Edge Detection

Slides from Cornelia Fermüller and Marc Pollefeys
Edge detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels
Origin of Edges

- Edges are caused by a variety of factors:
 - depth discontinuity
 - surface normal discontinuity
 - surface color discontinuity
 - illumination discontinuity

- Edges are caused by a variety of factors
Edge detection

1. Detection of short linear edge segments (edgels)
2. Aggregation of edgels into extended edges
3. Maybe parametric description
Edge is Where Change Occurs

- Change is measured by derivative in 1D
- Biggest change, derivative has maximum magnitude
- Or 2nd derivative is zero.
Image gradient

- The gradient of an image:
 \[\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \]

- The gradient points in the direction of most rapid change in intensity.

- The gradient direction is given by:
 \[\nabla f = [0, \frac{\partial f}{\partial y}] \]

- The gradient direction is given by:
 \[\theta = \tan^{-1}\left(\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}} \right) \]
 - Perpendicular to the edge

- The edge strength is given by the magnitude:
 \[||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \]
How discrete gradient?

- By finite differences
 - \(f(x+1,y) - f(x,y) \)
 - \(f(x, y+1) - f(x,y) \)
The Sobel operator

- Better approximations of the derivatives exist
 - The *Sobel* operators below are very commonly used

\[
\begin{array}{ccc}
\frac{1}{8} & -1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{ccc}
\frac{1}{8} & 1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1 \\
\end{array}
\]

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn’t make a difference for edge detection
 - the 1/8 term *is* needed to get the right gradient value, however
Gradient operators

(a): Roberts’ cross operator
(b): 3x3 Prewitt operator
(c): Sobel operator
(d) 4x4 Prewitt operator

\[
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
0 & 1 \\
-1 & 0 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
1 & 0 \\
0 & -1 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-1 & 0 \\
-1 & 0 \\
-1 & 0 \\
-1 & 0 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-1 & 0 \\
-1 & 0 \\
-1 & 0 \\
-1 & 0 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-1 & 0 \\
-2 & 0 \\
-1 & 0 \\
-1 & 0 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
1 & 2 \\
0 & 0 \\
-1 & -2 \\
-3 & -3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-1 & 1 \\
-1 & 1 \\
-1 & 1 \\
-1 & 1 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-1 & 3 \\
-1 & 3 \\
-1 & 3 \\
-1 & 3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
1 & 3 \\
1 & 3 \\
1 & 3 \\
1 & 3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
3 & 3 \\
3 & 3 \\
3 & 3 \\
3 & 3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
3 & 3 \\
3 & 3 \\
3 & 3 \\
3 & 3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
\end{array}
\quad
\begin{array}{cc}
\Delta_1 & \Delta_2 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
-3 & -3 \\
\end{array}
\end{array}
Finite differences responding to noise

Increasing noise ->
(this is zero mean additive gaussian noise)
Smoothing reduces noise

- Generally expect pixels to “be like” their neighbours
 - surfaces turn slowly
 - relatively few reflectance changes
- Generally expect noise processes to be independent from pixel to pixel
- Implies that smoothing suppresses noise, for appropriate noise models
- Scale
 - the parameter in the symmetric Gaussian
 - as this parameter goes up, more pixels are involved in the average
 - and the image gets more blurred
 - and noise is more effectively suppressed
Solution: smooth first

- Look for peaks in \(\frac{\partial}{\partial x}(h \ast f) \)
Derivative theorem

\[
\frac{\partial}{\partial x} (h \ast f) = (\frac{\partial}{\partial x} h) \ast f
\]

- This saves us one operation:
Second derivative zero

- How to find second derivative?
- \(f(x+1, y) - 2f(x,y) + f(x-1,y) \)
- In 2D
- What is an edge?
 - Look for zero crossings
 - With high contrast
Laplacian of Gaussian: Marr-Heldrith

- Consider \(\frac{\partial^2}{\partial x^2} (h \ast f) \)

\[f \]

\[\frac{\partial^2}{\partial x^2} h \]

\[(\frac{\partial^2}{\partial x^2} h) \ast f \]
2D edge detection filters

\[h_\sigma(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}} \]

Gaussian

\[\frac{\partial}{\partial x} h_\sigma(u, v) \]

derivative of Gaussian

\[\nabla^2 h_\sigma(u, v) \]

Laplacian of Gaussian

\[\nabla^2 \]

is the **Laplacian** operator:

\[\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \]
Edge detection by subtraction

original
Edge detection by subtraction

smoothed (5x5 Gaussian)
Edge detection by subtraction

Why does this work?

smoothed – original
(scaled by 4, offset +128)
Gaussian - image filter

Gaussian

delta function

Laplacian of Gaussian
Optimal Edge Detection: Canny

• Assume:
 – Linear filtering
 – Additive Gaussian noise

• Edge detector should have:
 – Good Detection. Filter responds to edge, not noise.
 – Good Localization: detected edge near true edge.
 – Single Response: one per edge

• Detection/Localization trade-off
 – More smoothing improves detection
 – And hurts localization.
Optimal Edge Detection: Canny

- Smoothing: Noise Removal
- Gradient Computation
- Non-Maximal Suppression: Thinning
- Double Thresholding
- Hysteresis
The Canny edge detector

- original image (Lena)
The Canny edge detector

- norm of the gradient
The Canny edge detector

- Thresholding (thick edges)
The Canny edge detector

- thinning
Effect of σ (Gaussian kernel size)

- The choice depends on what is desired
 - large σ detects large scale edges
 - small σ detects fine features
Multi-Scale Edge Detection
Multi-Scale Edge Detection

- Edges in coarser level do not disappear in finer levels
- New edges are added
- Coarser level edges are most important
- Advances like a hierarchy
Scale Integration

- Different resolution images in different levels
- How do we know where the coarser level edges are in the finer edge detected image
- Seems very complex yet eye does it easily
Witkin’s Explanation

- If we do a continuous subsampling
 - Not possible in digital domain
- Edges are retained, new edges are added with refinement
Identifying parametric edges

- Can we identify lines?
- Can we identify curves?
- More general
 - Can we identify circles/ellipses?
- Voting scheme called Hough Transform
Hough Transform

- Only a few lines can pass through \((x,y)\)
 \[-mx + b\]
- Consider \((m,b)\) space
- Red lines are given by a line in that space
 \[-b = y - mx\]
- Each point defines a line in the Hough space
- Each line defines a point (since same \(m,b\))
How to identify lines?

- For each edge point
 - Add intensity to the corresponding line in Hough space
- Each edge point votes on the possible lines through them
- If a line exists in the image space, that point in Hough space will get many votes and hence high intensity
- Find maxima in Hough space
- Find lines by equations $y = mx + b$
Example

Input Image

Rendering of Transform Results

Distance from Centre

Angle
Problem with \((m,b)\) space

- Vertical lines have infinite \(m\)
- Polar notation of \((d, \theta)\)
- \(d = x\cos\theta + y\sin\theta\)
Basic Hough Transform

1. Initialize \(H[d, \theta] = 0 \)

2. for each edge point \(I[x, y] \) in the image
 for \(\theta = 0 \) to 180
 \(H[d, \theta] += 1 \)

3. Find the value(s) of \((d, \theta) \) where \(H[d, \theta] \) is maximum

4. The detected line in the image is given by
Extensions

- Use the image gradient

 1. same

 2. for each edge point $I[x,y]$ in the image, compute unique (d, θ) based on image gradient at (x,y)

 $H[d, \theta] += 1$

 3. same

 4. same

- Give more votes for stronger edges
- Change the sampling of (d, θ) to give more/less resolution
- The same procedure can be used with circles, squares, or any other shape