Texture Mapping

CS 211A
What is Texture Mapping?

- Color is not sufficient for realistic appearances
- Wrap (Map) a image on a surface
 - Like a wall-paper
 - Like gift wrapping
2D Texture Mapping

- Three spaces

- Texture Space
- Object Space
- Screen Space

Done by the application
Generate texture coordinates at vertices

Done while rasterization
Texture Space to Object Space

- Rectangular image mapped to arbitrary surfaces
 - The texture will get stretched differently at different places on the surface based on the curvature
 - Imagine wrapping a rectangular image on a sphere
 - Two Ways to do it
Method 1

- Find the parametric representation of the surface defined by parameters \((u,v)\)
 - Since 2D object embedded in real world
- Map \((u,v)\) to \((s,t)\) – \((s,t)\) varies from 0 to 1
- Find the \((u,v)\) for each vertex in the tessalated object and find the corresponding \((s,t)\)
Example: Open Cylinder

- \(u \) – angle, \(-180 \leq u \leq 180\)
- \(v \) – height, \(0 \leq v \leq 1\)
- \(x = R \cos(u)\)
- \(y = R \sin(u)\)
- \(z = v\)

Map \((s,t)\) to \((u,v)\)

- \(s = ((u+180)/360)\)
- \(t = v\)
Example: Sphere

- u – horizontal angle
 - $-180 \leq u \leq 180$
- v – vertical angle
 - $-90 \leq v \leq 90$
- $x = R \cos (v) \cos (u)$
- $y = R \cos (v) \sin (u)$
- $z = R \sin (v)$
- Map (s,t) to (u,v)
 - $s = (u+180)/360$
 - $t = (v+90)/180$
Results

Depends on the parameterization
Method 2: Intermediate Geometry

- Difficult to parameterize arbitrary geometry
- Define intermediate simple surface and parameterize it: a plane, sphere or cylinder
- Enclose arbitrary geometry within simple geometry
- More close these shapes are, better the mapping
Result (Planar Mapping)
Result (Cylindrical Mapping)
2D Texture Mapping

- Three spaces

Texture Space → Object Space → Screen Space

Done by the application
Generate texture coordinates at vertices

Done while rasterization
Object Space to Screen Space

- The texture coordinates are known in the object space
- Needs to be interpolated in the screen space
Interpolation of Attributes

\[I_t = I_1 + t(I_2 - I_1) \]

\[t = \frac{sZ_1}{sZ_1 + (1-s)Z_2} \]

\[I_t = \left(\frac{I_1}{Z_1} + s \left(\frac{I_2}{Z_2} - \frac{I_1}{Z_1} \right) \right) \left/ \frac{1}{Z_t} \right. \]

0 ≤ s ≤ 1, 0 ≤ t ≤ 1

Diagram:
- A \((X_1, Z_1)\), attribute = \(I_1\)
- B \((X_2, Z_2)\), attribute = \(I_2\)
- C \((X_t, Z_t)\), attribute = \(I_t\)

Points:
- \(a(u_1, d)\)
- \(b(u_2, d)\)
- \(c(u_s, d)\)
- \(s\) and \(1-s\)
- \(0 ≤ s ≤ 1, 0 ≤ t ≤ 1\)
- \(d\) and \(x\)

Line AB
Sampling the Texture

• You have FP numbers between 0 and 1 for each pixel

• How do you get the colors from the texture image?
Point Sampling

- Multiply by the texture size to generate another FP value
- Round off the FP values to integers (GL_NEAREST)
- Pick the color of the integer texel
Linear Interpolation

• Multiply by the texture size to generate another FP value

• Interpolate the color from the four nearest texels using bilinear interpolation (GL_LINEAR)

• Does not remove aliasing completely since sampling is still inadequate
Aliasing Problems

- Scan conversion samples the texture
- If # of pixels in triangle much smaller than the size of texture, it cannot sample all frequencies adequately
- Miss the stripes completely
Reducing Frequency content

- Filter the image
 - Simplest: Averaging pixels (Box Filter)
- Reduces the frequency content
- Smaller image size
 - Matched is # of pixels triangle project to
 - Hence, sufficient sampling
How does it help?

Filtering reduces frequency content. Hence, lower sampling is sufficient.

过滤减少频率内容。因此，较低的采样率是足够的。
Level of Details (LODs)

- Keep many LODs of same image
- Filtered and subsampled
 - Reduced frequency content
- Pick the correct level based on the size of the projected triangle
- Anti-aliased image
Mipmapping: Efficient storage and retrieval of LODS

- Special way of storing images of different resolutions
 - T₁: 128x128 (RGB)
 - T₂: 64x64 (RGB)
 - T₃: 32x32 (RGB)
 - And so on...
- Choose appropriate resolution based on screen space projection

Size: 4 x original texture

<table>
<thead>
<tr>
<th>T₁(R)</th>
<th>T₁(G)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>T₁(B)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T₂(R)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T₂(B)</td>
</tr>
</tbody>
</table>