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Abstract

Study of contrast sensitivity of the human eye shows that our
contrast discrimination sensitivity follows the weber law for
suprathreshold levels. In this paper, we apply this fact effec-
tively to design a contrast enhancement method for images
that improves the local image contrast by controlling the lo-
cal image gradient. Unlike previous methods, we achieve this
without segmenting the image either in the spatial (multi-
scale) or frequency (multi-resolution) domain.

We pose contrast enhancement as an optimization problem
that maximizes the average local contrast of an image. The
optimization formulation includes a perceptual constraint
derived directly from human suprathreshold contrast sen-
sitivity function. Then, we propose a greedy heuristic, con-
trolled by a single parameter, to approximate this optimiza-
tion problem. The results generated by our method is su-
perior to existing techniques showing none of the common
artifacts of contrast enhancements like halos, hue shift, and
intensity burn-outs.

CR Categories: I.4.0 [Image Processing and Computer
Vision]: General—[image displays]; I.4.8 [Image Processing
and Computer Vision]: Scene Analysis—[color photometry];
H.1.2 [Models and Principles]: User/Machine Systems—
[human factors]

Keywords: Human Perception, Contrast Sensitivity, Con-
trast Enhancement

1 Introduction

The sensitivity of the human eye to spatially varying con-
trast is a well-studied problem in the perception litera-
ture and has been studied at two levels: threshold and
suprathreshold. Threshold contrast sensitivity studies the
minimum contrast required for human detection of a pattern,
while suprathreshold contrast studies the perceived contrast
when it is above the minimum threshold level. These studies
show that contrast discrimination sensitivity can be quan-
tified with a single parameter, especially at suprathreshold
levels [Valois and Valois 1990; Whittle 1986]. In this paper,
we use the suprethreshold contrast sensitivity to design a
new contrast enhancement technique for 2D images.
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The problem of enhancing contrast of images enjoys much
attention and spans a wide gamut of applications, ranging
from improving visual quality of photographs acquired with
poor illumination [Oakley and Satherley 1998] to medical
imaging [Boccignone and Picariello 1997]. Common tech-
niques for global contrast enhancements like global stretch-
ing and histogram equalization do not always produce good
results, especially for images with large spatial variation in
contrast. To address this issue, a large number of local con-
trast enhancement methods have been proposed that use
some form of image segmentation either in the spatial(multi-
scale) or frequency(multi-resolution) domain followed by the
application of different contrast enhancement operators on
the segments. These approaches differ in the way they gen-
erate the multi-scale or multi-resolution image representa-
tion, or in the contrast enhancement operators they use to
enhance contrast after segmentation. Image segmentation
has been achieved using methods such as anisotropic dif-
fusion [Boccignone and Picariello 1997], non-linear pyrami-
dal techniques[Toet 1992], multi-scale morphological tech-
niques [Toet 1990; Mukhopadhyay and Chanda 2002], multi-
resolution splines [Burt and Adelson 1983], mountain clus-
tering [Hanmandlu et al. 2001] or retinex theory [Munteanu
and Rosa 2001; Rahman et al. 1996]. Contrast enhancement
of the segments has been achieved using morphological oper-
ators [Mukhopadhyay and Chanda 2002], wavelet transfor-
mations [Velde 1999], curvelet transformations [Stark et al.
2003], k-sigma clipping [Munteanu and Rosa 2001; Rahman
et al. 1996], fuzzy logic [Hanmandlu et al. 2000; Hanmandlu
et al. 2001] and genetic algorithms [Shyu and Leou 1998].

In this paper we present a local contrast enhancement
method driven by an objective function that is controlled
by a single parameter derived from the suprathreshold con-
trast discrimination sensitivity of the human eye. The per-
ception of contrast is directly related to the local luminance
difference i.e. the local luminance gradient at any point in
the image. Our goal is to enhance these gradients. Meth-
ods dealing with gradient manipulation need to integrate the
gradient field for image reconstruction. This is an approx-
imately invertible problem, achieved by solving the Pois-
son equation, and has been used recently to achieve con-
trast enhancement and seamless image editing [Fattal et al.
2002; Prez et al. 2003]. However, these methods are often
cumbersome to implement because they involve differential
equations dealing with millions of variables. Instead, we
achieve gradient enhancement by treating images as height-
fields and processing them in a way that can be controlled
by the single parameter. We pose this as an optimization
problem that maximizes the local average contrast in an im-
age strictly guided by a perceptual constraint derived di-
rectly from the human suprathreshold contrast discrimina-
tion sensitivity. In addition, the range of the color values
are strictly constrained to avoid artifacts due to saturation
of colors. To solve this optimization problem we propose
a new greedy iterative algorithm. We compare the results
from this algorithm with existing different global and local
contrast enhancement techniques and show that our results
are superior than any traditional or state-of-the art contrast
enhancement techniques. By imposing explicit constraints in



our optimization formulation, we are able to avoid all com-
mon artifacts of contrast enhancement like halos, intensity
burn-out, hue shift and introduction of noise.

2 Suprathreshold Contrast Sensitivity

In this section, we derive the equation that guides the sen-
sitivity of the human eye to brightness differences at dif-
ferent intensities. Contrast detection has been studied in
vision perception literature for decades [Valois and Valois
1990]. Threshold contrast sensitivity functions (CSF) de-
fine the minimum contrast required to detect a sinusoidal
grating of a particular mean and spatial frequency. These
are bow shaped plots with peak sensitivity at about 5-6 cy-
cles/degree and the frequency for peak sensitivity decreases
as mean brightness decreases.

So far we have talked about threshold CSF. But most of our
everyday vision is at suprathreshold (above threshold) lev-
els. Recently there has been a large number of work to study
the contrast discrimination sensitivity of human beings for
suprathreshold vision. Of this, we are particularly interested
in the study of contrast increments in the context of our con-
trast enhancement application. [Whittle 1986] presents one
of the most comprehensive studies in this direction. This
shows that for suprathreshold contrast C, contrast discrim-
ination threshold follows the Weber law, i.e.

∂C

C
= λ (1)

where τ is a constant. This indicates that for visible contrast
enhancement, higher contrast patterns need higher contrast
increments. This forms the mainstay of our contrast en-
hancement method.

But, before we use the above equation, we need to generalize
it for different spatial frequencies. A recent study [Kingdom
and Whittle 1996] showed that the character of contrast dis-
crimination is similar for both sinusoidal and square waves
of different spatial frequencies. This finding is corroborated
by other works [Barten 1999; Georgeson and Sullivan 1975]
confirming that the suprathreshold contrast discrimination
characteristics show little variation across spatial frequen-
cies. Also, [Peli 1990; Wilson 1991] has shown the contrast
perception to be a quasi-local phenomenon, mainly because
we use our foveal vision to estimate local contrast.

Using the above, we derive a simple equation for contrast
enhancement of images. We define the local contrast of the
image to be proportional to the local gradient of the image.
In other words,

C∞∂I

∂x
(2)

where I(x, y) is the image, C is the contrast and λ is the
constant of proportionality. Equation 1 indicates that to
achieve the same perceived increase in contrast across an im-
age, larger gradients have to be stretched more than smaller
gradients. In fact, the stretching should be performed in
such a fashion that the contrast increment is proportional
to the initial gradient. Thus,

∂I ′

∂x
≥ (1 + λ)

∂I

∂x
(3)

where I ′(x, y) is the contrast enhanced image. Using the
above facts, we express the contrast enhancement of an im-
age I(x, y) by a single parameter τ as

1 ≤
∂I′

∂x
∂I
∂x

≤ (1 + τ) (4)

where τ ≥ λ. The lower bound assures that contrast reduc-
tion does not occur at any point in the image and the upper
bound assures that the contrast enhancement is bounded.
[Mantiuk et al. 2006] have shown the constant λ to be close
to 1 by fitting a curve to the experimental data of [Whittle
1986]. Thus contrast enhancement in the images will only be
visible for (1 + τ) ≥ 2 assuring that the Equation 3 is satis-
fied. Equation 4, though simple, is very effective in practice
to achieve contrast enhancement of images.

3 The Method for Gray Images

We pose the local contrast enhancement problem as an opti-
mization problem. We design a scalar optimization function
derived from Equation 2 that captures the overall contrast of
an image, and seek to maximize it subject to the constraint
described by Equation 4. In addition, we also constrain the
color range of the output image to avoid over or under sat-
uration artifacts.

3.1 Optimization Problem

First, we formulate the contrast enhancement optimization
problem for gray images. We consider the intensity values
of a grayscale image to be representative of the luminance
values at the pixel locations.

We pose the optimization problem as follows. We propose
to maximize the objective function

f(Ω) =
1

4|Ω|
X
p∈Ω

X
q∈N4(p)

I ′(p)− I ′(q)

I(p)− I(q)
(5)

subject to a perceptual constraint

1 ≤ I ′(p)− I ′(q)

I(p)− I(q)
≤ (1 + τ) (6)

and a saturation constraint

L ≤ I ′(p) ≤ U (7)

where scalar functions I(p) and I ′(p) represent the gray val-
ues at pixel p of the input and output images respectively, Ω
denotes sets of pixels that makes up the image, |Ω| denotes
the cardinality of Ω, N4(p) denotes the set of four neighbors
of p, L and U are the lower and upper bounds of the gray
values (e.g. L = 0 and U = 255 for images that have gray
values between 0 and 255), and τ > 0 is the single parame-
ter that controls the amount of enhancement achieved. This
objective function is derived from Equation 2 as a sum of
the perceived local contrast over the whole image, expressed
in the discrete domain. Note that it also acts as a metric to
quantify the amount of enhancement achieved. The percep-
tual constraint (Equation 6) is derived directly from Equa-
tion 4 by expressing it in the discrete domain. The lower



bound in this constraint assures two properties: the gradi-
ents are never shrunk; the sign of the gradients are preserved.
Finally, the saturation constraint (Equation 7) ensures that
the output image does not have saturated intensity values.
Note that the saturation constraint does not control the gra-
dient but just the range of values a pixel is allowed to have.
Thus the pixels in the very dark or very bright regions of
the image will still have their gradients enhanced.

3.2 Greedy Iterative Algorithm

We propose an iterative, greedy algorithm to try to maxi-
mize the objective function above subject to the constraints.
Being local in nature, our method adapts to the changing lo-
cal contrast across the image achieving different degrees of
enhancement at different spatial locations of the image.

Our algorithm is based on the fundamental observation that
given two neighboring pixels with gray values r and s, r 6= s,
scaling them both by a factor of (1 + τ) results in r′ and s′

such that
r′ − s′

r − s
= (1 + τ) (8)

Thus if we simply scale the values I(p),∀p ∈ Ω, by a fac-
tor of (1 + τ), we obtain the maximum possible value for
f(Ω). However, this could cause violation of Equation 7 at
some pixel p, leading to saturation of intensity at that point.
To avoid this, we adopt an iterative strategy, employing a
greedy approach at each iteration.

We consider the image I as a height-field (along the Z axis)
sampled at the grid points of a m× n uniform grid (on the
XY plane). This set of samples represents Ω for a m × n
rectangular image. Thus, every pixel p ∈ Ω is a grid point
and the height at p, I(p), is within L and U .

For each iteration, we consider a plane perpendicular to the
Z axis at b, L ≤ b ≤ U . Next, we generate a m × n matrix
R by simple thresholding of I and identifying the regions of
the height field I which are above the plane b as

R(i, j) =


1 if I(i, j) > b
0 if I(i, j) ≤ b

(9)

R generates a graph where the vertices are those pixels (i, j)
such that R(i, j) = 1 and two vertices are adjacent if they
are neighbors in the image. We then identify connected com-
ponents in this graph. Each such component, represented by
hb

i , is called a hillock ; the subscript denotes the component
number or label and the superscript denotes the plane used
to define the hillocks. Next, the pixels in each hillock are
scaled up by an amount such that no pixel belonging to the
hillock is pushed beyond U or has the gradient around it en-
hanced by a factor of more than (1 + τ). The scaling factor
is chosen individually for each hillock.

Our method involves successively sweeping threshold planes
bi such that L ≤ bi < U and at each sweep, greedily scal-
ing the hillocks respecting the constraints. Note that as we
sweep successive planes, a hillock hb

i can split into hb+1
j and

hb+1
k or remain unchanged, but two hillocks hb

s and hb
t can

never merge to form hb+1
u . This results from the fact that

our threshold plane strictly increases from one sweep to the
next and hence the pixels examined at a stage are a subset
of the pixels examined at previous stages. Thus, we obtain

the new hillocks by only searching amongst hillocks from the
immediately preceding sweep.

For low values of b, the size of the hillocks are large. Hence,
the enhancement achieved on hillocks might not be close to
(1+ τ) because of the increased chances of a peak close to U
in each hillock. As b increases, the large connected compo-
nents are divided so that smaller hillocks can be enhanced
more than before.

This step of sweeping planes from L to U pronounces only the
local hillocks of I and the image thus generated is denoted
by I1. However, further enhancement can be achieved by
enhancing the local valleys also. Thus the second stage of the
our method applies the same technique to the complement of
I1 given by U − I1(p). The image generated from the second
stage is denoted by I2. I2 is then complemented again to
generate the enhanced output image I ′ = U − I2(p).

3.3 Performance Improvement

We perform U − L sweeps to generate each of I1 and I2.
In each sweep we identify connected components in a m ×
n matrix. Thus, the time-complexity of our algorithm is
theoretically O((U − L)mn)). However, we perform some
optimizations to reduce both the space and time complexity
of the method.

We observe that hillocks split at local points of minima or
saddle point. So, we sweep planes only at specific bis where
some points in the height field attain a local minima or sad-
dle point. This helps us to achieve an improved running
time complexity of O(smn) where s is the number of planes
swept (number of local maximas, local minimas and saddle
points in the input image). This idea is illustrated in Fig 1.
However, note that this example is constructed to illustrate
the method and we have exaggerated the enhancements for
better comprehension. In practice, many images have nu-
merous local minima and saddle points. The result is that
the threshold usually only increases by one or two values in
8-bit greyscale images. This results in a process that is more
time-intensive than necessary. Therefore, we have an addi-
tional parameter ∆ which is a lower bound on the amount
by which the threshold must increase in consecutive itera-
tions. This, in effect, skips some of the sweeping planes. For
greyscale images whose values are in the range from 0 to 255,
a ∆ of 5 or 10 still produces excellent results. This reduces
the value of s in the running time to be at most 255/∆. The
results are compared in Figure 2.

We also observe that disjoint hillocks do not interact with
each other. So, to make our method memory efficient, we
process each hillock in a depth first manner before proceed-
ing to the next hillock.

To summarize, following is the pseudocode of our algorithm.

Algorithm Enhance(τ , I, L, U)
Input: Control parameters τ and ∆

Input Image I
Lower and upper bounds L and U

Output: Enhanced Image I ′

Begin
1. I ′ ← I;
2. I ′ = ProcessHillocks(I ′, τ , ∆);
3. I ′ ← U − I ′;



Figure 1: Graphs showing some key steps in our algorithm when applied to a 1D signal. In (a), the threshold is zero and there is a single hillock

comprised of all the pixels in the input. The hillock is stretched so that the maximum pixel value reaches saturation. In Figure (b), the threshold

is increased to t1 and hillock 1 is now divided into Hillocks 2 and 3. Hillock 3 can not be stretched any further since its highest pixel is already

saturated. However, Hillock 2 can be stretched so that the local enhancement of each pixel (as denoted in Equation 6 ), reaches 1 + τ . Since this

is the maximum enhancement that can be achieved, no further processing is performed on Hillock 2. In Figure (c), the threshold is t2 and Hillock

3 splits into Hillock 4 and 5. Only Hillock 5 can be further enhanced since Hillock 4 has a saturated pixel. Hillock 4 is strecthed so that the local

enhancement of each pixel reaches 1 + τ . In the second pass, the image from Figure (c) is inverted to produce Figure (d). Hillocks are processed

and stretched as in the first pass to produce Figure (e). Image (e) is then inverted back to obtain the final enhanced image in (f).

4. I ′ = ProcessHillocks(I ′, τ , ∆);
5. I ′ ← U − I ′;
6. Return I ′;
End

Algorithm ProcessHillocks(I, τ , ∆)
Input: Input Image I

Control parameters τ and ∆
Output: Image I ′

Begin
1. I ′ = I;
2. Create empty Stack S of Hillocks
3. Create hillock h
4. Initialize pixels in h to be all pixels in I
5. Initialize threshold(h) to be 0
6. Push h onto S
7. While S not empty repeat
8. h = S.pop()
9. Find connected components of pixels in h whose

value is at least threshold(h)
10. For each connected component c
11. Create new hillock h′

12. Initialize pixels in h′ to be all pixels in c
13. For each pixel p in h′

14. I ′(p) = (1 + s) ∗ (I ′(p)− t) + t
where t is threshold(h) and s is the
maximum value over the entire hillock such that
none of the constraints are violated.

15. Let threshold(h’) be the minimum of I(p) over
all pixels p in h′ that are local minima or

saddle points and I(p) is at least threshold (h’)
18. threshold(h’) = max{threshold(h’), threshold(h)+ ∆)
17. Push h′ onto S.
End

Enhance calls the main routine ProcessHillocks on the orig-
inal image and then on the inverted image so that hillocks
get pushed upwards and valleys get pushed downwards. Pro-
cessHillocks maintains a stack of hillocks. Each hillock main-
tains a set of pixels which is disjoint from the pixels in any
other hillock. Each hillock also maintains a threshold pa-
rameter. In each iteration, the top hillock is popped and the
threshold is applied to all the pixels in the hillock. These
pixels whose value is above the threshold generate an under-
lying graph with edges between neighboring pixels. We then
compute the connected components of this graph and create
a new hillock for each component. In Step 14, all the pixels
in each component are then stretched upwards as much as
possible without violating any of the predefined constraints.
Thresholds are moved upwards and all the resulting hillocks
are pushed onto the stack.

3.4 Results

Fig 2 shows the result of applying our method to low-
contrast gray images for different values of τ . We studied
the effect of skipping some of the sweep planes by increasing
∆ and found that we can increase the performance by at
least an order of magnitude before seeing visible differences.



(a) (b) (c)

(d) (e) (f)

Figure 2: The original gray image (a), enhanced gray image using τ of 0.3 (b) and 2 (c). Note that parts of the image that have achieved

saturation for τ = 0.3 do not undergo anymore enhancement or show any saturation artifact for higher τ of 2. Yet, note further enhancement of

areas like the steel band on the oxygen cylinder, the driver’s thigh and the pipes in the background. (c) is generated by sweeping all planes, (d)

and (e) are generated by sweeping one of every five and fifty of (U − L) planes respectively. Note that despite having five times fewer number of

sweep planes, (d) is perceptibly indistinguishable from (c). (e) can be distinguished from (c) by the lower contrast background and upper leg of

the diver. (f) is the same image enhanced using fattal’s method of stretching gradients using a Poisson solver. Compare this wilth (c) which is

enhanced using our method with τ = 2. (f) shows noise artifacts (better visible when displayed in true resolution). In addition, our method in

(c) shows much better performance in driving the darker regions to black achieving better contrast in the image.

(a) (b) (c) (d)

Figure 3: The original gray image (a), enhanced using global histogram equalization (b), enhanced using local histogram equalization (c) and

enhanced using our method with τ = 1. Note that global histogram equalization leads to oversaturation of parts of the image in (b). While local

histogram equalization alleviates that problem, it ends up introducing noise in the background and changes the appearance of parts of the image

in (c) like the shirt. Our method in (d) does not suffer from both of these and achieves an image which is closer to the original in its appearance.



(a) (b) (c) (d)

Figure 4: The result of our method on some medical images. An x-ray image (a) enhanced with τ = 1 (b), and the image of some stem cells

taken through a microscope (c) enhanced using τ = 2 (d).

Figure 2 illustrates this.

Figure 3 compares our method with standard techniques for
contrast enhancement that uses global and local histogram
equalization respectively. Figure 2 compares our method on
gray images with the recent method proposed in [Fattal et al.
2002] that stretches the gradient image directly and then
generates the enhanced image from the modified gradient
field using a poisson solver. Figure 4 shows the result of our
method on some medical images.

With the ideal parameter of ∆ = 1, our optimized code takes
about 10 seconds to process a 500×500 image. However, by
setting ∆ = 10, we can process the same image in about a
couple of seconds.

3.5 Evaluation

The advantage of our formulation of the contrast enhance-
ment problem as an optimization problem lies in the fact
that the objective function, defined in Equation 5, can be
directly used as a metric to evaluate the amount of aver-
age contrast enhancement (ACE) achieved across the whole
image. Note that according to the constraints of the opti-
mization problem, the maximum average contrast that can
be achieved without respecting saturation constraints is given
by 1 + τ . The saturation constraints restrict the actual en-
hancement achieved to less than or equal to 1+τ thus making
the image free of any artifacts. However, as τ increases, the
effect of the saturation constraint becomes stronger since
larger number of pixels reach saturation when being en-
hanced and hence needs to be restricted not to enhance to
their fullest extent. Hence, with the increase in τ , the ACE
achieved falls more and more away from 1 + τ . Table 1 il-
lustrates the ratio of ACE and 1 + τ for different images for
different values of τ . Note that as (1 + τ) increases, though
the ACE value increases in an absolute sense, the ratio of
ACE and (1 + τ) decreases as expected.

Table 1 also shows that the same metric can be used to
evaluate the effect of different optimizations (like skipping
some of the sweeping planes and the reverse pass) on the
ACE achieved. Note that increasing the number of skipped
planes indeed decreases the ACE. This metric also provides
us with interesting insights in the algorithm. For example, it
shows that most of the enhancement is achieved in the first
pass itself. The enhancement in the second pass is mostly of
details, and skipping it can help us improve the performance.

Image 1 + τ ∆ No. of Passes ACE ACE
1+τ

Diver 2 10 2 1.43 0.715
3 10 2 1.80 0.6
4 10 2 2.18 0.545
4 1 2 2.39 0.598
4 50 2 1.32 0.33
4 10 1 2.13 0.532

Blonde 3 10 2 1.45 0.483
5 10 2 1.84 0.368

Table 1: This table compares the ACE achieved by changing dif-

ferent parameters on which the performance of our greedy algorithm

depends. (1 + τ) is the parameter controlling the contrast enhance-

ment. Step size defines the gap between the planes which are swept

to intersect the luminance field. The number of passes is 2 is both the

forward and inverse passes are applied and 1 when only the forward

pass is applied.

4 Extending to Color Images

The most obvious way to extend the algorithm presented in
the preceding section to color images is to apply the method
independently to three different color channels, as illustrated
in Figure 5. However, this does not assure hue preservation
resulting in hue shift, especially with higher values of τ . This
happens when one of the channels saturates at some pixels
of the image while other channels have significant room for
enhancement (Figure 6).

To avoid this problem, we take the standard approach of
separating the luminance and the chrominance channels of
the image (by linearly transforming RGB values to CIE XYZ
values) and then applying our method only on the luminance
channel.

The XYZ values of the maximum intensity of the pri-
maries, defined by three vectors in the XYZ space, R̄ =
(XR, YR, ZR), Ḡ = (XG, YG, ZG) and B̄ = (XB , YB , ZB), de-
fine the color gamut of the RGB device. The transformation
from RGB to XYZ space is defined by a 3× 3 matrix whose
columns correspond to R̄, Ḡ and B̄. From the XYZ values
at each pixel, we obtain its luminance, Y , and chromaticity
coordinates (defining hue and saturation) (x, y) [Giorgianni
and Madden 1998] by

x =
X

X + Y + Z
; y =

Y

X + Y + Z
.

Next, we perform the enhancement only on Y keeping the
chromaticity coordinates, x and y, unchanged. Finally, we
convert the Yxy image back to RGB space via XYZ space.
To assure a linear transformation between the RGB and the



XYZ space we apply the standard gamma correction to our
images.

However, note that changing the luminance Y can change
the chrominance thereby taking the color out of the gamut of
the device leading to saturation artifacts. To avoid this, we
modify our saturation constraint that assures that the new
color achieved after enhancing Y is within the color gamut
of the RGB device. A color in the XYZ space that can be
expressed as a convex combination of R̄, Ḡ and B̄ is within
the device’s color gamut. Thus, the saturation constraint
can no longer be expressed by a single linear inequality as
in Equation 7. Instead, as we enhance Y , we have to assure
that the enhanced color lies within the parallelopiped defined
by the convex combination of R̄, Ḡ and B̄.

Thus, the luminance enhancement problem can be formu-
lated in a similar fashion as gray scale images. The color
at pixel p given by C(p) = (X, Y, Z) is to be enhanced to
C′ = (X ′, Y ′, Z′). The goal is to enhance the luminance Y
to Y ′ such that the objective function

f(Ω) =
1

4|Ω|
X
p∈Ω

X
q∈N4(p)

Y ′(p)− Y ′(q)

Y (p)− Y (q)
, (10)

is maximized subject to a perceptual constraint

1 ≤ Y ′(p)− Y ′(q)

Y (p)− Y (q)
≤ (1 + τ), (11)

and a saturation constraint

(X ′, Y ′, Z′) = cRR̄ + cGḠ + cBḠ, 0.0 ≤ cR, cG, cB ≤ 1.0,
(12)

Note that Equation 11 explicitly assures that the chromatic-
ity coordinates are not changed and hence hue is preserved.
This optimization is solved applying the same technique as
in Section 3 on the luminance channel and by changing the
check for saturation constraint as per Equation 12 result-
ing in hue-preserving contrast enhancement devoid of any
hue-shift artifacts (Figure 6).

However, note that for applying the second pass, when we in-
vert the image with respect to a spatially varying saturation
envelope, the relative magnitudes of neighboring pixels may
not be maintained. This can lead to switching of direction
of gradient at some pixels which is undesirable. From our
study using the evaluation metric in Section 3.5 we found
that second pass leads to insignificant change in ACE. So,
for color images we only apply the first pass.

Results: The most recent contrast enhancement technique
is the one developed by Fattal et. al [Fattal et al. 2002]
that does a direct gradient stretching and applies a poisson
solver to get the image back from its gradient field. We
compare results from our method with this work in Figure
5 and 6. Note the different kinds of artifacts like halo, noise
and in particular, hue-shift, which we have avoided entirely.
Figure 6 and 7 compare the result of our method with some
existing global and local contrast enhancement techniques
highlighting the fact that our method is devoid of artifacts.

5 Conclusion

In conclusion, we use suprathreshold human contrast sensi-
tivity functions to achieve contrast enhancements of images.

We apply a greedy algorithm to the image in its native reso-
lution without requiring any expensive image segmentation
operation. We pose the contrast enhancement as an opti-
mization problem that maximizes an objective function that
defines the local average contrast enhancement (ACE) in an
image subject to constraints that control the contrast en-
hancement by a single parameter. We extend this method
to color images where hue is preserved while enhancing only
the luminance contrast.

The ACE defined by the objective function can act as a
metric to compare the contrast enhancement achieved for
different methods and different parameters thereof. In addi-
tion, the parameter τ can be varied spatially over the image
to achieve spatially selective enhancement. We have omitted
a detailed description of these for lack of space.

Future work in this direction will include exploring the pos-
sibility of extending this to video by adding the additional
temporal dimension. Since our method treats the image as a
height field, it could have interesting applications in terrain
or mesh-editing. Finally, implementation of this method on
GPUs would allow this method to be used interactively.
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(a) (b) (c) (d)

Figure 5: Our method applied to the red, green and blue channel of a color image - the original image (a), enhanced image using τ of 1 (b) and 9

(c) - note the differences in the yellow regions of the white flower and the venation on the leaves are further enhanced. The same image enhanced

by applying Fattal’s method is shown in (d). When comparing with the results of our method in (b) and (c), note the haloing artifacts around

the white flower and the distinct shift in hue, especially in the red flower, that changes its appearance. It almost appears that (d) is achieved by

hue enhancement of (a), rather than a contrast enhancement of (a).

(a) (b) (c) (d) (e) (f)

Figure 6: (a) The original image, (b) our method is applied with τ = 2 on each of red, green and blue channels independently (note the severe

hue shift towards purple in the stairs, arch and wall, and towards green on the ledge above the stairs), (c) the image is first converted to brightness

and chrominance channels and our method is applied only to the brightness channel. Note that the hue is now preserved. Compare (c) with

results from curvelet transformation [Stark et al. 2003] (d), method based on manipulation of gradient field inverted back using poisson solver

[Fattal et al 2002] (e), and method based on multi-scale retinex theory [Rahman et al. 1996] (f). Note that (c) and (d) lead to a noisy image

while (d) and (e) change the hue of the image significantly.

(a) (b) (c)

(d) (e) (f)

Figure 7: (a) The original image, (b) our method with τ = 2, (c) multi-scale morphology method [Mukhopadhyay and Chanda 2002] - note

the saturation artifacts that gives the image an unrealistic look, (d) Toet’s method of multi-scale non-linear pyramid recombination [Toet 1992] -

note the halo artifacts at regions of large change in gradients, (e) global contrast stretching, (f) global histogram equalization - both (e) and (f)

suffer from saturation artifacts and color blotches.


