Winter 2016, CS 112
Programming Assignment 2
Due: February 1, 2015 11:59pm

PROJECT GOAL: Write a restricted OpenGL library.

The goal of the project is to compute all the transformation matrices with your library
instead of using OpenGL library. Since you are relying on OpenGL for final rasterization,
you have to let OpenGL know what the final transformation matrix is, so that it
transforms the vertices and triangles and does the final rasterization. There are available
third party libraries online, but you are NOT allowed to use them. Recall the assignment
policies included in your first assignment description, third party codes are only allowed
for extra features and importing/exporting files (I will try to specify it when it is needed).

Programming Package

Please download the programming package for this assignment from the EEE Dropbox.
You should not have problem with GLUT functions as you already installed GLUT in
previous programming assignment. If the code doesn’t work try to install the GLUT
again. You can find the installation manual from previous programming assignment.

Assignment Submission

Please put all of your project files in a folder. Then compress this folder (.zip or .rar) and
upload it to EEE Dropbox before the deadline. Then you should come to one of the
following lab sessions to run the code and show your work.

Tuesday 2/2/2016 9am-9:50am location: ICS364B

Wednesday 2/3/2016 8pm-8:50pm location: ICS364B

Thursday 2/4/2016 9am-9:50am location: ICS364B

Monday 2/8/2016 8pm-8:50pm location: ICS364B

1 Preparation

Before you start your OpenGL library, you should notice that this time the assignment
package includes several new files which are named as “my_gl” and “i_my_gl”. They
basically serve as a skeleton of the implementation of your library. To start your work,
first browse these new files to get a basic idea about the contents of them. At the beginning
of the i_my_gl.cpp file, you can see there are a few structures and constants have already
been defined for you. Feel free to use them (and you should) for the rest of the assignment.
You are also allowed to modify them according to your programming style or design
issues. After these predefined contents, there are three empty-body functions:

void matrix_multiply(const GLdouble *b) void

cross_product(GLdouble *ax, GLdouble *ay, GLdouble *az,
GLdouble bx, GLdouble by, GLdouble bz,

GLdouble cx, GLdouble cy, GLdouble cz)

void normalize(GLdouble *x, GLdouble *y, GLdouble *z)

By just look at the names, they should easily remind you your linear algebra knowledge. Go
ahead to implement them and then you can call them whenever you need to for your later
work.

The rest part of the i_my_gl.cpp file contains functions which are used as “internal” functions.
Thus, you will not call them directly from your application code. You have to use the wrapper
functions contained in the my_gl.cpp file to call these internal functions. All wrapper functions
perform at least three operations: (a) Call the appropriate “internal function”. (b) Get the final
matrix from the stack using I_my_glGetMatrix function. (c) Use glLoadMatrix (actual OpenGL)
function to load the matrix into appropriate OpenGL stack.

There is a my_gl.h file provided in the package, in which there are prototypes of all the wrapper
functions and a few of macros in the format “#define <glFuntion> <my_glFunction>". For
example,

#define glLoadldentity my glLoadldentity

All these macros are currently commented out. When they are enabled, they make the
corresponding functions you implemented override the original OpenGL functions.

2 Matrix and Stack Manipulation Functions

The core work of this assignment is to implement the internal functions in the i_my_gl.cpp file.
Follow the rules at the end of this description during your work. As you can see, all these
functions share names with existing OpenGL (some of them are from glu) transformation or
stack-accessing functions. Thus, to implement them perfectly, you need to study the blue book:
OpenGL Reference Manual http://www.glprogramming.com/blue/ to understand how they
work. Note: the reference manual does not explain the gluLookAt function clearly enough, so
take a look at the programming guide chapter 3 for more details:
http://glprogramming.com/red/chapter03.html#name2

void I_my_glLoadldentity(void) void
I_my_glPushMatrix(void)
void I_my_glPopMatrix(void)

void I_my_glLoadMatrixf(const GLfloat *m)
void I_my_glLoadMatrixd(const GLdouble *m)

void I_my_glTranslated(GLdouble x, GLdouble y, GLdouble z) void
I_my_glTranslatef(GLfloat x, GLfloat y, GLfloat z);

void I_my_glRotated(GLdouble angle, GLdouble x, GLdouble y, GLdouble z) void
I_my_glRotatef(GLfloat angle, GLfloat x, GLfloat y, GLfloat z);

void |_my_glScaled(GLdouble x, GLdouble y, GLdouble z) void
I_my_glScalef(GLfloat x, GLfloat y, GLfloat z);

void I_my_glGetMatrixf(GLfloat *m)
void I_my_glGetMatrixd(GLdouble *m)

void I_my_gluLookAt(GLdouble eyeX, GLdouble eyeY, GLdouble eyeZ, GLdouble centerX,
GLdouble centerY, GLdouble centerZ, GLdouble upX, GLdouble upY,
GLdouble upz)

void I_my_glFrustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top,
GLdouble zNear, GLdouble zFar)
void I_my_gluPerspective(GLdouble fovy, GLdouble aspect,
GLdouble zNear, GLdouble zFar)
(NOTE: “glu” instead of “gl” for LookAt and Perspective)

3 Matrix Mode Function for Operations

The above functions operate on the “current stack”. The “current stack” is one of the
ModelView stack and the Projection stack. To determine which stack your program is currently
working on, you also need to implement the following function

void I_my_gIMatrixMode(GLenum mode);

This function will allow you to switch between the two matrix modes, GL_MODELVIEW and
GL_PROJECTION.

4 Test Case 1: Assignment 1

In the package, a tiny modified version of your assignment 1 is also included. Use it to finish
this test case. Assignment 1 should call your wrapper functions instead of the OpenGL
functions. To achieve this, it includes the my_gl.h file in main.cpp and sceneModule.cpp files
now. Later you may or may not want to include it in the inputModule.cpp as well depending on
how you organize your program. Do not include this my_gl.h file in the files that you write for
this assignment (assignment 2), especially the wrapper function file, since you do not want to
substitute the actual OpenGL functions that have to be called with your function names.

Now you want to test your own version of the following functions one by one:

glMatrixMode
glLoadldentity
glLoadMatrixf
glLoadMatrixd
glTranslated
glTranslatef
glRotated glRotatef
glFrustum
gluPerspective

To achieve this, verify your functions in the following way:

i) Whenever you use glLoadldentity() fora MODEL_VIEW matrix, initialize your matrix
to a 4x4 identity matrix.
i) Replace every call to any OpenGL transformation function with the following sequence
of calls. The following example is given for glTranslate. Perform similar changes to other calls
you have implemented.
Create two local 16-element array variables: tempmatrix and newmatrix;

Replace every glTranslate(tx,ty,tz) with:

/I This operates the OpenGL way, retrieves the result and undoes it

glPushMatrix();

glTranslated(tx, ty, tz);

glGetFloatv(GL_MODELVIEW_MATRIX, tempmatrix);

glPopMatrix();

I/l This uses your my_gl* functions, and will have effect
my_glTranslated(tx ,ty, tz);

my_glGetMatrix(newmatrix); printMat(newmatrix) ;
printMat(tempmatrix);

if(compareMat(newmatrix, tempmatrix)) printf("Matrix is wrong");
/I compareMat raises the flag if the matrices don't match.

iii) For all this to work properly, you must make sure to comment the list of #define
statements in my_gl.h, so that no automatic substitutions are performed and you control which
version (gl or my_gl) of the transformations is called in each moment.

iv) printMat and compareMat are functions not included in the package, but can be easily
made by yourself. PrintMat should just print out the values of all 16 entries of the given matrix,
and compareMat should compare two matrices element by element. GlIGetFloatv can be
replaced with glGetDoublev if your tempmatrix and newmatrix are arrays of double type. And
the first parameter GL_MODELVIEW_MATRIX should be replaced by
GL_PROJECTION_MATRIX when you test projection functions. Check glGet in the reference
manual for details about how glGetFloatv and glGetDoublev work.

V) Notice that the first three functions in the Part 1 should also be fully tested (in case you
are using them).

The above change is going to print a lot of matrices. Once you have verified your compareMat
function correctly compares two matrices, you can remove the printMat statements. It does not
need to be part of your submission.

Once you have verified that there is no statement displayed that “Matrix is wrong” (in other
words, your matrix in newmatrix and OpenGL’s matrix in tempmatrix are the same all the
time), then you should replace OpenGL’s computation of transformations with your equivalent
computation of the transformations by uncommenting the corresponding macros.

Check if your output is the same as before (before substituting gl* with my_gl*). If so, then you
have successfully emulated OpenGL transformation calls using your own my_gl transformation
calls.

5 Test Case 2: gluLookAt Function

In the sceneTransformation function of Assignment 1, several glTranslate and glRotate
functions are called to do the model/view transformation controlled by mouse motions. In this
test case, replace these transformation function calls with a single gluLookAt function call. First
try to work on OpenGL’s gluLookAt function to understand how it works. You need to set the
arguments you sent to gluLookAt carefully to make it work exactly in the same way as
Assignment 1. GluLookAt basically translates and rotates the camera instead of directly
manipulate on the cube, which implies it works in the opposite way as the previous approach.
(Again, read the chapter 3 of the programming guide mentioned in Part 2 for more details.) The
motion controlled by the middle mouse button can be tricky here. If you feel too difficult to
figure it out, you can skip the middle mouse button, it does not count any points in this
assignment. After you make OpenGL’s gluLookAt function works perfectly, enable your own
gluLookAt function by uncomment it in my_gl.h to verify your implementation and fix potential
bugs.

6 Test Case 3: Animation
In this test case, you are going to test all the rest functions:
glScaled glScalef

glPushMatrix
glPopMatrix

Again, first try use the OpenGL versions of these functions to achieve the following task.
Modify your program to display one more cube (call the drawScene function twice in your
display function). Let us call these two cubes Spinner and Revolver, and they should satisfy the
following constraints:

a) Spinner should rotate about an axis through its center, parallel to any edge.

b) Revolver rotates about the same axis as Spinner revolving around Spinner.

C) Revolver DOES NOT rotate about an axis through its own center.

d) The frequency of Spinner rotating about its own axis should be the same as that of the
rotating Revolver. This means, for every complete revolution of Revolver around
Spinner, Spinner should itself have completed 360 degrees. €) Spinner should be
larger than Revolver.

Your program should support interactive viewpoint manipulation, i.e., the user should be able to
use the mouse select viewpoint position in space. - Use glLookAt for this.

Hints that MIGHT be useful:

a) Use glTranslate to make these two cubes rendered in different place
b) Use glRotate to rotate them
C) Use glScale to make them in different sizes

d) OpenGL uses a local co-ordinate system, and POST-MULTIPLIES successive
transformations.

e) Use glPushMatrix and glPopMatrix to utilize the stack to do different sets of
transformations separately on Spinner and Revolver.

f) To do animation, you need to use glutldleFunc(). The way it works is glutldleFunc()
continuously calls the function you pass to it as argument while the system is idle. When
this function modifies your scene slightly each time it is called, the entire scene becomes
an animation. Most likely in this program this function will be your display function.
You may also want to do it in another way (rather than call display). It is up to you.
Regardless which way you do it, the key point is the function called by glutidleFunc()
should involves some variables which will be changed each time it is called, and these
variables will affect the transformations you do on the Spinner and the Revolver.

Now you want to verify your own functions for this animation program.

RULES:
1. Allow a maximum of 16 matrices to be pushed.
2. Report error if the stack is empty when a my_glPopMatrix function is called and
continue.
3. Report error if the stack is full (16 elements) when a my_glPushMatrix is called and
continue.

9.

m is a pointer to the array of 16 consecutive values (linear array) of the matrix (4x4
matrix) in column major order.

Implement a “static” array of matrices so that consecutive calls to your matrix
manipulation routines will be accumulated.

Include gl.h to make use of the data types GLfloat* and GLdouble*.

The meaning of each of the above functions (except my_glGetMatrix*) takes the same
semantic meaning as the functions in OpenGL library (without “my_""). Reference
OpenGL blue book for these functions.

my_glGetMatrix* function returns through m the matrix you have on the top of the
stack.

All internal computation of composition of matrices should use GLdouble.

10. Use I_my_glFrustum to perform I_my_gluPerspective.

