Animations

- Need efficient representation of
 - Model geometry
 - Motion
 - Interactive rendering
Inherent relationship of parts

- Arm – Simple model
- Shoulder moves all the three parts
- Elbow moves everything below it
- Inherent hierarchical relationship
Inherent relationship of parts

Directed Acyclic Tree

Shoulder → Elbow → Wrist

Shoulder → Elbow → Wrist
Dependency

- Any transformation applied to the parent will be undergone by the children
 - Children must be placed appropriately with respect to the parent
- Children may have their own independent movement
 - Not transmitted to the parent
Representing Transformations

- Transformation with respect to the parent
- Transformation to place it appropriately with respect to the parent
Representing Transformations

- Transformation with respect to the parent
- Transformation to place it appropriately with respect to the parent
Assume each part is defined with origin at center
Representing Transformations

- Assume each part is defined with origin at center

 R_w
Representing Transformations

- Assume each part is defined with origin at center
 - R_w
 - T_{we}
Representing Transformations

- Assume each part is defined with origin at center
 - R_w - Wrist
 - T_{we} - Wrist
 - R_E - Elbow and Wrist
Representing Transformations

- Assume each part is defined with origin at center
- \(R_w \) - Wrist
- \(T_{we} \) - Wrist
- \(R_e \) - Elbow and Wrist
- \(T_{es} \) - Elbow and Wrist
Representing Transformations

- Assume each part is defined with origin at center
- R_w – Wrist
- T_{we} - Wrist
- R_e – Elbow and Wrist
- T_{es} – Elbow and Wrist
- R_s – Shoulder, elbow and wrist
Representing Transformations

- Assume each part is defined with origin at center
- R_w – Wrist
- T_{we} – Wrist
- R_e – Elbow and Wrist
- T_{es} – Elbow and Wrist
- R_s – Shoulder, elbow and wrist

Wrist: $R_s T_{es} R_e T_{we} R_w$
Elbow: $R_s T_{es} R_e$
Shoulder: R_s
Data Structure

- Depth first traversal of the tree
- Push matrix when entering a node
- Pop matrix when leaving a node
- Render the node as you encounter it
- Example
Data Structure

Shoulder - Rs

Elbow - Re

Wrist - Rw

Torso - Rt

Rs Tes Re Tws Rw

Rs Tes Re

Rs
Data Structure

- **Shoulder** - R_s
 - T_{es}
 - T_{ts}
 - Torso - R_t

- **Elbow** - R_e
 - T_{we}

- **Wrist** - R_w

$$\begin{array}{c}
R_s \ T_{es} \ R_e \\
R_s
\end{array}$$
Data Structure

Shoulder - Rs

Torso - Rt

Elbow - Re

Wrist - Rw

Rs
Data Structure

Shoulder - R_s

Elbow - R_e

Wrist - R_w

Torso - R_t

T_{es}

T_{ts}

T_{we}
Representing Motion

- Keyframes
 - Generate the transformations for key postures
 - Done manually
 - Interpolate everything in between
 - Done automatically