Edge Detectors
Edge Detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels
Edges

- Edges are caused by a variety of factors

- Surface normal discontinuity
- Depth discontinuity
- Surface color discontinuity
- Illumination discontinuity
Edges

• Edge is Where Change Occurs
• Change is measured by derivative in 1D
• Biggest change, derivative has maximum magnitude
• Or 2nd derivative is zero.
Image Gradient

- The gradient of an image: \(\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \)
- The gradient points in the direction of most rapid change in intensity
Image Gradient

- gradient direction
 \[\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \]

- The edge strength
 \[\| \nabla f \| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]

- **Discrete Gradient**: by finite differences
 \[f(x+1,y) - f(x,y) \]
 \[f(x, y+1) - f(x,y) \]
Types of Edges

- step edge
- ramp edge
- roof edge
Sobel Operator

- Better approximations of the derivatives
 - *Sobel* operators

 \[
 \begin{array}{ccc}
 -1 & 0 & 1 \\
 -2 & 0 & 2 \\
 -1 & 0 & 1 \\
 \end{array}
 \quad \begin{array}{ccc}
 1 & 2 & 1 \\
 0 & 0 & 0 \\
 -1 & -2 & -1 \\
 \end{array}
 \]

- The standard def. of the Sobel operator omits the 1/8 term
 - Doesn’t make a difference for edge detection
 - The 1/8 term *is* needed to get the right gradient value
Sobel Operator - Result

Original

Convolution with Sobel

Thresholding (Value = 64)

Thresholding (Value = 96)
Noise - Effect
Solution: Smooth First

\[h \ast f \]

\[\frac{\partial (h \ast f)}{\partial x} \]
Derivative Theorem

\[\frac{\partial}{\partial x} (h \ast f) = \left(\frac{\partial}{\partial x} h \right) \ast f \]

- This saves us one operation:

\[f \]

\[\frac{\partial}{\partial x} h \]

\[\left(\frac{\partial}{\partial x} h \right) \ast f \]
Result

Without Gaussian

With Gaussian
Second derivative

- \(f(x+1, y) - 2f(x, y) + f(x-1, y) \)
- In 2D
- What is an edge?
 - Look for zero crossings
 - With high contrast
 - Laplacian Kernel

\[
\begin{bmatrix}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{bmatrix}
\quad
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{bmatrix}
\]
Laplacian of Gaussian

\[f \]

\[\frac{\partial^2}{\partial x^2} h \]

\[(\frac{\partial^2}{\partial x^2} h) \ast f \]
2D edge detection filters

\[h_\sigma(u, v) = \frac{1}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{2\sigma^2}} \]

Gaussian

\[\frac{\partial}{\partial x} h_\sigma(u, v) \]

derivative of Gaussian

\[\nabla^2 h_\sigma(u, v) \]

Laplacian of Gaussian
Edge detection by subtraction

original smoothed smoothed – original
Laplacian of Gaussian

Gaussian = delta function = Laplacian of Gaussian
Optimal Edge Detection: Canny

• Assume:
 • Linear filtering
 • Additive Gaussian noise

• Edge detector should have:
 • Good Detection. Filter responds to edge, not noise.
 • Good Localization: detected edge near true edge.
 • Minimal Response: one per edge

• Detection/Localization trade-off
 • More smoothing improves detection
 • And hurts localization.
Canny Edge Detector

- Suppress Noise
- Compute gradient magnitude and direction
- Apply Non-Maxima Suppression
 - Assures minimal response
- Use hysteresis and connectivity analysis to detect edges
Non-Maxima Suppression

- Edge occurs where gradient reaches a maxima
- Suppress non-maxima gradient even if it passes threshold
- Only eight directions possible
 - Suppress all pixels in each direction which are not maxima
 - Do this in each marked pixel neighborhood
Hysteresis

• Avoid streaking near threshold value

• Define two thresholds – \(L, H \)
 • If less than \(L \), not an edge
 • If greater than \(H \), strong edge
 • If between \(L \) and \(H \), weak edge
 • Analyze connectivity to mark is either non-edge or strong edge
 • Removes spurious edges
Steps of Canny Edge Detector

Original Gradient Magnitude Non-Maximum Suppression After Hysteresis
Comparison with Laplacian Based

Original Curvature Based Canny
Effect of Smoothing (kernel size)
Multi-resolution Edge Detection

- Smoothing
- Eliminates noise edges.
- Makes edges smoother.
- Removes fine detail.
fine scale, high threshold
coarse scale, high threshold
Coarse scale, low threshold
Identifying parametric edges

• Can we identify lines?
• Can we identify curves?
• More general
 • Can we identify circles/ellipses?
• Voting scheme called Hough Transform
Hough Transform

- Only a few lines can pass through \((x,y)\)
 - \(mx+b\)
- Consider \((m,b)\) space
- Red lines are given by a line in that space
 - \(b = y - mx\)
- Each point defines a line in the Hough space
- Each line defines a point (since same \(m,b\))
How to identify lines?

- For each edge point
 - Add intensity to the corresponding line in Hough space
- Each edge point votes on the possible lines through them
- If a line exists in the image space, that point in Hough space will get many votes and hence high intensity
- Find maxima in Hough space
- Find lines by equations $y - mx + b$
Example
Problem with \((m,b)\) space

- Vertical lines have infinite \(m\)
- Polar notation of \((d, \theta)\)
- \(d = x \cos \theta + y \sin \theta\)
Basic Hough Transform

1. Initialize $H[d, \theta] = 0$
2. for each edge point $I[x,y]$ in the image
 for $\theta = 0$ to 180
 \[d = x \cos \theta + y \sin \theta \]
 $H[d, \theta] += 1$
3. Find the value(s) of (d, θ) for max $H[d, \theta]$

A similar procedure can be used for identifying circles, squares, or other shape with appropriate change in Hough parameterization.
Corner Detections

• Corners have more lines passing through them than pixels on edges

• Should be easier

• But edge detectors fail – why?
 • Right at corner, gradient is ill-defined
 • Near corner, gradient has two different values
Moravec Operator

- Self-similarity
 - How similar are neighboring patches largely overlapping to me?
- Most regions - Very similar
- Edges - Not similar in one direction (perpendicular to edge)
- Corners – not similar in any direction
- Interest point detection – not only corners
Measuring self-similarity

- SSD = Sum of squared differences
- Corner is local maxima

\[V = \sum_{i=1}^{9} (A_i - B_i)^2 = 2 \times 255^2 \]

\[V = \sum_{i=1}^{9} (A_i - B_i)^2 = 3 \times 255^2 \]
Limitations

- Sensitive to noise
 - Responds for isolated pixel
- Larger patches for robustness
Limitations

- Responds also to diagonal edges
Limitations

- Anisotropic (Not rotationally invariant)
Harris & Stephens/Plessey Corner Detector

- Consider the differential of the corner score with respect to direction
- Describes the geometry of the image surface near the point \((u,v)\)

\[
A = \sum_u \sum_v w(u,v) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \langle I_x^2 \rangle & \langle I_x I_y \rangle \\ \langle I_x I_y \rangle & \langle I_y^2 \rangle \end{bmatrix},
\]
How to find the corner?

- The eigenvalues are proportional to the principal curvatures
- If both small, no edge/corner
- If one big and one small, edge
- If both big, then corner
Rotationally Invariant

- If w is Gaussian, then this is isotropic

$$A = \sum_u \sum_v w(u, v) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \langle I_x^2 \rangle & \langle I_x I_y \rangle \\ \langle I_x I_y \rangle & \langle I_y^2 \rangle \end{bmatrix},$$
Non-linear filters: Median filter

- Replace by median of the neighborhood
- No new gray levels
- Removes the odd man out
 - Good for outlier removal
- Retains edges
Median filter

<table>
<thead>
<tr>
<th></th>
<th>INPUT</th>
<th>MEDIAN</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>