VISUAL MEMORY

Visual Perception

Memory is unque

- Other aspects of visual perception
 - Bombard us with stimuli at every instance
- Memory
 - Helps us to make sense from chain of such instances

Slide 2 Aditi Majumder, UCI

Two Theories in 1800s

- Herman Ebbinghaus
 - Undifferentiated memory system
 - One memory overwritten only with "new" memories
- William James
 - Primary memory: 10s of seconds
 - Secondary memory: Years
- 1960s experiments confirmed
 - Short term memory (STM)
 - Long term memory (LTM)
 - Iconic memory (very small memory buffer)

Classify based on

- Duration
 - Amount of time it lasts
- Content
 - Kind of information stored
- Loss
 - Ways of loss of information
 - Autonomous decay vs conflicting new memories
- Capacity
- Maintenance
 - Methods to refresh

Discovery to Iconic Memory

Early experiments (1880s) studied the span of apprehension

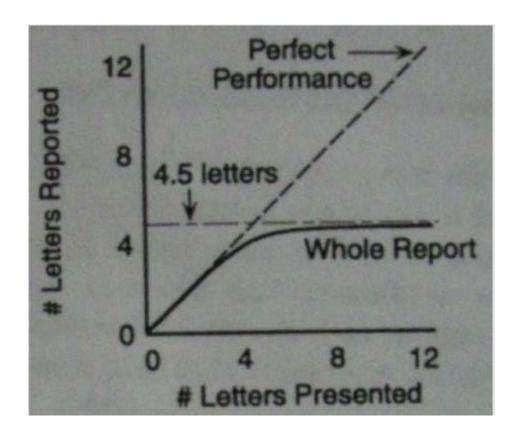
Number of letters a person could perceive in a single, very brief visual presentation

DEMO!

Slide 5 Aditi Majumder, UCI

Demo

```
J P X R D Q
F T K S W N
G H Z L V B
```

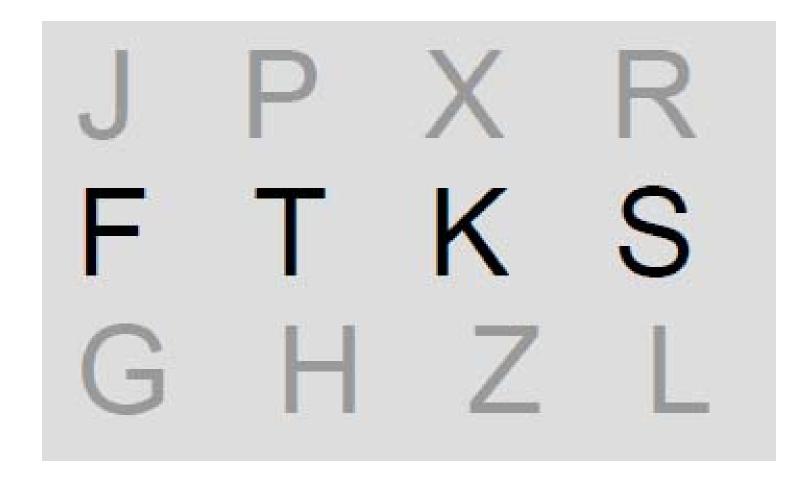

Slide 6 Aditi Majumder, UCI

Span of Apprehension

How many letters can you report?

Slide 7 Aditi Majumder, UCI

Whole Report Performance


Slide 8 Aditi Majumder, UCI

Discovery of Iconic Memory

- In 1950 George Sperling duplicated results
- Did not match visual experience
- Reporting is taking too long
 - Cannot report all that is retained within the time provided
- Changed the reporting
 - Cue based reporting on a fraction of letters

Slide 9 Aditi Majumder, UCI

Audio cue (after letter display)

Slide 10 Aditi Majumder, UCI

COZLEPQRTNV XWUKY

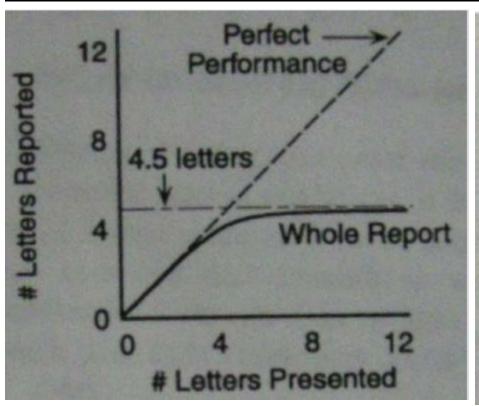
Slide 11 Aditi Majumder, UCI

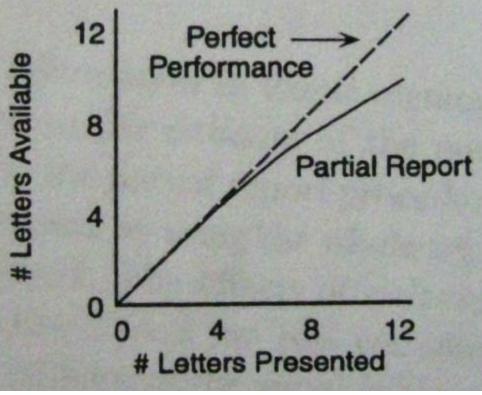
Slide 12 Aditi Majumder, UCI

COZLEPQRTNV XWUKY

Slide 13 Aditi Majumder, UCI

LSPHI O W X A J DTZE

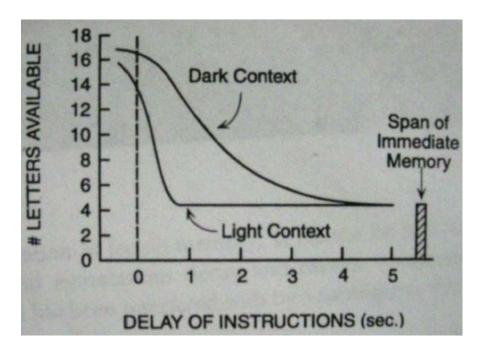

Slide 14 Aditi Majumder, UCI


Slide 15 Aditi Majumder, UCI

LSPHI O W X A J DTZE

Slide 16 Aditi Majumder, UCI

Partial Report Performance



Slide 17 Aditi Majumder, UCI

Duration of Iconic Memory

- Delay between display and cuing
- If delay is long enough, partial report will be similar as whole report plot
- Effect of context
 - Mostly light

Iconic memory duration: ½ sec

Slide 18 Aditi Majumder, UCI

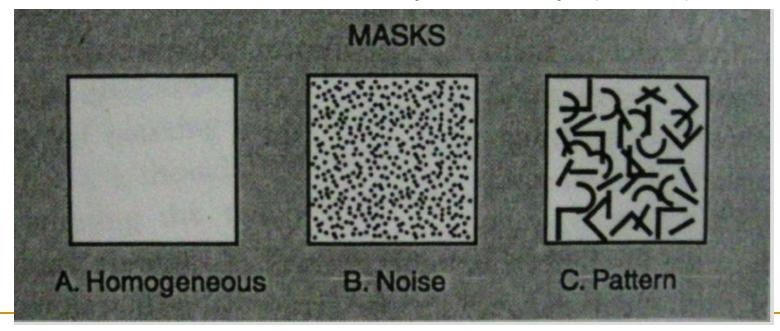
Content of Iconic Memory

- Effectiveness of different cues
 - Spatial position
- Tone cuing for color, letter/number, row etc
- Effective cues
 - Position, Color, Shape, Size
- Category is ineffective
 - Pre-categorical

L 6 K V

9 3 W 5

Slide 19 Aditi Majumder, UCI


Maintenance and Loss

- Cannot be maintained voluntarily
- Loss
 - By autonomous decay
 - By interference
 - Called masking
 - Discovered by accident
 - Cuing by a circle
 - Completely erased signal
 - Metacontrast masking or erasure

Slide 20 Aditi Majumder, UCI

Masking Terminology

- Forward or Backward Masks
- Homogeneous vs Noise vs Patterned
- Simultaneous Onset Asynchrony (SOA)

Slide 21 Aditi Majumder, UCI

Integration Masking

- Flat color mask
 - Double the intensity of the target
- No target identification for 0-16ms
- Improves as SOA increases
- Complete identification at 200ms

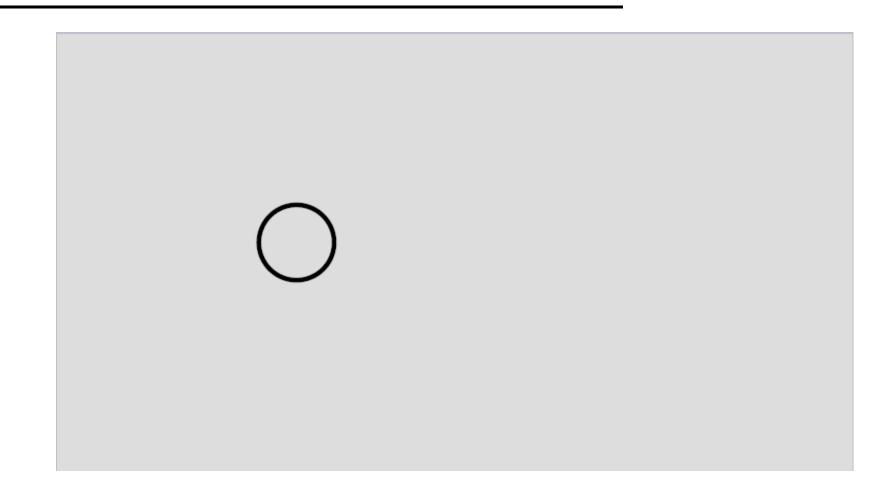
Slide 22 Aditi Majumder, UCI

Interruption Masking

- Brightness of mask halved instead of doubled
- No masking at 0ms
- Masking maximizes at 50ms
- Then improves

Slide 23 Aditi Majumder, UCI

Metacontrast Masking (interruption)


G X A L E D

N F Y S C O

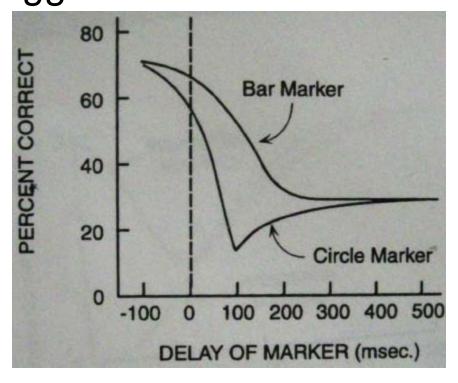
I R H V K T

Slide 24 Aditi Majumder, UCI

Metacontrast Masking (interruption)

Slide 25 Aditi Majumder, UCI

What was the letter?


GXALED N(F)YSCO IRHVKT

Slide 26 Aditi Majumder, UCI

Circle sometimes erased the letter

Masking circle with a bigger circle undoes the

effect!!

Slide 27 Aditi Majumder, UCI

Interocular Masking

Dual mechanisms

- Homogeneous masks only degrade performance is presented to the same eye as the target
 - Processing occurs prior to V1 area of cortex
- Patterned masks degrade performance irrespective of which eye they are presented to
 - Processing occurs after V1 area of cortex

Slide 28 Aditi Majumder, UCI

Persistance

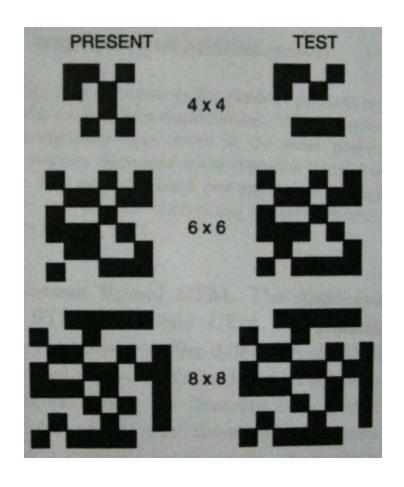
- Does it work by persistence?
 - You can report since you can still see
- Measured by a clever method
 - Set a tone along with start of stimulus
 - Have user stop the tone when he no longer sees it
 - This time is found to be longer than stimulus
 - Subtract stimulus time to find persistance
 - Increasing brightness or duration reduced persistance

Slide 29 Aditi Majumder, UCI

What is the use of iconic memory?

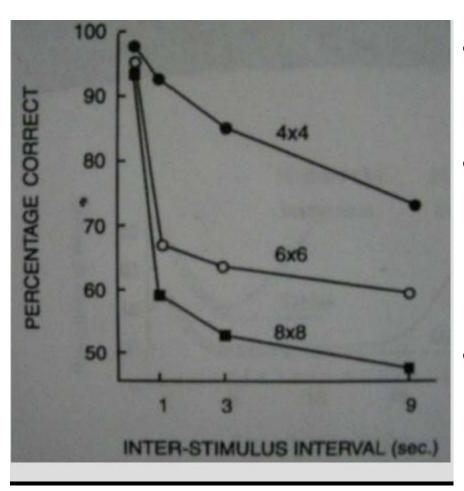
- Processing during saccadic movements?
- During motion processing?
- By-product of some other mechanism?

Slide 30 Aditi Majumder, UCI


Visual Short Term Memory (STM)

- Gap between iconic and long term memory
 - Iconic memory is for less than 1 sec
 - Even meaningful conversations cannot be explained by either iconic or long term memory
- How to measure?
 - Present meaningful stimulus and ask after 1 sec
 - But subjects will categorize
 - Was it knowledge or STM
 - Need stimulus that cannot be categorized

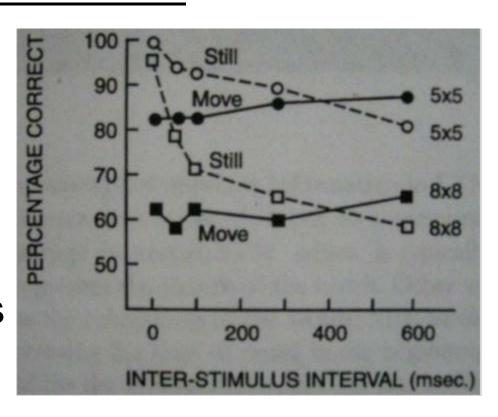
Slide 31 Aditi Majumder, UCI


Meaningless patterns

- William Philips in 1975
- Show meaningless grid of random squares
 - Test for retention after 0-9 seconds
 - Same/different answer

Slide 32 Aditi Majumder, UCI

Proof of STM

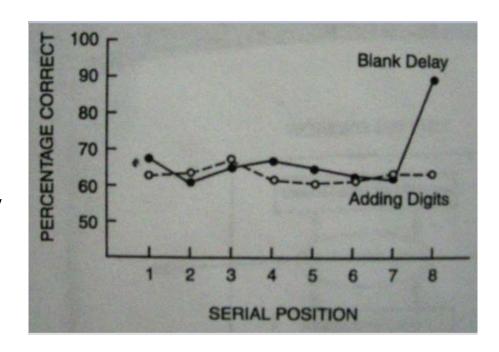


- Near perfect memory for less than 1 sec
 - Iconic memory
- Performance goes down dramatically after that
 - Well above chance (50%)
 - For smaller grids
- This is proof for existance of STM

Slide 33 Aditi Majumder, UCI

Further proof of STM

- Iconic memory is spatially dependent
- If second stimulus shifted in position, iconic memory fails
- STM recall increases in performance


Slide 34 Aditi Majumder, UCI

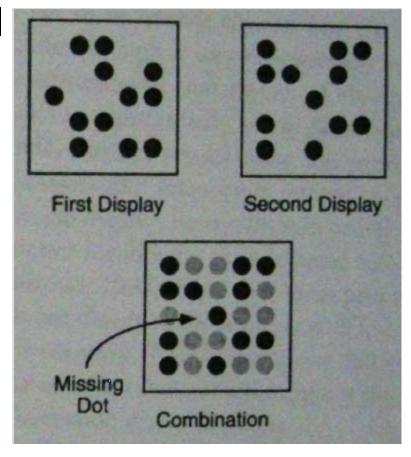
STM or LTM

- Learning from verbal experiments
 - Present a list of words
 - Free recall
 - Serial position curve
 - First and last set of words are better recalled
 - Recency effect: Higher recall of last set of words
 - Delay recall by a distracting task removes recency effect
 - Recency effect is due to STM
 - Slowing presentation increases recall from LTM

STM vs LTM

- Same experiment repeated with grid patterns
 - Forced choice rather than recall
- Recency effect for last grid
 - Eliminated by a coginitively demanding distractor
- Faster rates reduces performance
 - Recency effect persists

Slide 36 Aditi Majumder, UCI


STM properties

- Duration:10 seconds, longer if no interference
- Content: Object based spatial coordinates, Postcategorical
- Capacity: Single item
- Loss: Mainly through replacement, though maybe decay if no rehearsal
- Maintenance: Can be rehearsed

Slide 37 Aditi Majumder, UCI

Transaccadic Memory

- Conjecture: Fusion of visual stimuli during saccade
- Experiment
 - Two displays
 - Locate the missing dot
 - With and without saccade
 - Iconic vs transaccadic memory
 - Failure with saccade
- No evidence of fusion

Slide 38 Aditi Majumder, UCI

Same as STM

- STM is acting rather than iconic memory
 - Limited to 4 items: Capacity
 - Almost no decay within a second: Duration
 - Better for identification than location
- How do we perceive stable world during saccade?
 - Not due to fusion
 - If target is unmoved, other changes go unnoticed during saccade

Slide 39 Aditi Majumder, UCI

Conceptual Organization

- Meaningless visual materials
 - To reduce interference conceptual categorization
 - How to study conceptual categorization?
 - How long does it take?
- Rapid Series Visual Presentation (RSVP)
 - Series of pics presented for 1-1000s
 - Each picture presented for 100ms-2s
 - Detection (e.g. did you see a picnic scene?)
 - Recognition (e.g. What did the picnic scene show?)

Results of RSVP

- Fast presentation rate (100ms), detection is possible, but no recognition
- Cannot comprehend pictures shown for 100-200ms
- However, standalone pictures shown for same duration with noise mask can be both detected and recognized
- Meaningful image within 500ms has a masking effect

Slide 41 Aditi Majumder, UCI

Conceptual Short Term Memory

- Takes 100-200ms to log in CSTM
- Takes another 400ms to process for recognition
- If interrupted at that time, the image is lost

Slide 42 Aditi Majumder, UCI