CS 112 - Hierarchical Model Representation

Aditi Majumder, CS 112

Slide 1

Animations

- Need efficient representation of
 - Model geometry
 - Motion
 - Interactive rendering

Aditi Majumder, CS 112

Dependency

- Any transformation applied to the parent will be undergone by the children
 - Children must be placed appropriately with respect to the parent
- Children may have their own independent movement
 - Not transmitted to the parent

Aditi Majumder, CS 112

Slide 5

Representing Transformations

- Transformation with respect to the parent
- Transformation to place it appropriately with respect to the parent

Aditi Majumder, CS 112

- Transformation with respect to the parent
- Transformation to place it appropriately with respect to the parent

Aditi Majumder, CS 112

Slide 7

Representing Transformations

 Assume each part is defined with origin at center

Aditi Majumder, CS 112

- Assume each part is defined with origin at center
- R_w

Aditi Majumder, CS 112

Slide 9

Representing Transformations

- Assume each part is defined with origin at center
- $\blacksquare R_{w}$
- \blacksquare T_{we}

Aditi Majumder, CS 112

- Assume each part is defined with origin at center
- R_w Wrist
- T_{we} Wrist
- R_E Elbow and Wrist

Aditi Majumder, CS 112

Slide 11

Representing Transformations

- Assume each part is defined with origin at center
- R_w Wrist
- T_{we} Wrist
- R_e Elbow and Wrist
- T_{es} Elbow and Wrist

Aditi Majumder, CS 112

- Assume each part is defined with origin at center
- R_w Wrist
- T_{we} Wrist
- R_e Elbow and Wrist
- T_{es} Elbow and Wrist
- R_s Shoulder, elbow and wrist

Aditi Majumder, CS 112

Slide 13

Representing Transformations

- Assume each part is defined with origin at center
- R_w Wrist
- T_{we} Wrist
- R_e Elbow and Wrist
- T_{es} Elbow and Wrist
- R_s Shoulder, elbow and wrist

Wrist: $R_s T_{es} R_e T_{we} R_w$

Elbow: R_sT_{es}R_e

Shoulder: R_s

Aditi Majumder, CS 112

Data Structure

- Depth first traversal of the tree
- Push matrix when entering a node
- Pop matrix when leaving a node
- Render the node as you encounter it
- Example

Aditi Majumder, CS 112

Representing Motion

- Keyframes
 - Generate the transformations for key postures
 - Done manually
 - Interpolate everything in between
 - Done automatically

Aditi Majumder, CS 112