CS 112 - Collision Detection
Objects have millions of triangles

For two objects with \(m \) and \(n \) triangles
- You need \(mn \) triangle-triangle intersections
- \(10^{12} \) intersection computations for just \(\text{two} \) objects

Dynamic scenes – 30 frames per second
- Humungous computation needs

Need to make it efficient
Efficiency Measures

- Most of the time objects do not intersect
 - Fast rejections
 - Spend time on intersection computations only when objects intersect
- Two important issues
 - Bounding Volume – How closely it approximates the object?
 - Intersection Computation – How simple are the intersection computations?
Bounding Volumes

- Enclose the object
- The ratio of the object volume to the bounding volume should be as close to 1 as possible
- Depends on the shape of the object
Bounding Volumes

- **Axis-aligned**
 - The planes of the box is aligned with the *world coordinates*

- **Object oriented**
 - The planes are aligned to hug the object more closely
 - More rejections
Bounding Volumes

- Spherical
 - Enclosing *sphere*

- Spherical Shells
 - Between *concentric spherical* shells

- Convex Hull
 - Closest Fit (Optimal)
 - Smallest Ratio
Intersection Calculations

- **Axis aligned Bounding Box**
 - Compare min and max in X, Y and Z directions
 - If all of them intersect, then the object intersects

- **Spherical**
 - Find the distance between the spheres
 - If less than the summation of the radius, then intersects
Intersection Computations

- Object Oriented and Spherical Shells
 - Complex computations
 - Google for reference

- Convex Hull
 - Convex hull of the object is the object itself
 - Therefore, need exhaustive triangle-triangle computation
Updating the bounding boxes

- Axis aligned Bounding box
 + Translation invariant
 - Any other kind of movements, box no longer remains axis-aligned
 - Needs to be recomputed frame by frame
 + Very simple computation
Updating the bounding boxes

- **Spherical**
 - Transformation invariant
 - Simple intersection computation
 - Lot of empty space in the volume

- **Oriented Bounding Box**
 - Transformation invariant
 - Complex intersection computation
 - Compact volume
Hierarchical Bounding Volumes

- Similar to spatial subdivision
- But for each object
- Slightly different
 - Union of children may not encompass the parent
Hierarchical Bounding Volumes

- If does not intersect, do not explore the children.
- If intersects, do bounding volume intersection on children.
- Continue till you get to the triangle-triangle intersection.
 - Very few of them needs to be computed.