CS 112 – Transformations II
Composition of Transformations

- Example: A point \(P \) is first translated and then rotated. Translation matrix \(T \), Rotation Matrix \(R \).
 - After Translation: \(P' = TP \)
 - After Rotation: \(P'' = RP' = RTP \)

- Example: A point is first rotated and then translated.
 - After Rotation: \(P' = RP \)
 - After Translation: \(P'' = TP' = TRP \)

- Since matrix multiplication is not commutative,
 - \(RTP \neq TRP \)
Composition of Transformations

X Y

R T

X Y

R T

X Y

R T

X Y

R T

X Y
Scaling About a point

Scaling about origin -> Origin is fixed with transformation
Scaling about a point

Scaling about center -> Center is fixed with transformation
Done by concatenation

Translate so that center coincides with origin - $T(-1,-1)$.

Aditi Majumder, CS 112
Done by concatenation

Scale the points about the center – $S(2,2)$
Done by concatenation

Translate it back by reverse parameters – T(1,1)

Total Transformation: T(1,1) S(2,2) T(-1,-1) P
Rotation about a fixed point

- z-axis rotation of θ about its center P_f
- Translate by $-P_f$: $T(-P_f)$
- Rotate about z-axis : $R_z(\theta)$
- Translate back by P_f : $T(P_f)$
- Total Transformation $M = T(P_f)R_z(\theta)T(-P_f)$
Rotation About an Arbitrary Axis

- Axis given by
 - Unit vector u
 - Rooted at point P_1
- Anticlockwise angle of rotation is θ
- Rotate all points u by θ
Rotation about an Arbitrary Axis

- Make u coincide with Z-axis
 - Translate P_1 to origin
 - Coincides one point of the axis with origin
Rotation about an Arbitrary Axis

- Make u coincide with Z-axis
 - Translate P_1 to origin: $T(-P_1)$
 - Coincides one point of the axis with origin
- Rotate shifted axis to coincide with Z axis
Rotation about an Arbitrary Axis

- Make u coincide with Z-axis
 - Translate P_1 to origin: $T(-P_1)$
 - Coincides one point of the axis with origin
- Rotate shifted axis to coincide with Z axis
 - R_1: Rotate about X to lie on XZ plane
Rotation about an Arbitrary Axis

- Make u coincide with Z-axis
 - Translate P_1 to origin: $T(-P_1)$
 - Coincides one point of the axis with origin
- Rotate shifted axis to coincide with Z axis
 - R_1: Rotate about X to lie on XZ plane
 - R_2: Rotate about Y to lie on Z axis
Rotation about an Arbitrary Axis

- Make u coincide with Z-axis
 - Translate P_1 to origin: $T(-P_1)$
 - Coincides one point of the axis with origin
 - Rotate shifted axis to coincide with Z axis
 - R_1: Rotate about X to lie on XZ plane
 - R_2: Rotate about Y to lie on Z axis
Rotation about an Arbitrary Axis

- Make the axis coincide with the Z-axis
 - Translation to move P_1 to the origin: $T(-P_1)$
 - Coincides one point of the axis with origin
 - Rotation to coincide the shifted axis with Z axis
 - R_1: Rotation around X such that the axis lies on the XZ plane.
 - R_2: Rotation around Y such that the axis coincides with the Z axis
- R_3: Rotate the scene around the Z axis by an angle θ
- Inverse transformations of R_2, R_1 and T to bring back the axis to the original position
- $M = T^{-1} R_1^{-1} R_2^{-1} R_3 R_2 R_1 T$
Translation

- After translation

\[u = \frac{V}{|V|} = (a, b, c) \]
Rotation about X axis

- Rotate \(u \) about \(X \) so that it coincides with \(XZ \) plane

Project \(u \) on \(YZ \) plane: \(u' \) (0, \(b \), \(c \))

\(\alpha \) is the angle made by \(u' \) with \(Z \) axis

\[
\cos \alpha = \frac{c}{\sqrt{b^2 + c^2}} = \frac{c}{d}
\]

\[
\sin \alpha = \frac{b}{d}
\]

\[
R_1 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & \frac{c}{d} & -\frac{b}{d} & 0 & 0 \\
0 & \frac{b}{d} & \frac{c}{d} & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

\(u' = (0, b, c) \)

\(u'' = (a, 0, d) \)
Rotation about Y axis

- Rotate u'' about Y so that it coincides with Z axis

$$\cos \beta = \frac{d}{\sqrt{a^2 + d^2}} = \frac{d}{\sqrt{a^2 + b^2 + c^2}} = \frac{d}{\sqrt{a^2 + b^2 + c^2}}$$

$$\sin \beta = \frac{a}{d}$$

$u'' = (a, 0, d)$

$$R_2 = \begin{bmatrix} d & 0 & -a & 0 \\ 0 & 1 & 0 & 0 \\ a & 0 & d & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Rotation about Z axis

- Rotate by θ about Z axis

$$R_3 = \begin{bmatrix}
\cos\theta & -\sin\theta & 0 & 0 \\
\sin\theta & \cos\theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{bmatrix}$$
\[M = T^{-1} R_1^{-1} R_2^{-1} R_3(\theta) R_2(\beta) R_1(\alpha) T \]

\[= T^{-1} R_x^{-1} R_y^{-1} R_z(\theta) R_y(\beta) R_x(\alpha) T \]

\[= T^{-1} R_x(-\alpha) R_y(-\beta) R_z(\theta) R_y(\beta) R_x(\alpha) T \]
Faster Way

Faster way to find R_2R_1

- u_x, u_y, u_z are unit vectors in the X, Y, Z direction

Set up a coordinate system where $u = u'_z$

$u'_z = u$

$u'_y = \frac{u \times u_x}{|u \times u_x|}$

$u'_x = u'_y \times u'_z$

$R = R_2R_1 = \begin{bmatrix}
 u'_{x1} & u'_{x2} & u'_{x3} & 0 \\
 u'_{y1} & u'_{y2} & u'_{y3} & 0 \\
 u'_{z1} & u'_{z2} & u'_{z3} & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}$

$R_1^{-1}R_2^{-1} = R^{-1}$
Rigid and Affine Transformations

- **Rigid (Does not deform the object)**
 - Preserves angles and lengths
 - Rotation and translation

- **Affine (Deforms in a restricted manner)**
 - Preserves collinearity and ratio of lengths
 - Angles may not be preserved
 - Scaling and shear are affine but not rigid
 - Can be expressed as a combination of rotation, translation, scaling and shear
Transformations

- Modelview Transformation generates modelview matrix (GL_MODELVIEW)
- Projection Transformation generates projection matrix (GL_PROJECTION)
- Premultiply modelview with projection and apply it to all the vertices of the model
Coordinate Systems

- You Say: A point P is “first translated” and “then rotated”.
- You Write: $P' = RTP$ (write Rotation first, then translation, then the point)
- Right to Left: “Global Coordinate System”
- Left to Right: “Local Coordinate System”
- Results of both are same
 - Since matrix multiplication is associative
 - Just the interpretation is different.
Local/Global Coordinate Systems

GCS: Right to Left: “point is first translated and then rotated”

LCS: Left to Right: “coordinate first rotated and then translated”

Aditi Majumder, CS 112
Local / Global Coordinate Systems

GCS: Right to Left: “point is first scaled and then rotated”

LCS: Left to Right: “coordinate first rotated and then scaled”
Coordinate Systems for Modelview

OpenGL follows LOCAL COORDINATE SYSTEM

`glLoadIdentity()`
`glTranslate(...)`
`glRotate(...)`
`glScale(...)`
`DrawModel()`

Means: TRS.P (You issue transformation commands in the order you write!!)
Loading, Pushing and Popping

- `glLoadmatrix(myarray)`
 - If it is easier to set up the matrix yourself, like shear

- `glPushmatrix()`, `glPushMatrix()`
  ```c
  glPushMatrix();
  glTranslatef(...);
  glScalef(...);
  glPopMatrix();
  ```
OpenGL Stack

Function 1 (...)
glLoadIdentity()
glTranslate(...)
glRotate(...)
DrawModel(All objs)

Function 2 (...)
glPushMatrix(...)
glScale(...)
DrawModel(Obj A)
DrawModel(Obj B)
glPopMatrix(...)