Composition of Scenes

- Person
 - Speech
 - Video
- 2D Background
- Furniture
 - Globe
 - Table
- Audio-visual Presentation

Infocom 2001 VIP - Magda El Zarki II.14
MPEG-4 Streams

- Scene Description Stream
- Object Descriptor Stream
- Visual Streams
- Audio Stream
- Interactive Scene Description
MPEG-4 Standard

- Part 1: System
- Part 2: Visual
- Part 3: Audio
- Part 4: Conformance Testing
- Part 5: Reference Software
- Part 6: Delivery Multimedia Integration Framework (DMIF)
Part 1: System and file format

- ISO 14496-1
System Spec.

- Inherited from MPEG-1 & MPEG-2
 - Overall Architecture
 - Multiplexing
 - Synchronization
- MPEG-4 Specific
 - Scene Description
 - Content Description
 - Programmability
MPEG-4 System

- System Decoder Model
- Synchronization (Sync Layer)
- Management & Transport of streams
MPEG 4 Decoder Model

Scene Composition

User

Object Descriptors
Scene Description Information
AV Object Data

Interactive Audiovisual

Infocom 2001
VIP - Magda El Zarki
II.20
Sync Layer & Transport System

Infocom 2001
VIP - Magda El Zarki
Scene Description (SD)

- Provide spatial-temporal relationship between audio-visual objects
- Tree structure – VRML based
- Contains pointers to object descriptors
- Provides Interactivity for End User with AV objects
 - Trigger event: e.g., start a video stream
 - Turn on/off individual object
 - Change object’s position or client’s viewing position
 - Select desired language if multi-language tracks exist
- Provides a Binary encoding of the scene (BIFS)
- Transported in the scene descriptor stream
Yeah, they look cute. Now about the nursery...

Hi, Uncle Robert!
Object Descriptor (OD)

- Groups a set of Elementary streams associated with a particular object as a single entity (e.g. base and enhancement layers)
- Transported in object descriptor stream
- Object descriptors can be updated dynamically over time
Generic Sample of an Object Descriptor

- Temporal enhancement
- Spatial enhancement
- Base layer
Examples of Object Descriptors
Initial Object Descriptor

- Identify SD & OD stream
- Convey profile & level information
- Usually transferred during session initialization phase
Initial Object Descriptor

(Initial) Object Descriptor

ES Descriptor

ES ID 1

Scene description stream

ES ID 2

Object descriptor stream
ES-Descriptors

- Each describes one Elementary Stream (ES) (audio stream, video stream, etc.)
- Includes configuration information for dedicated stream decoder (DecoderConfig)
- Contains sync layer configuration information for this stream (SLConfig)
- Conveys QoS Requirements to transport channel (optional QoS descriptor)
Example
System Decoder Model

Diagram:
- DMIF-Application Interface
- Decoding Buffer 1 → Decoder 1 → Composition Memory 1
- Decoding Buffer 2 → Decoder 2 → Composition Memory 2
- Decoding Buffer 3 → Decoder 3 → Composition Memory 3
- Decoding Buffer n → Decoder m → Composition Memory m
- Elementary Stream Interface

Composer
Synchronization Layer (SL)

- The sole mechanism for implementing timing and synchronization in MPEG-4
- Packetizes ES into access units (AU) that correspond to complete video object planes (VOP)
 - AU is the smallest unit carrying time info
 - AU determines decoder buffer size
- Adds header with time stamp and packet sequence information
- Contains no packet length indication (delivery layer handles this) -> SL-packet stream is not self-contained (unlike MPEG-2 PES)
SL Time Stamp

- Highly configurable
 - Explicit clock reference and time stamp
 - Implicit time stamp (rate based)
 - Without clock information, suitable for slide show presentation
 - May refer to another ES for clock reference if using the same time base
 - May contain only clock references for several other ES that then do not carry timestamps
Time Stamp Types

- Decoding time stamp (DTS)
- Composition time stamp (CTS)
- Object time base (OTB)
 - Valid for an individual or a set of elementary streams
 - Each audio-visual object has its own OTB
 - Not universal
- Object clock reference time stamp (OCR)
FlexMux Layer

- Used to multiplex “similar” streams to reduce the overall number of individual streams
- Suitable for low bitrate, low delay ES such as SD, OD, animation & speech
- Not a true transport level protocol, used when:
 - Underlying transport layer does not define multiplex, e.g., if H.223 is used, no need for FlexMux
 - Existing multiplex may not fit MPEG-4 requirements (low delay, short overhead)
Simple Mode FlexMux

- 8 bit index for FlexMux Channel (FMC)
- 8 bit payload length
MPEG-4 File Format: .MP4

- Based on QuickTime
- Independent of delivery protocol
- *Streamable* file format (as opposed to streaming format)
 - One file format fits the need for both local storage and network streaming
Part 2: Visual

• ISO 14496-2
MPEG-4 Video

Baseline

Compression
Error Resilience
Scalability

Extended

Content-based Coding
Still Texture Coding

Conventional coding
Object coding

Infocom 2001
VIP - Magda El Zarki
II.39
MPEG-4 Video Standard

• MPEG-4 Video is Compatible to Baseline H.263

• And almost Compatible to MPEG-1

• And almost compatible to MPEG-2
MPEG-4 Video Support

- Progressive & interlaced scan
- SQCIF/QCIF/CIF/4*CIF/CCIR 601, 8*8 ~ 2048*2048
- Y/C_b/C_r/Alpha
- Depth 4~12 bit, typical 8 bit
- Until now 4:2:0, future 4:2:2 and 4:4:4
- Continuous variable frame rate
MPEG-4 Application Bit rates

- Low (<64kbps)
 - Low bandwidth wireless
- Intermediate (64-384kbps)
 - Low bandwidth Internet
- High (384k-4Mbps and in future up to 50Mbps)
 - High bandwidth Internet
 - Cable Modem, ADSL
- Supports CBR and VBR
Coding Bit rates
MPEG-4 Video Principle

• Retained from predecessor
 – Block based natural video coding
 – Motion estimation and compensation
 – Variable length coding

• MPEG-4 Specific
 – Object based coding
 – Arbitrary shape coding
 – 2D & 3D mesh and texture coding
Profile & Level

- For encoder, profile & level give the upper bound of complexity of the bit stream
- For decoding hardware, profile & level give minimum performance constraints
- For decoding software, profile & level also imply resource availability to be monitored at run time
Levels for Natural Video Profile

<table>
<thead>
<tr>
<th>Profile and Level</th>
<th>Typical scene size</th>
<th>Bitrate (bit/sec)</th>
<th>Maximum number of objects</th>
<th>Total mblk memory (mblk units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>QCIF</td>
<td>64 k</td>
<td>4</td>
<td>198</td>
</tr>
<tr>
<td>L2</td>
<td>CIF</td>
<td>128 k</td>
<td>4</td>
<td>792</td>
</tr>
<tr>
<td>L3</td>
<td>CIF</td>
<td>384 k</td>
<td>4</td>
<td>792</td>
</tr>
<tr>
<td>Core Profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>QCIF</td>
<td>384 k</td>
<td>4</td>
<td>594</td>
</tr>
<tr>
<td>L2</td>
<td>CIF</td>
<td>2 M</td>
<td>16</td>
<td>2376</td>
</tr>
<tr>
<td>Main Profile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>CIF</td>
<td>2 M</td>
<td>16</td>
<td>2376</td>
</tr>
<tr>
<td>L3</td>
<td>ITU-R 601</td>
<td>15 M</td>
<td>32</td>
<td>9720</td>
</tr>
<tr>
<td>L4</td>
<td>1920x1088</td>
<td>38.4 M</td>
<td>32</td>
<td>48960</td>
</tr>
</tbody>
</table>
Application Mapping onto Profiles
Video Coding Hierarchy

- Video Object Sequence (VS): Contains 2D/3D, natural/synthetic objects - the complete MPEG-4 visual scene
- Video Object (VO): one object in the scene, in its simplest form could be a rectangular frame, or it can be an arbitrarily shaped object corresponding to a sprite or a background scene
- Video Object Layer (VOL): provides support for scalable coding
 - Full MPEG-4 header VOL
 - Short header VOL (compatible with baseline H.263)
- Video Object Plane (VOP): Time sample of a video object (e.g. a rectangular frame, or a sprite). Contains motion, shape and texture information.
General Coding Diagram
VOP Motion Coding

- Macro Block (16x16) and Block (8x8)
- I-VOP, P-VOP and B-VOP
- Half pixel precision Motion Estimation
VOP Texture Coding

- DCT
- Quantization
- Zigzag Scan
- Variable Length Coding
MPEG-4 Coder

MPEG-4 Core Coder

VOP

Motion (MV)
Texture (DCT)

similar to H.263/MPEG-1

bitstream

Extended MPEG-4 Core Coder

VOP

Shape
Motion (MV)
Texture (DCT)

similar to H.263/MPEG-1

bitstream
Decoding Diagram
Content Based Functionalities

• Shape Coding
• Sprites
• Scalability (content based)
• Error resilience
• Scalable Texture Coding
Shape Coding

• The shape of an object can be represented in binary form or as a gray-level (or alpha channel - luminance) information.

• Alpha channel provides superior quality but is more expensive to encode.

• Both coding techniques use 16x16 blocks (MB)
Sprites
Scalable Coding

- Object based spatial scalability
 - Texture spatial & Shape spatial
- Object based temporal scalability
 - Partition VOP into layers
- Both provide resilience to transmission errors
Scalable Coding

• Each layer is coded into an individual ES with unique ES_ID
• All layers belonging to the same object (i.e., all ES that refer to the same object) are placed in the same Object Descriptor with its unique OD_ID
Scalable Coding Diagram

- Scalability PreProcessor
- MidProcessor
- MPEG-4 Base Layer Encoder
- MPEG-4 Enhancement Encoder
- MPEG-4 Enhancement Decoder
- MidProcessor
- MPEG-4 Base Layer Decoder
- MPEG-4 Enhancement Decoder
- Scalability PostProcessor
Spatial Scalability

![Spatial Scalability Diagram]

Infocom 2001
VIP - Magda El Zarki
II.60
Temporal Scalability
Tradeoff of Layered Coding

Layered coding schemes incur an increase in bit rate or decrease in video quality in comparison to a single-layer codec of equivalent quality.
MPEG4 Error Resilience Tools

- Re-synchronization
- HEC
- Data partition
- RVLC
- AIR
- NEWPRED
Resynchronization
Resynchronization Marker

- Must define a Video Packet (VP)
 - Fixed # of bits instead of fixed # of MBs (recall slices of MPEG-2)
- Insert extra headers into the stream (in each VP) that will allow the decoder to re-sync in case of losses.
- Associated Overhead
 - Resync marker
 - MB number
 - Quant_scale
Header Extension Coding (HEC)

• Optional and of variable length
• Adds additional VOP header info into each VP
• Can correct VOP header when transmission errors occur
Data Partition

- Signaled at Video Object Layer (VOL)
- To localize error for error concealment at decoder
- Separate motion information from texture information
Reversible VLC (RVLC)

- Using RVLC table instead of VLC to code texture
- RVLC allows both forward and backward texture decoding
- Signaled at VOL
Problems with RVLC

• Calculation Overload
 – Encoder side: different table used, not much of a problem
 – Decoder side: complicated algorithm used for discarding error bit

• Not impressive quality improvement compared to simple error concealment algorithm such as MB copying
Performance Issues

- Depends on video sequence characteristics
 - Picture size
 - Frame rate
 - Target stream bit rate
- Also depends on network condition
 - For wired network, VP can be larger
 - For wireless network, VP should be smaller
Adaptive Intra Refresh (AIR)

- Used for Rectangular VOP
- Extract motion area and encode it in intra mode more frequently, i.e, only use intra mode on motion portions of scene
- Transmission error can be recovered from sooner
AIR (2)

- # of intra MB per VOP
 - Fixed and pre determined
 - Depends on bit rate, frame rate and so on
- Encoder estimates motion of each MB
 - Motion estimation is based on Sum of the absolute differential (SAD)
 - Compare SAD with threshold (SAD_th)
 - Results are recorded to the Refresh Map MB by MB
AIR Example 1/2

1st VOP

[a] Encode the I-VOP

2nd VOP

[c] Estimate the motion of MB.

[d] Encode the P-VOP

[f] Motion MB is set to “1” in the Refresh Map.

[b] Refresh Map

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
AIR Example 2/2

3rd VOP

0 0 0 0 0
1 1 0 0 0
1 1 1 0 0
0 1 1 0 0
0 0 0 0 0

[h] Encode the VOP. Some MBs in Refresh are encoded as INTRA.

Intra MBs in Refresh are updated.

Encode the VOP. Some MBs in Refresh are encoded as INTRA.

4th VOP

0 0 0 0 0
0 0 0 0 0
1 1 1 0 0
0 1 1 1 0
0 1 1 1 0

[i]

Intra MBs in Refresh are updated.

Encode the VOP. Some MBs in Refresh are encoded as INTRA.
Throughput of AIR
Problems related to AIR

• Calculation complexity at encoder:
 – Not much of a problem since SAD is calculated for motion estimation at encoder
• Choice of # of MB to refresh every VOP
• Choice of SAD_th
• Decoder side
 – Needs to do nothing for AIR
A proposal for choice of # of MB

<table>
<thead>
<tr>
<th>A</th>
<th>MBs/frm</th>
<th>A</th>
<th>MBs/frm</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.1</td>
<td>4</td>
<td>0.2-0.3</td>
<td>16</td>
</tr>
<tr>
<td>0.1-0.15</td>
<td>8</td>
<td>0.3-0.35</td>
<td>8</td>
</tr>
<tr>
<td>0.15-0.2</td>
<td>12</td>
<td>>0.35</td>
<td>4</td>
</tr>
</tbody>
</table>
NEWPRED (1)

- One VP coded as one NP segment, signaled at VOL
- Decoder sends upstream message to encoder to indicate which NP segment was correctly decoded
- Encoder uses only correctly decoded part for prediction in inter-frame coding
- Prevents temporal error propagation w/o the insertion of Intra MB
NEWPRED (2)

- Upstream channel needed
- Requires framing mechanism for synchronization messages (e.g. 14496-1)
- Strategy for selecting reference picture is not defined in standard yet
- Additional decoding buffer needed based on
 - Reference picture selecting algorithm at encoder
 - Transmission delay
Other Mechanisms

• Split data partitioned stream into two sub-streams
• Need Unequal Error Protection support
• Not defined in standard
Channel Coding

• Forward Error Control (FEC)
• Automatic repeat request (ARQ)
FEC

- Used for error correction at data link layer
- Add redundancy code to localize and correct errors
- Cannot handle burst error
- Coding schemes: BCH, Reed Solomon, turbo codes and Hamming codes
ARQ (1)

- Ask for retransmission when incorrect packet is received
 - Error detection: CRC code
 - Explicit (NACK) vs. Implicit (ACK)
- Protocol Examples
 - Stop and wait
 - Go back n
 - Selective repeat
ARQ (2)

• Maybe suitable for one way real time video applications such as VoD
• Delay might be too long for interactive services such as video conferencing
Hybrid FEC/ARQ Algorithms

h stands for redundancy factor for FEC

- ARQ (h_I=h_P=h_B=0)
- Pure FEC (h_I=h_P=h_B>0)
- Hybrid FEC/ARQ (h_I=h_P=h_B>0)
- Hybrid FEC/ARQ with priority dependent redundancy (h_I:h_P:h_B=1:0.25:0.05)
- Adaptive FEC/ARQ with priority dependent redundancy (h_I,h_P,h_B changes adaptively)
FEC/ARQ

• Needed?
 – MPEG4 Error Resilience tools can be deemed as Passive error control at the application layer (end to end)
 – Some errors do not generate invalid syntax
 – FEC/ARQ: Active error control at the data link layer
• FEC/ARQ can be more effective in some cases as it is closer to the source of error.
Open Issues

• Trade off between MPEG-4 ER and FEC/ARQ
 – Packet size dependent, bit rate dependent, etc.

• Perceptual quality?
 – E.g., 0.5*bw correctly received video vs. 0.8*bw received video with errors
 – Optimal point
Error Concealment

- Many techniques exist: spatial, temporal, spectral, hybrid
- For low delay, low bitrate applications it has been shown that a simple MB replacement strategy works well.
 - Copy blocks from previous frame
Some Error Concealment Results:

(a). Unconcealed Image; (b). Frequency concealment (FC); (c). The 16th frame after initial FC on the first image; (d). Spatial Concealment

Left: Unconcealed Image. Middle: Concealed by simple motion vector estimation, simply averaging the top and bottom mvs. Right: Concealed with more motion vectors. All the adjacent mvs are used directly or indirectly.
Part 6: DMIF

- Delivery Multimedia Integration Framework (DMIF) (ISO 14496-6)
Why DMIF?

• MPEG-1 & MPEG-2 System Specification
 – Focus on specific storage/transport usage
 – Synchronization and transportation combined in one part
 – inappropriate or inefficient when delivery medium changes
DMIF Goals

- Define a session level protocol for stream management
- Hide delivery technology details from DMIF user
- Ensure interoperability between end systems
 - Find universal solutions for various scenarios (local retrieval, remote interaction, broadcast or multicast)
DMIF Principle

- Session Protocol for real-time stream management
- Similar to FTP
 - FTP returns Data where DMIF returns pointer to where to get data
- Application accesses data through the DMIF Application Interface (DAI)
 - The DAI is QoS aware and accesses multimedia content in a uniform manner
- The DMIF Network Interface (DNI) indicates the actions that DMIF must take with respect to the network
 - The DNI also enables the exchange of parameters that DMIF peers need to communicate
DMIF Model

Originating Application

Target Application

Control Plane Connectivity
User Plane Connectivity

Infocom 2001 VIP - Magda El Zarki II.94
Client-Server Modeling (1)

- Server-side Supports:
 - Encoding
 - Buffering of Sync. Layer (SL)-Packetized Streams
 - Scheduling of Objects
Client-Server Modeling (2)

- **Client-side Supports:**
 - Creation of buffers and decoders
 - Reception and binding of information with the appropriate decoder
 - Composition and rendering
 - Handling user events
Client-Server Modeling (3)

- Both support:
 - Management of control and data flows
 - Communication between each other
MPEG-4 Layers

- Media aware
 - Delivery unaware
 - ISO/IEC 14496-2 Visual
 - ISO/IEC 14496-3 Audio

- Media unaware
 - Delivery unaware
 - ISO/IEC 14496-1 Systems

- Media unaware
 - Delivery aware
 - ISO/IEC 14496-6 DMIF

Layer Stack:
- Compression Layer
- Sync Layer
- Delivery Layer

Other Components:
- Elementary Stream Interface (ESI)
- DMIF Application Interface (DAI)
MPEG-4 User Plane

Elementary Streams

Elementary Stream Interface

Sync Layer

Application Interface

Delivery Integration Layer

Network Interface

TransMux Layer

FlexMux channel

FlexMux

FlexMux Streams

SL-Packetized Streams

TransMux Streams

File/broadcast/interactive

(RTP) UDP IP (PES) MPEG2 TS AAL2 ATM H223 PSTN

TransMux Streams

Infocom 2001
VIP - Magda El Zarki
II.99
MPEG-4 User Plane

- FlexMux layer interleaves one or more elementary streams
- TransMux layer interleaves one or more flexmux streams
- FlexMux can be bypassed
 - One ES maps to one TransMux stream