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Abstract

Residue Number System based applications involve
modulo-arithmetic which is typically implemented using
look-up-tables (LUTs) for a small value of modulus. In this
paper, we present a data coding technique to minimize the
area of these LUTs when implemented using two level logic
structures such as PLAs. We also present a technique that
exploits the symmetry in these computations to further opti-
mize the LUTs. Results show that area improvement of upto
66% can be achieved using these techniques.

1. Introduction

High speed signal processing applications require dedi-
cated hardwired implementations to meet the stringent per-
formance requirements. Residue Number System (RNS)
based implementations of DSP systems have been presented
in the literature [1, 2, 3] as a technique for high speed real-
ization. RNS achieves this by breaking an operation (such
as addition, multiplication etc.) into smaller operations that
can be executed in parallel. In this paper, we present tech-
niques for improving area efficiency of RNS based imple-
mentations of DSP algorithms. While these techniques are
generic, they have been discussed in the context of PLA
based implementations.

The paper is organized as follows. We start with a brief
introduction to RNS in section 2. We present techniques
for area efficient PLA implementation of residue arithmetic
in section 3. section 4 presents the results that highlight the
effectiveness our techniques. Finally we conclude in section
5 with a brief discussion on the future scope of our work.

2. Residue Number System

In RNS, an integer is represented as a set of residues
with respect to a set of integers called the Moduli. Let
(m1;m2;m3; :::;mn) be a set of relatively prime integers
called the Moduli set. An integer X can be represented as
X = (X1; X2; X3; :::; Xn) where

Xi = (X) modulo mi for i = 1; 2; ::; n (1)

we use notationjX jmi
to representXi the residue ofX

w.r.t mi. Given the moduli set, the dynamic range(M) is
given by the LCM of all the moduli. If the elements are
pair-wise relatively prime, the dynamic range is equal to the
product of all the moduli [4]. The bit-precision of a given
moduli set is

bits = log2(M) (2)

where M is the dynamic range of the given moduli set.
So, the moduli set is determined based on the bit-precision
needed for the computation. LetX ,Y and Z have the
residue representationsX = (X1; X2; X3; :::; Xn), Y =
(Y1; Y2; Y3; :::; Yn) andZ = (Z1; Z2; Z3; :::; Zn) respec-
tively andZ = (X opY ) whereop is any operation in ad-
dition, multiplication or subtraction. Thus we have in RNS,

Zi = jXi opYijmi
for i = 1; 2; ::; n (3)

since,Xi’s andYi’s require lesser precision thanX and
Y , the computation ofZi’s can be performed faster than the
computation ofZ. Moreover, since the computations are
independent of each other, they can be executed in parallel
resulting in significant performance improvement.
For example, Consider the moduli set (5,7,11)
LetX = 47 = (j47j5; j47j7; j47j11) = (2; 5; 3)

Y = 31 = (j31j5; j31j7; j31j11) = (1; 3; 9)
andZ = X+Y = 47+31 = 78 = (j78j5; j78j7; j78j11) =



 Residue

to

        Binary 

Modulo Mn Computation

Modulo M2 Computation

Modulo M1 Computation

X(n) Y(n)

x1

x2

xn

y1

y2

yn

to

Converter Converter

 Residue

        Binary 

Figure 1. RNS based Implementation of DSP
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Figure 2. Conventional FIR filter Implementa-
tion with a Multiplier and an Adder

(3; 1; 1) Zi’s can be computed from (3) asZ = (j2 +
1j5; j5 + 3j7; j3 + 9j11) = (3; 1; 1)

While in RNS, multiplication, addition, and subtraction
can be performed with high speed, the operations like di-
vision, scaling, and magnitude comparision require several
basic operations. They are slower and more complicated to
implement. Since most DSP algorithms (such as FIR and
IIR filtering, FFT, correlation, DCT etc) do not have these
operation to be performed, this limitation does not apply.
Figure 1 shows a generic structure of the RNS based im-
plementation of such DSP algorithms. As an example, con-
sider a typical FIR filter implementation shown in Figure 2.
In the RNS domain, it is implemented as multiple modulo
mi filters. Figure 3 shows the structure of a modulomi

filter.
Generally, modulo-arithmetic operations like addition
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and multiplication are performed using Look-Up Tables
(LUTs) when modulo is small. Thus for the FIR filter
shown in Figure 3, the operations modulomi multiplica-
tion and modulomi are implemented as LUTs. Each tap of
the FIR filter thus requires two look-ups. The performance
can be further improved by merging the two LUTs into a
modulemi Multiply-Accumulate (MAC) LUT. The resul-
tant structure of the FIR filter is shown in Figure 4.

In this paper we present area efficient implementation
of LUTs for addition, multiplication and the multiply-
accumulate operation. For two-level implementation of
LUTs, PLAs are preferred to ROMs because of their area
efficiency. We now present two techniques for improving
area efficiency of PLA based implementation of LUTs.



3. Techniques for Area-efficient PLA Imple-
mentation

We present the following techniques for improving the
area efficiency of PLA based modulo arithmetic computa-
tion:

1. Residue encoding: Since all the computation in the
RNS domain is performed using LUTs, the residue val-
ues can be treated as symbolic variables/constants. The
residues hence need not be encoded in the binary form
(i.e., 0 - 000, 1 - 001 etc.). Since encoding has the di-
rect impact on the area of the PLA, optimum encodings
can be derived as to achieve maximum area reduction.

2. Inherent symmetry of modulo arithmetic: Since the
modulo addition and the modulo multiplication oper-
ations are commutative, the LUT need not store results
for the cases where the inputs are swapped w.r.t. an-
other entry in the LUT. For example, the LUT need
not store results for both A+B and B+A computations.
The inherent symmetry of the modulo arithmetic can
be used to minimize the area of the PLA.

3.1. Residue Encoding

Let us consider the truth table for modulo-3 multiplica-
tion.

Table 1.

Input1 Input2 Output
0 0 0
0 1 0
0 2 0
1 0 0
1 1 1
1 2 2
2 0 0
2 1 2
2 2 1

The area of the PLA implementing Table 1 is different if
the residues 0,1,2 are encoded as (00,01,10) vs (11,01,00)
vs (10,01,11) and so on. The aim of residue encoding is
to come up with an assignment of unique binary vectors to
the residues, so as to minimize the area of the PLA. We re-
fer to this as the modulo encoding problem. This problem
is similar to the well studied input-output encoding prob-
lem for PLA minimization [5, 6]. The distinguishing fea-
ture of modulo encoding problem is that symbols in all the
input columns(2 in case of addition and multiplication, 3

in case of MAC) and the output column are members of
the same set. So we have to ensure that the code assigned
to a symbol be same across different columns. Currently
there is no encoding tool that considers more than two input
columns at a time for encoding. Moreover none of the tools
ensures consistency of the code assigned to the same sym-
bol across more than two columns(the input and the output
column for PLA based FSM encoding) [7, 8]. Because of
these differences with the conventional encoding problem,
we used some heuristics and modified a FSM encoding tool,
NOVA [9], to generate the residue encodings.

We start with multi-valued output disjoint minimization
to get the initial set of input constraints. Partial order rela-
tions among the output states are developed by constructing
a directed acyclic graph(DAG) where each vertex represents
an output state(say u) and a directed edge (u,v) means that
state u bit-wise dominates state v. Symbolic minimization
is done using these partial order relations(The ON set of
each output state is expanded using the don’t care sets. Af-
ter this multiple valued minimizer is invoked to minimize
the cardinality of the ON-set corresponding to the output).
The final set of input constraints is obtained from this sym-
bolically minimized cover. In addition to this, we have to
ensure that the input constraints derived from the different
input columns are satisfied for the same encoding of states
across the columns. So we combine the input constraints
derived from the different columns and apply the ordered
face hyper-cube embedding algorithm. The pseudocode for
our encoding algorithm is presented below.
Encoding()
f

Mini();
Symbolicminimization();
Combineconstr();
IO hybrid code();

g

In the pseudocode given above, Mini does the initial
output-disjoint multi-valued minimization of the symbolic
truth table. Symbolicminimization reduces the truth table
further by using the partial order relationships among the
output states and gives the final set of input constraints for
all the columns. To maintain consistency of codes across
columns, the input constraints for all the input columns are
combined together in the procedure Combineconstr. Fi-
nally, the IOhybrid code assigns codes to each state such
that the constraints developed by the Combineconstr are
met. The mini, Symbolicminimization and IOhybrid code
routines are similar to the ones used in NOVA, while the
Combineconstr routine has been developed to take care of
the unique nature of the residue coding problem.

The gain in area over conventional binary encoding(’0’-
’000’,’1’-’001’,.) using our encoding algorithm is presented
in section 4.



3.2. Inherent Symmetry of Modulo Arithmetic

An important property that can be exploited for imple-
menting area efficient PLAs for modulo arithmetic is the in-
herent symmetry among the operands. The symmetry is due
to the commutativity of multiplication and addition. Using
this, the truth table can be minimized. For example, both
a+b and b+a give the same output. So, one of these entries
can be eliminated in the truth table. With this a significant
reduction in the truth table can be achieved. For example,
the LUT for modulo 3 multiplication can be reduced to the
truth-table shown in Table 2 which has 6 entries compared
to 9 entries of the initial truth-table shown in Table 1.

Table 2.

Input1 Input2 Output
0 0 0
0 1 0
0 2 0
1 1 1
1 2 2
2 2 1

However, to exploit this symmetry we need additional
logic that detects the redundancy in input operand pat-
terns and feeds the arithmetic block (PLA implementing an
adder/multiplier/MAC) with an irredundant input pattern.
In Figure 5, we show a block diagram of a system that ex-
ploits symmetry in implementing modulo arithmetic.
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Figure 5. Block schemetic of redudancy de-
tection based modulo-arithmetic

In addition to the area overhead of L1 and mux’s this
scheme also increases the delay. The area and delay over-

head of L1 can be eliminated by choosing a simple redun-
dancy detection scheme. For example, we can select the
LSB of an input operand as the mux select line. Then the
reduced truth table for modulo 3 multiplication (under con-
ventional binary encoding) is shown below.

Table 3.

Input1 Input2 Output
0 0 0
0 2 0
1 0 0
1 1 1
1 2 2
2 0 0
2 2 1

The LUT shown in Table 3 has 7 rows compared to 9
rows of the initial truth-table shown in Table 1 1 and 6 rows
of the truth-table shown in Table 2. It can thus be noted that
this input bit-based selection scheme cannot exploit the full
symmetry and hence does not result in as much reduction
as the scheme shown in Figure 5. The reduction in the truth
table that can be achieved with this scheme depends on the
encoding, the bit chosen to be the mux select line and the
modulo value.

We thus have two alternatives to exploit the symmetry of
modulo arithmetic:

1. Exploit the full symmetry with elaborate redundancy
detection scheme.

2. Exploit the partial symmetry with simple redundancy
detection scheme.

In the following subsections we give the implementation
details for both the schemes.

3.2.1 Exploiting full symmetry with elaborate redun-
dancy detection

In this scheme the residue encoding should be done such
that the area of (L1+L2) (Figure 5) is minimized. Here we
have to encode the inputs of L1 and boththe input and output
of L2. As all the symbols belong to the same set, we have
to maintain the compatibility of code assigned to a symbol
across L1 and L2.

To arrive at the encoding we get the input and output
constraints for blocks L1 and L2 separately. Then the
constraints are combined and the encoding algorithms of
NOVA are used to get the final encoding. The results for
the area of L1+L2 with this encoding are given in the next
section.



3.2.2 Exploiting the partial symmetry with simple re-
dundancy detection scheme

In this scheme, the area of L2 depends on the encoding and
the bit chosen to be the mux select line. These two factors -
the encoding and the bit line that gives maximum reduction
are dependent on each other. So we need to employ a heuris-
tic to come up with an encoding first and then choose the
bit that gives the maximum reduction. We have adopted the
heuristic of starting with a code that is optimal with respect
to residue encoding (i.e. we neglect symmetry to come up
with the encoding followed by selecting the bit that gives
the maximum reduction in the truth table.

For a given an encoding, we can use the following results
for bit selection:

1. We can select the bit from any input as the truth table
is commutative for both the inputs(for addition, multi-
plication and the two multiplicand columns of MAC)

2. For maximum reduction, the bit-position that has the
most balanced distribution of 0’s and 1’s among the
residue codes should be chosen. i.e., ifai is the num-
ber of codes for which the i-th bit is 1 andbi is the no.
of codes for which the i-th bit is 0, then the bit position
i for which maximum reduction is possible is the one
wherejai � bij is minimum

Using the above mentioned results we can select a bit
for a particular encoding so as to achieve maximum area
reduction.

4. Results

We now present results that highlight the effectiveness of
these techniques in reducing area of the PLAs implementing
modulo addition, modulo multiplication and modulo MAC
operations. The results are presented for the modulo set of
(5, 7, 9, 11, 13). The metric chosen for PLA area is the
product of the no. of rows and columns in the PLA. The no.
of columns in a PLA is equal to the 2*(no. of input bits)
+ the no. of output bits. The number of rows are obtained
from the residue encoded truth table which is minimized
using Espresso [10] .

Tables-4, 5 and 6 present results for the following cases:
column 1: The area of PLA with conventional binary
coding(‘0’-‘000’, ‘1’-‘001’,.).
column 2: The area of PLA with coding obtained using the
algorithm(residue coding) given in section 3.1.( This encod-
ing is referred to as code1).
column 3: The area of PLA implementation in case
of elaborate redundancy detection with conventional cod-
ing(referred to as PLA(L1+L2)).

column 4: The area of PLA implementation in case
of elaborate redundancy detection with combined encod-
ing(referred to as PLA(L1+L2),code2 ).
column 5: The area of PLA implementation in case of
elaborate redundancy detection with code1(referred to as
PLA(L1+L2),code1).
column 6: The area of the PLA with simple redundancy de-
tection with conventional coding(referred to as PLA(bit)).
column 7: The area of the PLA with simple redundancy de-
tection with code1(referred to as PLA(bit),code1).

The area overhead of the mux’s is ignored for cases in
columns 3,4,5,6 and 7.
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(code2)    (code1)                    (code1)
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Table-4: Area estimates of PLA based mod-add implementation

(conv)    (code1)   (L1+L2)  (L1+L2)  (L1+L2)
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Modulo      PLA        PLA        PLA        PLA         PLA        PLA        PLA
    (bit)         (bit)

(code2)    (code1)                    (code1)

5              225   135 202 170 157 165 165

285 330 258 325 314 225 330

(40%) (10%) (24%) (30%)

(9%) (21%)

656 644 547 760 720
(31%) (32%) (43%) (21%) (25%)(43%)

1440 1000  990 1046  884 1200  980
(16%)      (32%)(38%)(27%) (31%)(31%)

1860  920 1324 1448  886 1540 1160
(51%)     (28%)      (22%)      (52%)      (17%)       (38%)

  960   540

(27%)

Table-5: Area estimates of PLA based mod-mult implementation

As can be seen from the results, the PLA area can be
reduced by as much as 45% (corresponding to modulo-13
addition using elaborate redundancy detection with residue
encoding). The results also show that no one combination
of techniques results in the most area reduction across all
moduli. While elaborate redundancy detection gives maxi-
mum area reduction in most cases, it has an associated delay



(conv)    (code1)   (L1+L2)  (L1+L2)  (L1+L2)

7
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Modulo      PLA        PLA        PLA        PLA         PLA        PLA        PLA
    (bit)         (bit)

(code2)    (code1)                    (code1)

5              1428  1113 892 884 766 1197 1029
(16%)(47%)(38%)(38%)(22%)
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(39%) (45%) (50%) (58%) (21%) (37%)

10696  5124 6240 3838 3648 8876 7224
(32%)(17%)(66%)(64%)(42%)(52%)
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14728

31892 32088 17670 18415 17264 26320 25228
                (45%)      (42%)      (46%)      (17%)       (20%)

Table-6: Area estimates of PLA based mod-MAC implementation

overhead. For modulo-7 addition, the simple redundancy
results in the minimum area and it comes with minimal de-
lay overhead.

In modulo multiplication implementation, the PLA area
can be reduced by as much as 52% (corresponding to
modulo-13 multiplication using elaborate redundancy de-
tection with residue encoding). The results also show that
for modulo-5 multiplication, just the residue encoding (i.e.
with no redundancy detection) gives the most area efficient
PLA.

In case of MAC computation, the results show that the
PLA area can be reduced by as much as 66%. In this case,
the scheme of elaborate redundancy detection with residue
encoding, gives the minimum area for all the moduli (i.e. 5,
7, 9, 11 and 13).

5. Conclusions and Future work

We have presented techniques of residue encoding and
redundancy elimination for area efficient PLA implementa-
tion of modulo addition, modulo multiplication and modulo
MAC operations. These two techniques complement each
other and together result in upto 45% reduction for modulo-
addition, upto 52% reduction for modulo-multiplicationand
upto 66% reduction for modulo-MAC operations.

For the simple redundancy detection scheme we select a
bit that results in the minimum number of rows in the truth
table. However, a truth table with more number of rows may
result in reduced number of product terms after minimiza-
tion by Espresso. We plan to analyze whether this indeed is
the case for modulo arithmetic.

Our residue encoding scheme implies that the binary-
to-residue and the residue-to-binary converters also support
the encoding. In our analysis, we have assumed that the
residue encoding has minimal impact on the area of binary-
to-residue and residue-to-binary converters. This however

may not be the case across all moduli sets. We plan to work
on an optimization strategy that aims at area minimization
of the entire system shown in Figure 1.

The symmetry properties of modulo arithmetic have
been exploited for a significant improvement in area. The
identity properties of addition and multiplication can be also
used for further reducing the number of entries in the truth-
table. This however has an overhead of 0-detect logic in
case of modulo addition and 1-detect logic for modulo mul-
tiplication. We plan to evaluate the impact of these tech-
niques on the overall area of the modulo computation.

Finally we also plan to look at area minimization for
multi-level logic implementation of modulo computation.
We are in the process of deriving a cost function that can be
used to arrive at an optimal residue encoding.
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