Pinhole Camera

- Linear geometric camera model that mimic our eye closely
- 3D to 2D image creation
- How to reconstruct 3D from 2D images?
 - Under-constrained problem
 - How do we constrain it?
The complementary view

- If we have a precise computer representation of the 3D world, how realistic 2D images can we generate?
- What are the best way to model 3D world?
- How to render them?
Modeling

• Humans perceive objects
 – But this is too high level
• How do we define objects
 – Primitives (triangle, polygon, surfaces)
• What kind of objects can we consider?
Most common

- Polygonal model
 - Each primitive is a planar polygon
 - Object is made of a mesh of polygons
- Triangular model
 - Triangle is always planar
 - Hence, less responsibility on modeling package
Most common format

• List of vertices and attributes
 – 3D coordinates, color, texture coordinates....
 – Geometric information
 • What are the properties of the primitives?
 – Positions, normals, curvature

• List of triangles
 – Indices of triangles
 – Topological information
 • How are the triangles connected?
Object Representation: Example
Topological Properties

- **Manifold**
 - Every edge has exactly two incident triangles

- **Manifold with boundaries**
 - Every edge has one or two incident triangles

- **Non-manifold**
 - Not with above restrictions
Topological Properties

- Euler characteristics
 - V-E+F
- Genus
 - Number of handles
 - \(e = 2-2g \)
- Orientability
- Dimension
 - No. of parameters that can be changed and still be on the primitive
 - Can be embedded in higher dimension space
- Cannot change these properties by changing the geometric properties
Topological Properties

- Cannot change these properties by changing the geometric properties
- Will deal with 2D orientable manifolds
Why triangles?

- Minimal planar primitives
 - No restrictions to be imposed during model building
- Piecewise Linear Representation
 - Easy to implement in hardware
 - Easy to interpolate attributes
 - Convex Linear Interpolation
 - Unique coefficients
Why not other?

- Quadrilaterals
 - Non-unique interpolation
- Curved patches
 - Has to be rasterized for rendering
 - Can be useful for computations
 - Used for large simulation applications
Rendering Pipeline

- **Input**
 - Soup of 3D triangles

- **Output**
 - 2D image from a particular view

- **Why pipeline?**
 - Contains different stages
 - Each triangle is sent through it in a pipeline fashion
Stages

- Model-View Transformation
- Projection Transformation
- Clipping and vertex interpolation of attributes
- Rasterization and pixel interpolation of attributes
- Graphics Hardware
Transformations

- Consider triangles with only color attributes
 - 4D homogeneous vertices V
- Model Transformation ($M - 4x4$)
 - Scene Building
- View Transformation ($E - 4x4$)
 - Scene Viewing (Extrinsic Parameter Matrix)
- Projection Transformation ($P - 4x4$)
 - Scene Projection (Intrinsic Parameter Matrix)
- Complete Transformation is PEMV
Model Transformation

- World Coordinates
- Object Coordinates
World and Object Coordinates

MODEL TRANSFORMATION
Model Transformation

- Transforming from the object to world coordinates
 - Placing the object in the desired position, scale and orientation

- Can be done by any kind of transformations
 - Graphics hardware/library support only linear transformations like translate, rotate, scale, and shear
Advantages

- Allows separation of concerns
 - When designing objects do not worry about scene
 - Create a library of objects
- Allows multiple instantiation by just changing the location, orientation and size of the same object
View Transformation

- **Input**
 - Position and orientation of eye (9 parameters)
 - View point (COP)
 - Normal to the image plane – N
 - View Up – U

- **To align**
 - Eye with the origin
 - Normal to the image plane with negative Z axis
 - View Up vector with positive Y axis
 - Can be achieved by rotation and translation
Projection Transformation

- Define the “view frustum” (6 parameters)
 - Assume origin is the view point
 - Near and far planes (planes parallel to XY plane in the negative Z axis) [2]
 - Left, right, top, bottom rectangle defined on the near plane [4]
Projection Transformation
Projection Transformation

- Transforming the view frustum (along with the objects inside it) into a
 - cuboid with unit square faces on the near and far planes
 - the negative Z axis passes through the center of these two faces.
 - Projecting the objects on the near plane

- Consists of a shear, scale and perspective projection
Window Coordinate Transformation

• Scale XY coordinates of unit cuboid to reflect size of window (relative pixel coordinates)

• Translate these coordinates to the position of the window on the monitor screen to represent the absolute pixel coordinates.

• Z value is used for resolving occlusion
Clipping (3D or 2D)

- Removing the part of the polygon outside the view frustum
- If the polygon spans inside and outside the view frustum
 - introduce new vertices on the boundary
Interpolation of Attributes

- For the new vertices introduced
 - compute all the attributes
 - Using interpolation of the attributes of all the original vertices
Interpolation of Attributes

- For the new vertices introduced
 - compute all the attributes
 - Using interpolation of the attributes of all the original vertices
Rasterization

- Process of generating pixels in the scan (horizontal) line order (top to bottom, left to right).
 - Which pixels are in the polygon
Interpolation of Attributes

- Interpolate the colors and other attributes at pixels from the attributes of the left and right extent of the scan line on the polygon edge.
- Also in scan line order
OpenGL

- A library that allows you to do several graphics related operations
 - E.g. All the transformations
 - Prefix gl
 - e.g. gltranslate, glscale

- Glut
 - Wrapper around gl
 - Calls gl functions
 - Prefix glu
Model Transformation

• We like to premultiply
 – A(B(CP)

• Advantage
 – Global Coordinate system
 – Intuitive for humans

• Disadvantage
 – Start with P, keep premultiplying
 – Do once for every point
OpenGL

- ((AB)C)P
- Post-multiplies
- Generates matrix once
- Then post-multiplies once with all points
- Assumes local coordinate system
Be careful

- You want to
- Rotate object
- Translate it
- Scale it
- STRP

- Write OpenGL
- Rotate object
- Translate it
- Scale it
- RTSP

WRONG!
Be careful

- You want to
- Rotate object
- Translate it
- Scale it
- STRP

- Write OpenGL
- Scale object
- Translate it
- Rotate it
- STRP

RIGHT!
View Transformation

- View is changing interactively
- Change of view is a complementary change of the model
- OpenGL assumes a default view
- Find transformation to match view to the default
- Apply this to the model
 - This is the complementary transformation
Default OpenGL View

- Eye at Origin
- Image plane perpendicular to negative Z
- View Up Vector coincident with Y
View Transformation

- Eye at $E = (x_0, y_0, z_0)$
- Normal to image plane is not Z, but arbitrary N
 - Normal meets image plane at (x_n, y_n, z_n)
- View Up V is not Y
 - Not perpendicular to N
- Transformation to default OpenGL View

$$u'_z = \frac{N}{|N|}$$
$$u'_x = \frac{V}{|V|} \times u'_z$$
$$u'_y = u'_z \times u'_x$$
View Transformation

- Eye at $E=(x_0, y_0, z_0)$
- Normal to image plane is not Z, but arbitrary N
 - Normal meets image plane at (x_n, y_n, z_n)
- View Up V is not Y
 - Not perpendicular to N
- Transformation to default OpenGL View

$$R(N,V).T(-E)$$
gluLookAt

- gluLookAt
 - Eye coordinate (E)
 - Look At vector – where normal meets the plane
 - Find N and n
 - View Up Vector (V)

- Generates this matrix and postmultiplies it modelview matrix
Have you seen this before?

- Multiplication of rotation and translation matrix
- \([R \mid RT] = RT\)
- This is the same as the extrinsic parameter matrix we saw in the pin-hole camera model
Perspective Projection

\[
x_p/x = y_p/y = z_p/z
\]

\[
x_p = \frac{x}{z/n}
\]

\[
y_p = \frac{y}{z/n}
\]
Gaze Direction

(0,0,zp)

(\(x_v, y_v, z_p\))
Coincide this with N

- **Shear Matrix**

 \[
 \text{Sh}(x_v/n, y_v/n) = \begin{bmatrix}
 1 & 0 & x_v/n & 0 \\
 0 & 1 & y_v/n & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

- Can be defined by the window extents
 - \(-l, r, t, b\)

 \[
 \text{Sh}((r+l)/2n, (t+b)/2n) = \begin{bmatrix}
 1 & 0 & r+l/2n & 0 \\
 0 & 1 & t+b/2n & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]
Naming confusions

- View direction
- Gaze direction
- OpenGL calls
 - Normal (Head direction)
 - View direction
Following Shear

- Center of image plane is (0,0)
- \(l = -r \)
- \(t = -b \)
Now normalize X and Y

- Map X and Y between -1 to +1
- Scale by $2/(r-l)$ and $2(t-b)$
Together

- Proj. Scale. Shear

\[
\begin{pmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{r-l}{t+b} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]
• Remove 3rd row and 4th col

• Looks like K
 – n is focal length
 – r+1 is change of center
 – r-l is inversely proportional to number of pixels
Where is the lost dimension?

- Why 4x4?
- Z should map to n always, since depth of the image is same
- But we need to resolve occlusion
What do we do?

This is the correct perspective transform:

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix} \rightarrow \begin{bmatrix}
 x_p \\
 y_p \\
 n \\
 1
\end{bmatrix}
\]

We would like to retain the value of z. We are only changing the value of z, which is anyway not useful for 2D image generation using perspective projection.
How do we use the z?

- Perspective projection is applied on the vertices of a triangle
- Can depth be resolved in the triangle level?
 - T1 is not infront of T2 and vice versa
 - Part of T1 is in front of T2 and vice versa
How do we use the z?

- Occlusion has to be resolved in the pixel level
- How do we find z for a point inside the triangle
 - Not its vertex
- We do not want to apply 3D to 2D xform
 - Too expensive
- Interpolate in 2D (screen space interpolation)

![Diagram showing T1 and T2 triangles with view direction](image)
Screen Space Interpolation

- Linear interpolation of z in screen space = linear interpolation of depth of points in object space
- Does not work
- Why?
 - Perspective projection is inversely proportional to
 - Over-estimates
 - Wrong occlusion resolution
What is correct?

- Interpolate 1/Z
 - Reciprocal of Z
 - Interpolate in screen space
 - Take reciprocal again

\[
\frac{1}{Z_t} = \frac{1}{Z_0} (1-u) + \frac{1}{Z_1} u
\]
Transforming z to $1/z$

Instead of this ... we would like to store $1/z$ for interpolation purposes
Bounding Z

- Depth of field effect
- Define a far plane - f
- Leads to culling of distant objects
 - Efficiency issues
Normalizing $1/z$

- Map $1/n$ and $1/f$ to -1 and +1
 - Three steps only on z coordinates
 - Translate the center between $-1/n$ and $-1/f$ to origin
 - $T(tz)$ where $tz = (1/n+1/f)/2$
 - Scale it to match -1 to +1
 - $S(sz)$ where $sz = 2/(1/n-1/f)$
- Whole z transform
 - $(1/z + tz)sz = 1/z(2nf/f-n) + (f+n)/(f-n)$
Projection Transformation
Final Matrix

- Defined only in terms of the planes of the view frustum

\[
\begin{pmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{t-b} & 0 \\
0 & \frac{2n}{t-b} & 0 & 0 \\
0 & 0 & \frac{f+n}{f-n} & \frac{2fn}{f-n} \\
0 & 0 & 1 & 0
\end{pmatrix}
\]
OpenGL stack of matrices

- Two matrices
 - MODELVIEW (M) and PROJECTION (P)
 - $PM(x,y,z,1)^T$
- Two stacks
- All operations carried out on the top of the stack by postmultiplying
 - Push and Pop Matrices
- Why?
 - Huge advantage in animation applications
Red Book is the answer

- Now online
- Provide you with template
- You have to just insert code to make it work