
Registration Techniques for Using Imperfect and Partially
Calibrated Devices in Planar Multi-Projector Displays

Ezekiel Bhasker, Ray Juang, Student, IEEE, and Aditi Majumder, Member, IEEE

Abstract— Multi-projector displays today are automatically registered, both geometrically and photometrically, using cameras. Exist-
ing registration techniques assume pre-calibrated projectors and cameras that are devoid of imperfections such as lens distortion. In
practice, however, these devices are usually imperfect and uncalibrated. Registration of each of these devices is often more challeng-
ing than the multi-projector display registration itself. To make tiled projection-based displays accessible to a layman user we should
allow the use of uncalibrated inexpensive devices that are prone to imperfections. In this paper, we make two important advances
in this direction. First, we present a new geometric registration technique that can achieve geometric alignment in the presence of
severe projector lens distortion using a relatively inexpensive low-resolution camera. This is achieved via a closed-form model that
relates the projectors to cameras, in planar multi-projector displays, using rational Bezier patches. This enables us to geometrically
calibrate a 3000× 2500 resolution planar multi-projector display made of 3× 3 array of nine severely distorted projectors using a low
resolution (640× 480) VGA camera. Second, we present a photometric self-calibration technique for a projector-camera pair. This
allows us to photometrically calibrate the same display made of nine projectors using a photometrically uncalibrated camera. To the
best of our knowledge, this is the first work that allows geometrically imperfect projectors and photometrically uncalibrated cameras
in calibrating multi-projector displays.

Index Terms—Geometric calibration, photometric calibration, tiled displays.

1 INTRODUCTION

Multi-projector displays are popular today for many applications such
as visualization, entertainment, training, and simulation. Contem-
porary researchers envision future workspaces with ubiquitous pixels
rendered by multi-projector displays of various scales and forms aid-
ing users in collaboration, interface, and visualization [9, 12, 16, 17,
24, 25, 30, 33, 36].

To enable such readily accessible multi-projector displays, auto-
mated camera-based registration techniques that register the imagery
coming from multiple projectors, both geometrically and photomet-
rically, have been proposed [5, 6, 13, 19, 20, 21, 23, 26, 27, 28, 29,
34, 37, 38]. More recently, Bhasker, et al. [2], proposed a distributed
network of compact projector-camera units that can self-register with-
out any user input, relieving the user of installation and maintenance
responsibilities. However, all these methods do not handle imperfec-
tions, such as lens distortions, that are common in inexpensive com-
modity devices. They assume pre-calibrated devices (i.e., devices
whose geometric and photometric parameters are known) leaving the
responsibility of device calibration to the user. Device calibration is of-
ten more challenging than multi-projector display registration and de-
mands a very educated user. This difficulty in deployment has quaran-
tined tiled projection-based displays to national laboratories and uni-
versities despite huge advances in automated camera-based registra-
tion techniques.

The work in this paper makes initial advances by developing ge-
ometric and photometric registration techniques that allow imperfect
uncalibrated devices to be used for the most common cases of planar
displays. The ultimate goal would be to allow the use of projectors
with severe geometric and photometric distortion and still achieve ac-
ceptable geometric and photometric registration. We achieve this goal
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using cameras that are neither geometrically nor photometrically reg-
istered. The paper by Majumder and Stevens [21] is the only work
to date in this direction and presents initial methods to handle large
spatial variation in intensity within and across projectors. In this pa-
per, we make further advances to these unexplored domains. These
are: (a) achieving geometric registration while using projectors that
have considerable geometric imperfections (e.g., lens distortions); (b)
achieving photometric registration with a photometrically uncalibrated
camera.

1.1 Using Geometrically Imperfect Projectors
We present a new geometric registration technique that can correct for
severe lens distortion using a relatively low-resolution camera for pla-
nar multi-projector displays. This method relies on a new parametric
geometric model relating the projector to the camera used for register-
ing the display. The relationship is modeled in a compact and efficient
manner using a rational Bezier patch.

Projection technology is advancing at a tremendous pace. Pocket
projectors that can fit on one’s palm are no longer a myth but a re-
ality [1]. Industry initiatives are finding ways to build short-throw,
unbreakable projectors that use LEDs as light sources so that they can
be embedded in cell phones. It is evident that lens distortion will be
significant in such low-cost projectors. Our method will enable the use
of such low-cost projectors to build commodity tiled displays.

Further, in designing a compact multi-projector display or changing
an existing setup to increase space utility, a short-throw lens is required
to decrease the throw distance of the projectors. These lenses currently
require several optical elements to reverse the high lens distortion cre-
ated by short focal lengths. Hence, they are cost-prohibitive (around
$2000 - $6000) and at least 5-6 times the cost of regular projectors
(around $800 - $1500). Our work handles severe lens distortions, thus
paving the way for using inexpensive lenses on projectors, just as they
are used on cameras today. This allows for even more compact multi-
projector display designs.

1.2 Using Photometrically Uncalibrated Cameras
Existing methods for photometric calibration of a multi-projector dis-
play often use a camera that is first calibrated using high dynamic
range images [8, 26]. This involves taking images in an outdoor envi-
ronment where one does not have control of motion, illumination, etc.
This calibrated camera is then used to recover the photometric proper-



ties of the projectors which are then modified appropriately to achieve
a photometrically seamless multi-projector display [21, 26].

In this paper, we present a photometric self-calibration technique
for a projector-camera pair that allows us to register a multi-projector
display photometrically using an uncalibrated camera. To the best of
our knowledge, this is the first work that estimates both the intensity
transfer function and the spatial variation in intensity of projectors si-
multaneously using a photometrically uncalibrated camera.

2 RELATED WORK

In this section, we review existing geometric and photometric regis-
tration techniques and relate them to the techniques we present in this
paper.

2.1 Geometric Registration
Geometric registration of planar multi-projector displays entails re-
constructing two functions: (a) the function that relates the individual
projector coordinates to the camera coordinates; and (b) the function
that relates the camera coordinates to the global screen coordinates.
Most geometric registration techniques devised for planar displays so
far fall into the following categories.

Linear methods assume linear models for cameras and projectors.
They relate the projector, camera, and the screen coordinates by lin-
ear matrices called homographies [5, 34]. However, linear models do
not account for geometric non-linearities, such as lens distortion, and
cannot achieve accurate alignment in their presence. To achieve ac-
ceptable alignment in such cases, projectors are manually adjusted to
the ‘sweet-spot’ in zoom level where the non-linear distortions become
negligible.

Piecewise linear methods address these geometric non-linearities
by using a piecewise linear function, essentially a triangulation, to
relate the projector, camera and screen coordinates to each other.
Though this achieves reasonable geometric accuracy, a dense trian-
gulation is required to sample the parameter space adequately [37].
Thus, a high-resolution (5-6 Megapixel) camera is required to register
even relatively small displays made of 4-6 projectors.

Hereld, et. al. [13], use a non-linear model where a closed-form
cubic function handles some of the geometric non-linearities. This
method has two limitations. First, a simple cubic polynomial cannot
capture the perspective projection between the projector and the cam-
era adequately. As a result, this method assumes a close-to-rectangular
array of projectors resulting from on-axis projection. Such an arrange-
ment is relatively easy to achieve manually in a rear-projection system,
but not in front-projection system where the projector is on the ceiling
projecting on a screen placed on the ground. Second, this work is not
motivated by accurate analysis of the kind of non-linearities seen in
projectors and hence cannot handle higher order non-linearities.

Our method incorporates the non-linear distortions of the projec-
tor into the function that relates the projector to other entities, such as
the camera and screen, using a single accurate closed-form function
– the rational Bezier patch. This allows combination of distortions
arising from completely different reasons (e.g., lens distortion and key-
stoning) into a single unified representation. Further, it results in an ef-
ficient camera-based geometric registration for planar, multi-projector
displays, that can handle significant lens distortion.

2.2 Photometric Registration
Photometric properties of a camera/projector involve its intensity
transfer function, or ITF (more commonly called the gamma function),
and the spatial intensity fall-off in its field-of-view (more commonly
called the vignetting effect). Photometric registration of projection-
based displays requires estimation of the photometric properties of the
projectors using a camera. To do this, the camera is first photometri-
cally registered. The high dynamic range imaging technique [8, 22]
can be used to estimate the camera’s ITF by taking images outdoors.
Currently, there is no simple automated way of estimating the cam-
era’s vignetting effect. The registered camera is usually set to a nar-
row aperture when using it to estimate the photometric properties of
the projectors in a tiled display. The techniques in the work by Raij,

et al. [26], are then applied to estimate the projectors’ ITF using the
registered camera. Using the projectors with known ITF, the tech-
niques described in the papers by Majumder and Stevens [20, 21] are
then used to estimate the spatial intensity fall-off of the projector, and
to register the multiple projectors photometrically using the estimated
photometric properties. No method currently exists that can use a pho-
tometrically uncalibrated camera and recover both the ITF and the spa-
tial intensity fall-off of the projectors simultaneously. Our method in
this paper estimates all the different photometric parameters of both
devices in a photometrically uncalibrated projector-camera pair. It is
accomplished in a controlled indoor setting without using any other
physical props. Photometric registration techniques that use these pa-
rameters [20, 21, 38] can then be utilized to achieve photometric seam-
lessness in the multi-projector display.

3 USING GEOMETRICALLY IMPERFECT PROJECTORS

In this section, we present our geometric registration technique that
corrects for projector geometric imperfections, such as lens distortion.
We use a camera that is corrected for lens distortion [3]. First, we de-
velop a new model that relates a single projector to the camera in a
planar multi-projector display using a rational Bezier patch. The pro-
jector lens distortion is modeled by an affine-invariant non-rational
Bezier patch. For a projector-camera setup with a planar display, this
function is followed by a homography that relates the projector to the
camera and to the screen linearly. We use a perspective-invariant ratio-
nal Bezier patch to model the combination of these non-linear and lin-
ear functions. Thus, all the different distortions in a planar projection-
based display (e.g., key-stoning, radial, and tangential distortions) are
combined into a single closed-form function. To the best of our knowl-
edge, this is the first work that models both linear and non-linear dis-
tortions of a projector-camera system in a unified manner.

To geometrically register multiple distorted projectors, we sparsely
sample the rational Bezier function relating the projector coordinates
with the camera and screen coordinates, and estimate the function pa-
rameters. These parameters are then used to warp the input image to
the projector appropriately resulting in a geometrically aligned image.
The sparse sampling proves adequate for acceptable geometric regis-
tration since the rational Bezier offers a piecewise curve representa-
tion (which is more suited for lens distortions that transform lines to
curves), rather than a piecewise linear representation. This sparse sam-
pling allows us to use a low-resolution camera to achieve geometric
registration for even medium sized displays made of 6-16 projectors.

3.1 Model for Single Projector
We first consider the simple case of a single projector projecting onto
a planar screen and being observed by a single camera corrected for
lens distortion. Our goal is to design an accurate parametric function
F that defines the relationship between the projector pixels (x,y) and
the camera pixels (u,v), i.e., (u,v) = F (x,y). Ideally, the function
F has two components. The first is the lens distortion function R
that relates the undistorted projector coordinates (x,y) to the distorted
coordinates on the display screen (xd ,yd). The second component is
the well-known homography H that relates the distorted coordinates
to camera coordinates (u,v).

(u,v) = H (xd ,yd) = H (R(x,y)) = F (x,y) (1)

We would like to model F by a single compact parametric function
that accurately captures the effect of the concatenation of these two
functions, H and R, and is amenable to efficient data fitting compu-
tation.

Modeling R with Non-rational Bezier Patches: The classic lens
distortion model [4, 10] consists of two independent distortions: radial
distortion (e.g., barrel or pin-cushion) and tangential distortion.

Radial distortion is usually modeled by

xd = x+(x− xp)(k1r2 + k2r4 + k3r6) = x+ρx, (2)

yd = y+(y− yp)(k1r2 + k2r4 + k3r6) = y+ρy, (3)



Case No. Lens Distortion Parameters % Error For
Center Radial Tangential Bezier of degree
(xc,yc) (k1,k2,k3) (p1, p2) 2 3 4 5 6 7

(a) (0.5,0.5) (−0.35,0,0) (0,0) 5.78 ε
(b) (0.5,0.5) (0,0,0) (0.1,0.1) ε
(c) (0.5,0.5) (−0.35,−0.35,0) (0,0) 9.00 0.91 0.56 ε
(d) (0.6,0.55) (−0.35,−0.13,0) (0.05,0.05) 1.9 0.14 0.03 ε
(e) (0.6,0.55) (−0.35,−0.13,−0.016) (0.05,0.05) 2.0 0.17 0.038 0.0012 0.00022 ε

Table 1. This table shows the accuracy of our fit for lens distortion functions using non-rational Bezier patches of different degree. Due to the large
number of lower degree terms, note that in case (e) distortion of higher degrees (e.g., degree 7) can be fitted to reasonable accuracy by a lower
degree Bezier (e.g., degree 4). ε represents the convergence threshold used which is strictly less than 10−11.

(a) (b) (c) (d) (e)

Fig. 1. Images showing the fives cases of distortion mentioned in Table 1.

where (xd ,yd) and (x,y) are the distorted and undistorted image coor-

dinates respectively, r =
√

(x− xp)2 +(y− yp)2 is the radial distance
from the principal center (xp,yp) in the undistorted image, and ki,
1≤ i≤ 3 are the radial distortion coefficients. Negative values of ki re-
sult in barrel distortion while positive values result in pin-cushioning.
The principal center is a point in the image that is unchanged by radial
distortion. In general, the principal center (xp,yp) need not be at the
center of the image but is usually close to the center.

The tangential distortion is modeled by

xd = x+2p1xy+ p2r2 +2p2x2 = x+ τx, (4)
yd = y+2p2xy+ p1r2 +2p1y2 = y+ τy (5)

where r =
√

(x− xp)2 +(y− yp)2 and p1 and p2 are the tangential
distortion parameters.

Radial and tangential distortion are independent of each other and
hence their effects can be combined into a comprehensive lens distor-
tion equation, as

(xd ,yd) = (x+ρx + τx,y+ρy + τy). (6)

Estimating the unknown radial and tangential distortion coefficients
involves solving complex non-linear optimization problems. Hence,
several simplifying assumptions are usually made which are often not
true in a real system. The most common simplifications are to assume
that the principal point coincides with the center of the image and to
ignore the higher degree terms [3, 7, 15, 32, 35, 39].

We model this lens distortion by non-rational Bezier patches in-
stead. A non-rational Bezier patch of degree k and dimension d is de-
fined by (k +1)d control points in a d-dimensional space. In our case,
we consider a two-dimensional patch where d = 2. The Bezier patch
is a tensor product patch where the control points, Pi j, are weighted by
blending functions that are products of independent one-dimensional
Bernstein polynomials. There are k + 1 Bernstein polynomials of de-
gree k given by

bnk(t) =
k!

n!(k−n)!
tn(1− t)k−n (7)

where 0≤ n≤ k and 0≤ t ≤ 1. The non-rational Bezier patch can then
be defined from these polynomials as

N B(x,y) =
k

∑
i=0

k

∑
j=0

Pi jbik(x)b jk(y) (8)

=
k

∑
i=0

k

∑
j=0

Pi jBi jk(x,y), (9)

where Bi jk is the tensor product of the Bernstein polynomials bik and
b jk and 0 ≤ (x,y) ≤ 1. Hence, in the context of the single projector-
camera pair for planar displays, the projector lens distortion function
R(x,y) is represented by

(xd ,yd) = R(x,y) = N B(x,y) (10)

Our choice of using a non-rational Bezier patch is guided by the
following rationale.

1. The non-rational Bezier patch provides a unified framework to
represent a large range of lens distortions. More severe lens dis-
tortions can be included by increasing the degree of the Bezier
patch. For example, a bicubic Bezier patch may be sufficient for
standard narrow FOV lenses, but a Bezier patch of degree 4 may
be required for the more severe distortions of wide FOV lenses.
All of these are handled by the non-rational Bezier patch without
affecting the underlying computational framework.

2. When Equation 10 is expanded and compared with Equation
6, one finds that the non-rational Bezier patch has many more
higher-order cross terms, making it a more flexible model. For
example, it is possible for short-throw lens projectors to have
a mix of both barrel and pin-cushion distortions. Such cases are
better handled by a more flexible model such as the Bezier patch.

3. The principal center creates a particular nuisance in traditional
lens distortion estimation techniques, and forces most practical
systems to assume it to be at the center of the image. When
using a non-rational Bezier patch, the principle center is encoded
within the control points themselves, and need not be estimated
seperately.

4. Like lens distortion, non-rational Bezier patches are also affine-
invariant and hence provide an accurate model.

Table 1 and Figure 1 present results on the accuracy of our Bezier
patch model. We consider a dense sampling of the (x,y) space, distort
it using various traditional lens distortion parameters, and fit a non-
rational Bezier patch to the distorted points. To evaluate the accuracy
of the fitted Bezier, we find the average Euclidian distance error be-
tween fitted and the distorted data as a percentage of the distance from



(a) (b) (c)

(d) (e) (f)

Fig. 2. Results of geometric registration shown on our display which is a 3×3 array of nine projectors. The geometric registration is achieved using
bicubic rational Bezier patches with sparse correspondences (8×6 for a 1024×768 projector). (a, b, c) Before registration; (d, e, f) After registration.
The grid image in the last column is made of lines that are one pixel wide. To retain clarity of the grids in the overlap region, photometric registration
is not applied to the grid image in (c) when generating the registered image (f).

the principal center. Note that even when higher order distortions are
present (e.g., x7), lower degree Bezier patches (e.g., bicubic) can pro-
vide a good fit. This is due to the presence of a large number of lower-
order cross-terms, which are absent in the traditional lens distortion
model.

Modeling H R with Rational Bezier Patches: Non-rational
Bezier patches are affine-invariant but not perspective-invariant. Re-
lating the projector to the camera not only involves a lens distortion
but also a perspective projection. In the case of planar displays, this
is a homography H , a simpler 3× 3 transformation induced by the
planar display screen. So, to model the combined effects of H and
R in Equation 1, we desire a function that retains all the properties
of the Bezier and is also perspective-invariant. Retaining all the prop-
erties of Bezier patch assures retaining the accurate model of non-
linearities due to distortion. Invariance under perspective projection
assures the additional modeling of the perspective projection between
the projector and the camera. To our advantage, a generalized form of
Bezier patches called rational Bezier patches offer us a function that
has all the properties of a non-rational Bezier and is also perspective-
invariant. In addition to the 2D control points of Bezier patches, ratio-
nal Bezier patches have a scalar weight associated with each control
point, and the patch is defined as a weighted sum of the blended con-
trol points:

B(x,y) =
∑k

i=0 ∑k
j=0 Pi jwi jBi jk(x,y)

∑k
i=0 ∑k

j=0 wi jBi jk(x,y)
. (11)

The weights provide this function with the capability to sample the
parameter space in a non-uniform (but controlled) manner. This makes
it perspective-invariant. Hence, we propose the use of a rational Bezier
patch to estimate the function F = H R.

3.2 Geometric Registration of Multiple Projectors
Geometric registration of a multi-projector display requires estimating
two functions. The first function maps the projector coordinates (x,y)
to the camera coordinates (u,v). We use a rational Bezier patch B for

this purpose. The second function maps the camera coordinates (u,v)
to the normalized screen coordinates (p,q). The presence of a planar
screen allows us to use a homography HS for this mapping. These
functions are estimated as follows.

Parameter Estimation: To estimate HS, we require four corre-
spondences between the camera and screen coordinates, (u,v) and
(p,q). The four correspondences result in a system of linear equa-
tions that can be solved to recover the homography matrix. To find
the correspondences, we identify four points in the camera image that
correspond to the four corners of the screen. This can be done au-
tomatically by attaching fiducials to the display. Since our display
is nearly rectangular, we set all the projectors to display white light
and use simple image processing to detect the extreme corners of the
lighted regions to find the camera coordinates that correspond to the
four corners of the normalized screen space.

To estimate the parameters of the rational Bezier patch, B, we
find correspondences between projector pixels (x,y) and camera pixels
(u,v). Let us assume N correspondences, i.e., (xc,yc) corresponding
to (uc,vc), 0 ≤ c ≤ N−1. The unknowns are the control points in the
camera’s space, Pi j = (ui j,vi j), and their scalar weights wi j. From the
known correspondences, Equation 11 can be written for each corre-
spondence as follows:

(uc,vc)
k

∑
i=0

k

∑
j=0

wi jBi jk(xc,yc)−
k

∑
i=0

k

∑
j=0

(ui j,vi j)wi jBi jk(xc,yc) = 0.

(12)
Assuming Ui j = ui jwi j and Vi j = vi jwi j, Equation 12 yields two equa-
tions for each correspondence, as follows:

uc
k

∑
i=0

k

∑
j=0

wi jBi jk(xc,yc)−
k

∑
i=0

k

∑
j=0

Ui jBi jk(xc,yc) = 0. (13)

vc
k

∑
i=0

k

∑
j=0

wi jBi jk(xc,yc)−
k

∑
i=0

k

∑
j=0

Vi jBi jk(xc,yc) = 0. (14)
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Fig. 3. Geometric registration of projectors with severe barrel distortion: using a linear piecewise method with sparse - 48 samples (a) and
dense - 432 samples (b) correspondences; using rational bicubic Bezier patches with sparse - 48 samples (c) and dense - 432 samples (d)
correspondences. (e,f,g,h) provides a zoomed in view of the projector overlap regions in (a,b,c,d) respectively. It is evident that piecewise linear
methods with sparse correspondences lead to severe mismatches. The results using rational Bezier are similar, even when the sampling is reduced
by an order of magnitude. In fact, at places, the results from using rational Bezier patches with sparse sampling is better than the results from using
a dense sampling for the piecewise linear method. This is evident as the grid lines are thicker in the overlap region in (b) due to slight errors.

The unknowns for estimating a two-dimensional rational Bezier patch
of degree k are (k + 1)2 control points and weights, which result in a
total of 3(k + 1)2 unknowns. The weights are variables that depend
on the control points in a non-linear fashion. So, the above equations
result in a non-linear least-squares fitting problem that can be solved
efficiently using the Levenberg-Marquardt gradient descent optimiza-
tion technique [31]. As an initial guess to this optimization, we fit the
control polygon tightly around the set of correspondences (uc,vc) in
the camera space and constrain the weights to be strictly greater than
0.

To find the correspondences between projector and camera coordi-
nates, (x,y) and (u,v), we display a rectangular grid of Gaussian blobs
with known coordinates on each projector. These are captured by a
calibrated camera in a series of non-overlapping images. We use a 2D-
stepping procedure that depends on a user to identify the top-left blob
and its immediate right and bottom neighbors in camera space. With
this minimal three point user input, we can design a stepping proce-
dure that (a) estimates the rough position of the next blob in scan-line
order, and (b) searches for the correct blob position using the nearest
windowed center-of-mass technique [11]. If this is not possible for
more extreme projector distortions, one can binary-encode the blobs
and project them in a time sequential manner to recover the exact ids
of the detected blobs and find the correspondences [28, 37].

Image Correction: To create a geometrically seamless and undis-
torted display, we warp the image for each projector as follows: For
each projector coordinate (x,y), we first compute the corresponding
camera coordinate (u,v) using the rational Bezier patch B. Next, we
compute the corresponding normalized screen coordinates (p,q) us-
ing the homography HS. The generated coordinates (p,q) are used
as indices into the image being rendered on the tiled display. Bilinear
interpolation is used to assign the final value of each projector pixel.
Thus, the correction is achieved by the mapping

(p,q) = HS(u,v) = HS(B(x,y)). (15)

3.3 Implementation and Results
We have applied our method on our 8× 6-foot display made of 3× 3
array of nine projectors. Our projectors have relatively large throw ra-

tios and hence do not reveal major lens distortions. Instead of choosing
the cost prohibitive option of buying nine short-throw lenses, we chose
to simulate the distortion digitally by distorting the input images to the
projectors.

The registration is done offline and takes a couple of minutes. This
generates the parameters of the rational Bezier for each projector,
which are then stored to be used during image correction. We have
implemented the image correction in real-time using modern GPUs
through Chromium – an open-source distributed rendering engine for
PC clusters [14]. A module for Chromium is written that first pre-
computes the coordinate-mappings of all pixel coordinates using the
stored parameters of the rational Bezier. This results in a per-pixel
projector to screen lookup table. A fragment program for the pixel
shader quickly maps pixels from the projector coordinate space to the
screen coordinate space during rendering.

Figure 2 shows the results. The advantage of using an appro-
priate parametric function lies in an accurate alignment even with a
sparse sampling of the function. We can achieve accurate alignment
of our relatively high resolution display (3000×2100) by using a low-
resolution VGA (640× 480) camera. Notice that even with a low-
resolution camera we get sub-pixel accuracy for fine grids (one pixel
wide lines) and text. Figure 3 shows that we can achieve accuracy
comparable to existing methods (that use much higher resolution cam-
eras) even when our sampling is sparser by an order of magnitude.
To achieve perceptual photometric seamlessness, we used the work by
Majumder, et al. [21]. To make the quality of the geometric regis-
tration visible in the grid images, we did not register the display pho-
tometrically for Figure 2(c) and Figure 3. So, these images, though
geometrically aligned, still show photometric seams. The real-time
rendering is demonstrated in the submitted video. However the video,
being in VGA resolution, cannot capture the high resolution details.

4 USING PHOTOMETRICALLY UNCALIBRATED CAMERAS

In this section, we present a method for photometric registration of
multi-projector displays using a photometrically uncalibrated camera.
Projector photometric parameters that include its ITF and spatial inten-
sity variation, need to be estimated to instrument existing photometric
registration techniques [21]. We use an uncalibrated camera (whose
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Fig. 4. The transformation process of an image as it passes through a projector-camera system.

ITF is unknown) to extract these projector photometric parameters. In
the process, we also recover the camera ITF and hence calibrate the
camera photometrically. To suppress the spatial intensity variation,
such as vignetting effect, of the camera, like most previous work in
scene reconstruction [8, 23], we operate the camera at a narrow aper-
ture setting where it approaches the ideal pinhole model.

4.1 Model for a Single Projector
We assume a geometrically calibrated projector-camera system where
a pixel (u,v) in the camera coordinate system is related to a pixel
(x,y) in the projector coordinate system by a linear or non-linear warp
G(x,y) = (u,v). G can be determined by any geometric calibration
method, including the one presented in the previous section [38].

Consider a spatially uniform grayscale input to the projector. Let
the grayscale level be denoted by i. As per the model presented in the
paper by Majumder and Gopi [18], the uniform image is first trans-
formed by a spatially invariant input transfer function of the projec-
tor, fp, to create a spatially uniform output, fp(i). Next, the pro-
jector optics introduce a spatially-dependent but input-independent
intensity variation. This is further modulated by the screen re-
flectance/transmittance function. We denote this combined spatially
dependent attenuation factor due to projector lens and screen as L(x,y).
Thus, the image produced after passing through the projector lens and
screen is fp(i)L(x,y). The light from the screen then reaches the cam-
era. The amount of light accepted by the camera is scaled by its ex-
posure time t j, where j indexes different exposure times. The differ-
ent exposures are instrumented by changing the shutter speed of the
camera. This produces an image fp(i)L(x,y)t j that passes through the
camera optics. Assuming negligible camera vignetting at narrow aper-
tures, the image is transformed only by the input transfer function of
the camera, fc, to generate the grayscale value recorded by the camera
Z. Thus, Z is a function of the input i, the exposure time index j, and
the spatial coordinates (x,y). This is illustrated in Figure 4. The final
equation is

Z(i, j,x,y) = fc( fp(i)L(x,y)t j). (16)

For cameras, the intensity transfer function is monotonic [8], and
hence invertible. Note that the same is not true for projectors [20].
Assuming invertible fc, the above equation becomes

f−1
c (Z(i, j,x,y)) = fp(i)L(x,y)t j. (17)

Taking the natural logarithm of both sides we get,

ln f−1
c (Z(i, j,x,y)) = ln fp(i)+ ln(L(x,y))+ ln(t j). (18)

To simplify the notation, we define hc = ln f−1
c and hp = ln fp, The

above equation then becomes

hc(Z(i, j,x,y)) = hp(i)+ ln(L(x,y))+ ln(t j) (19)

where i ranges over the grayscale inputs, j ranges over the exposure
times, and (x,y) ranges over the spatial coordinates of the projector.
In this equation, Z and t j are known while hp, hc and L are unknown.
Varying i and t j results in different values of Z for each pixel (x,y).
We can use this to setup a system of linear equations. We recover
hp, hc and L that best satisfy Equation 19 in a least-squares sense.
Note that recovering hp and hc involves solving the functions for a

finite number of samples in the complete range of input values. The
recovered parameters are illustrated in Figure 5.

Improving Efficiency: The system of linear equations achieved by
Equation 19 is very large. Let Ri and RZ each be the cardinality of the
set of input samples for hp and hc respectively, P be the total number
of projector pixels, and T be the number of exposures. This results in
PT Ri equations and P +Ri +RZ unknown variables for the system of
equations defined by Equation 19. Typically Ri = RZ = 256 and P =
1,000,000 (assuming common XVGA projector resolution). Since
there are multiple exposures for each input in the range Ri, the size of
the linear system is on the order of at least a few million equations and
cannot be solved efficiently.

To address this inefficiency we use a limited number of pixels in the
projector space to solve for hp and hc. This is possible since hp and hc
are both spatially constant. To ensure a sufficiently over-determined
system, the criteria PT Ri > P + Ri + Rz should be satisfied. For Ri =
RZ = 256 and T = 6, a choice of 100 for P is more than adequate. So,
we first subsample L to a resolution of 10× 10 pixel and use this to
setup a smaller linear system of equations to solve for hp and hc.

With the estimated hp and hc, we substitute these into Equation 19
and quickly solve for L(x,y) at the various projector coordinates, by
rewriting Equation 19 as

ln(L(x,y)) = hc(Z(i, j,x,y))−hp(i)− ln(t j) (20)

Handling Noise: Our system does exhibit considerable random
noise arising not only from the devices (camera and projector) but
also from the screen. In particular, we use a rear projection screen
with relatively high gain which has been shown to generate consider-
able random noise [20]. This has an adverse effect on the signal to
noise ratio, especially for low projector input i or low camera output
Z. Thus, estimating hp and hc directly from Equation 19 and L from
Equation 20 results in noisy parameter estimation. We take several
measures to reduce the effect of this random noise.

To assure smooth hp and hc while solving the system of equations,
we minimize the error function

E = ∑
j∈T

∑
(x,y)∈P

∑
i∈Ri

[(hc(Z)−hp(i)− ln(L(x,y))− ln(t j)]2 (21)

+λ

(

∑
Z∈RZ

h′′c (Z)2 + ∑
i∈Ri

h′′p(i)
2

)
. (22)

The first term assures that the solution arises from the set of equations
given by Equation 19 in a least-squares sense. The second term is a
smoothing constraint on the curvature of hp and hc, given by their sec-
ond derivatives. In the discrete domain, we use the Laplacian operator
to find the curvature of hp and hc, i.e., h′′p(i) = hp(i− 1)− 2hp(i) +
hp(i + 1). The scale factor λ weights the smoothness term relative
to the data fitting term and should be chosen based on the amount of
noise in Z. We choose λ = 10.

However, note that the first term in Equation 22 gives equal weights
to all recorded camera values Z, and the second term gives equal
weights to all i and Z. For the first term, we want to emphasize im-
ages with higher signal to noise ratio i.e. images for higher i with
higher recorded values Z. For the second term, we want to emphasize
smoothing of hp and hc in the lower ranges of i and Z respectively
where low signal to noise ratio would result in a noisier estimate. To
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Fig. 5. (a) The estimated camera input transfer function fc. (b) The estimated projector input transfer function fp. (c) The estimated spatial intensity
variation due to projector, screen, and camera L.

achieve this, we weight the first and second term of the error function
in Equation 22 as follows,

E = ∑
j∈T

∑
(x,y)∈P

∑
i∈Ri

[wc(Z)(hc(Z)−hp(i)− ln(L(x,y))− ln(t j)]2 (23)

+λ

(

∑
Z∈RZ

[(Zmax−wc(Z))h′′c (Z)]2 + ∑
i∈Ri

[(imax−wp(i))h′′p(i)]
2

)
. (24)

where wp and wc are the weighting functions corresponding to the
projector input and the recorded camera values, respectively, and Zmax
and imax are the maximum camera output and projector input respec-
tively. To give the higher intensities greater confidence we use linear
weighting functions, wc(Z) = Z and wp(i) = i.

Similarly, noise can have adverse effects when estimating L using
Equation 20 after hp and hc are recovered. Usually the image cap-
tured for input i at a particular exposure does not yield unsaturated
outputs at all spatial pixel locations (x,y). So, we need to use differ-
ent images for reconstruction of L at different spatial locations. This
will yield an L with different signal to noise ratio at different spatial
regions depending on the image that was used to reconstruct L in any
spatial region. Even if a rare situation occurs when one finds a single
image (at a particular input and exposure) where all the pixels are un-
saturated, L will still be noisy due to the inherent random noise of the
projector-screen-camera system.

Averaging multiple observations is the standard way to reduce ran-
dom noise significantly [11]. Using this fact, we reduce noise in L
at any pixel (x,y) by solving it from multiple images and finding
a weighted mean of the multiple solutions. The weighting function
should emphasize higher i and Z to reduce the effect of random noise.
We achieve this by a weighting function wL(Z, i) = wc(Z)wp(i). The
solution can now be derived by modifying Equation 20 as

ln(L(x,y)) =
∑ j∈T ∑i∈Ri wL(Z, i)[hc(Z)−hp(i)− ln(t j)]

∑ j∈T ∑i∈Ri wL(Z, i)
, (25)

resulting in clean estimated parameters as illustrated in Figure 5.

4.2 Photometric Registration of Multiple Projectors
For photometric registration of a multi-projector display, we estimate
the fp and L(x,y) of each projector independently using the same cam-
era. Note that in order to recover the relative intensity levels of the pro-
jectors, we use the unnormalized L(x,y) estimated independently from
each projector. Using the extracted parameters from each projector,
we use the photometric registration method proposed by Majumder
and Stevens [21] to generate a perceptually seamless display.

4.3 Implementation and Results
We used a Kodak DCS ProSLR/n camera and projected 32 flat
grayscale fields with intensity levels uniformly sampled from 0 to 255.
For each intensity level, 15 exposures were taken. The camera was set
to a narrow aperture, f/32. The data collection took 25 minutes. To

reduce the collection time, we tried reducing the number of exposures.
Empirically, the minimum number of exposures needed before quanti-
zation effects became visible was eight. The exposures used, however,
need to be well distributed amongst the range of available camera ex-
posures. The program was written in C++ and utilizes Matlab and the
OpenCV library. It takes about 11-15 minutes to register each projec-
tor on a Pentium 4, 2.8 GHz PC.

The photometric registration in Figure 2 (d) and (e) are achieved by
using a photometrically uncalibrated camera. Additional results with
projectors that do not exhibit lens distortion are shown in Figure 6.
Here a linear geometric registration method is used [5]. These results
show that a photometrically uncalibrated camera can be used irrespec-
tive of the kind of geometric registration method being used. When
using the photometric registration technique of Majumder and Stevens
[21] we use a low photometric uniformity parameter to retain the high
contrast of the display as much as possible. This results in some per-
ceivable seams near the boundaries of the bottom left and right projec-
tors, which are significantly dimmer than the other projectors in our
display. However, these seams exist even when the photometric reg-
istration is carried out with a calibrated camera, showing that they are
artifacts of the photometric registration method itself and are not due
to imperfect projector parameter estimation.

5 CONCLUSION

This paper presents new registration techniques to handle imperfect
and uncalibrated devices in planar multi-projector displays. The four
relevant cases include allowing (a) photometrically imperfect projec-
tors, (b) geometrically imperfect projectors, (c) a photometrically un-
calibrated camera, and (d) a geometrically uncalibrated camera. Our
work addresses (b) and (c) in particular, while (a) is addressed by ex-
isting literature [21]. Our work allows severely distorted projectors to
be used which opens up the possibility of mounting inexpensive lenses
on projectors, just as with cameras, leading to very short-throw projec-
tors. Using a photometrically uncalibrated camera allows the photo-
metric registration to be conducted within a controlled indoor environ-
ment. Further, we have proposed the first method that estimates all
projector/camera photometric parameters simultaneously. However,
case (d) above of achieving geometric registration in multi-projector
displays using a geometrically uncalibrated camera is still a challeng-
ing problem.

Further, our methods are within the realm of centralized architec-
ture. Current distributed architectures [2] are very amenable to easy
deployment, simple maintenance and hence more affordable multi-
projector displays. Our goal is to extend our developed methodologies
in this paper to the distributed framework of a network of projector-
camera systems [2]. This poses a significant challenge which, if re-
solved, can be instrumental in realizing commodity tiled projection-
based displays. All of these methodologies are stepping stones towards
the vision of ubiquitous pixels in future workspaces.
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Fig. 6. Images of our 3×3 array of nine projectors. (a,c) The geometrically registered display without any photometric registration. (b,d) Photometric
registration achieved by using an uncalibrated camera.
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