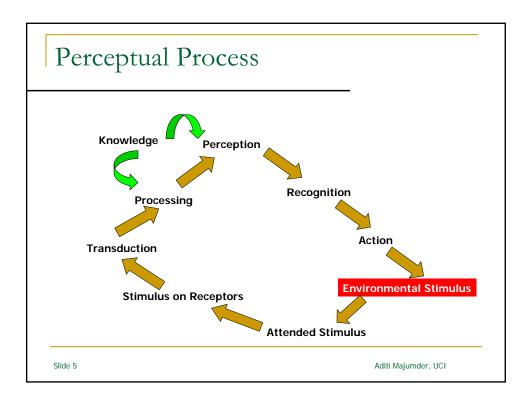
Introduction

Visual Perception Aditi Majumder, UCI

Perception is taken for granted!

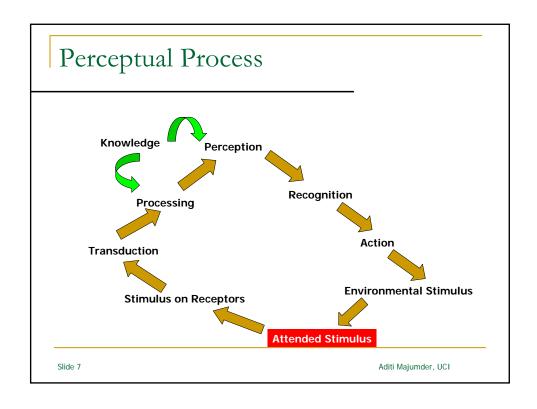
Slide 2 Aditi Majumder, UCI


Perception is very complex

- Perceive
- Locate
- Identify/Recognize
 - Different objects
 - Their relationship with each other
 - Qualitative and Quantitative
- Act based on these information

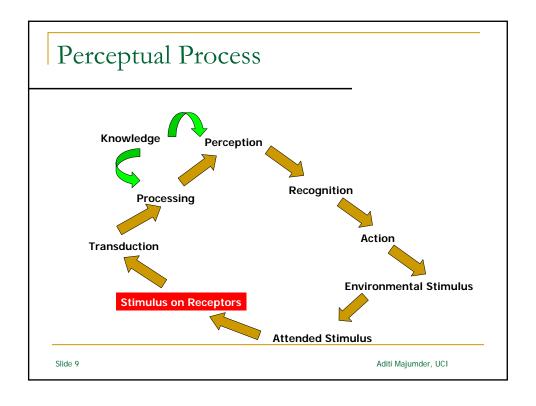
It is a miracle that we do not cause accidents/mistakes every now and then

Slide 3 Aditi Majumder, UCI


Perceptual Process Recognition Transduction Stimulus on Receptors Attended Stimulus Aditi Majumder, UCI

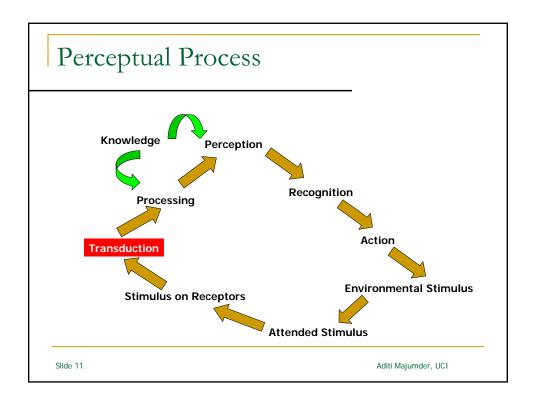
Environmental Stimulus

- Anything in our environment that we can perceive
- Can be anything we can sense
 - □ See, hear, touch, smell


Slide 6 Aditi Majumder, UCI

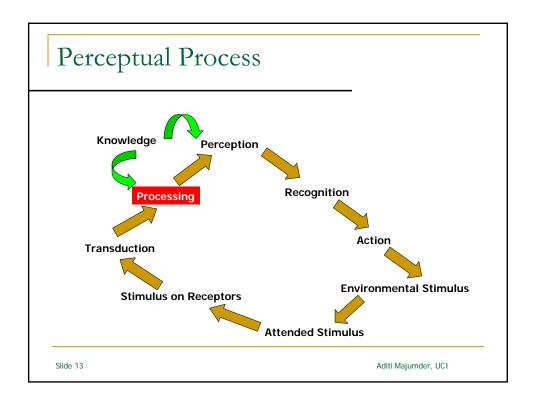
Attended Stimulus

- A part of the environmental stimulus
- Focuses attention on this stimulus


Slide 8

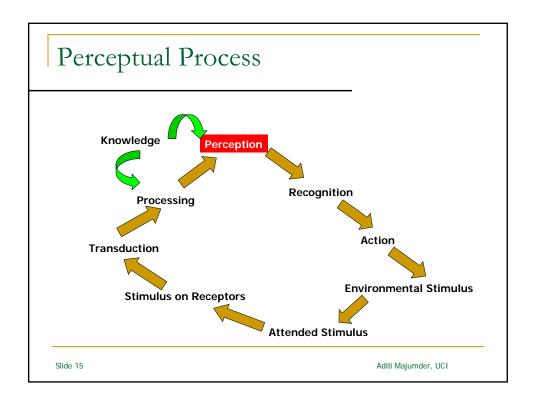
Stimulus on Receptors

- The attended stimuli excites the receptors
- For example
 - Visual stimulus forms a image on the retina
 - Sound changes pressure to affect the ear drum
- Note
 - We do not `perceive' the image on the retina
 - It is just one of the initial steps of the process


Slide 10 Aditi Majumder, UCI

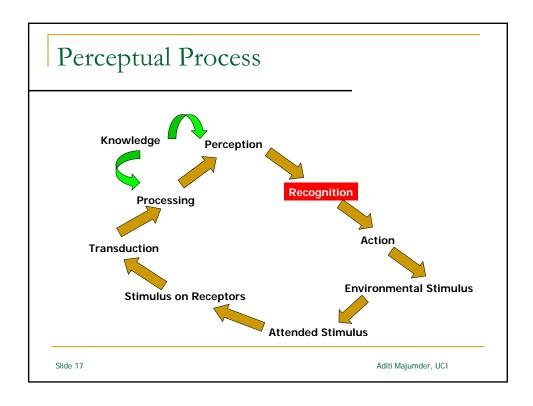
Transduction

- Transformation of one form of energy to other
- Environmental energy transformed to electrical energy
- The image on the retina generates electrical signals in the tens and thousands receptors of the eye


Slide 12 Aditi Majumder, UCI

Neural Processing

- Neurons are elements of nervous system
- Interconnected together
- Processing of the electrical energy by the neurons while they travel through them
 - This changes the electrical energy in various ways


Slide 14 Aditi Majumder, UCI

Perception

- Conscious sensory experience
- Electric energy transforms in brain to some experience
- Is this the end of perception?
 - Recognition and action are important outcomes of the perceptual process

Slide 16 Aditi Majumder, UCI

Recognition

- Identifying the experience as something
 - Known
 - □ Similar to some experience before
- Recognition and Perception are two separate process
- The Man who Mistook his Wife for a Hat
 - By Oliver Sacks

Slide 18 Aditi Majumder, UCI

Visual form of agnosia

- Dr. P found he cannot recognize students but can tell their name from their voices
- Started conversation with parking meters or expected furniture to talk to him
- Was he blind?
 - Eye examination showed no problem
- Inability to recognize objects due to a tumor in brain
- When show a gloves, he told
 - a continuous surface, unfolded by itself, with five outpouchings
 - Maybe a container or a purse to keep coins to different sizes
- He can perceive an object, identify parts of it, but cannot assemble the parts perceptually to recognize it

Slide 19 Aditi Majumder, UCI

Perceptual Process Knowledge Perception Processing Recognition Transduction Stimulus on Receptors Environmental Stimulus Attended Stimulus Addit Majumder, UCI

Action

- Goal of perception is to create action
 - Evolutionary reason for development of perception
- Motor activities
- Response to perception and recognition
- Leads to
 - New attended stimulus
 - Whole cycle repeats

Slide 21 Aditi Majumder, UCI

Perceptual Process Recognition Transduction Stimulus on Receptors Attended Stimulus Aditi Majumder, UCI

Knowledge

- Affects
 - □ Processing, Perception, Recognition
- Identification from memory
 - Old knowledge
 - Recent knowledge

Slide 23

Aditi Majumder, UCI

Cognitive Influences on Perception

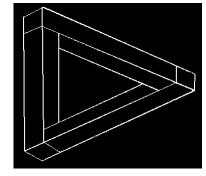
Slide 24

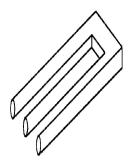
Cognitive Influences on Perception

Slide 25 Aditi Majumder, UCI

Visual Perception

- Vision plays preeminent role for humans
- Evolutionary history
 - Vision was developed to aid survival and successful reproduction
 - Used to get nourishing food, safe shelter and strong mates
 - Also avoid dangers and predators


Slide 26 Aditi Majumder, UCI


Why Vision is so Important?

- Vision is preeminent
- Only sense that provides accurate spatial information from a distance
 - Smell and hearing provides information from a distance but not accurate
 - Touch and taste provide very accurate information but only on contact
- Vision helps us most to keep away from danger
- Vision is a veridical perception
 - What you see is what you get

Slide 27 Aditi Majumder, UCI

Pathological Cases

Slide 28 Aditi Majumder, UCI

Studying Perceptual Process

- Levels of Analysis (At different scales)
- Bottom Up
 - Starting from the stimulus towards perception
- Top Down
 - Starting from knowledge
- We will study both and cross refer

Slide 29

Studying Perceptual Process

- Psychophysical
 - Relationship between stimulus and perception

Aditi Majumder, UCI

- What?
- Physiological
 - Relationship between the processes within a person and perception
 - □ How?

Slide 30 Aditi Majumder, UCI

Psychophysical Approach

- Description
- Recognition
- Detection
- Magnitude
- Search

Slide 31

Aditi Majumder, UCI

Psychophysical Approach

- Description
 - Describing the experience
 - Phenomenological Method

Slide 32

Recognition

- A stimulus is presented, the subject has to recognize it
 - Widely used by physicians and doctors
 - Usually qualitative

Slide 33

Aditi Majumder, UCI

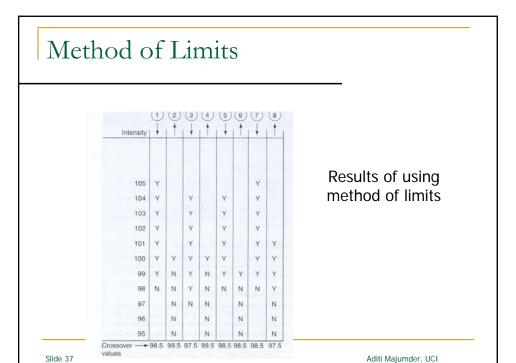
Detection

- Absolute threshold
 - Smallest amount of stimulus required to generate detectable perception
- Difference threshold
 - Smallest difference between two stimulus that a person can detect
- Sensitivity = 1/threshold
- Classical Psychophysical Methods
 - Elements of Psychophysics by Fechner

Slide 34

Absolute threshold

- Measured by
 - Method of limits
 - Method of adjustment
 - Method of constant stimuli


Slide 35

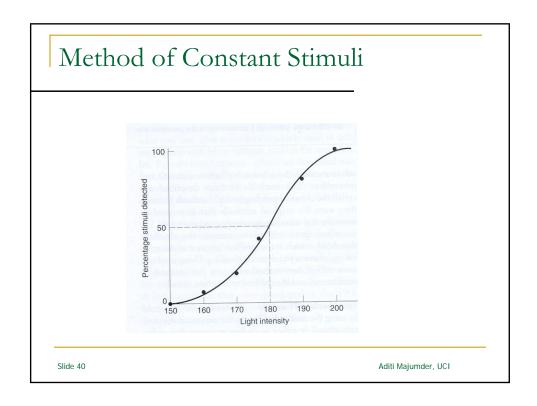
Aditi Majumder, UCI

Absolute threshold

- Measured by
 - Method of limits
 - Presents stimuli in ascending or descending order
 - Method of adjustment
 - Method of constant stimuli

Slide 36

Absolute threshold


- Measured by
 - Method of limits
 - Presents stimuli in ascending or descending order
 - Method of adjustment
 - Subject controls the strength of stimulus
 - Method of constant stimuli

Slide 38 Aditi Majumder, UCI

Absolute threshold

- Measured by
 - Method of limits
 - Presents stimuli in ascending or descending order
 - Method of adjustment
 - Subject controls the strength of stimulus
 - Method of constant stimuli
 - Presents stimuli of random strength in random order

Slide 39 Aditi Majumder, UCI

Measuring Absolute Threshold

- Method of limits and adjustment
 - Errors due to anticipation
 - Fast
- Methods of constant stimuli
 - Most reliable
 - Slow

Slide 41

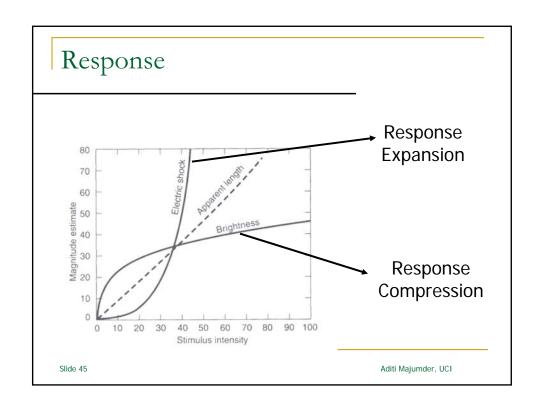
Aditi Majumder, UCI

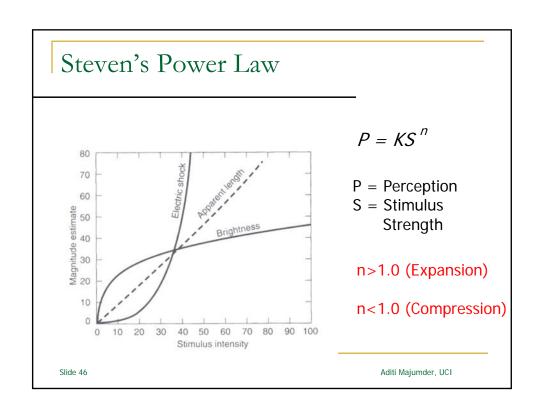
Difference Threshold

- 'Standard weight' compared with `comparison weight'
- The `comparison weight' is increased from 'standard weight' unless the change is detected
- The detectable change is a function of the `standard weight'

Slide 42

Weber Law


Slide 43


Aditi Majumder, UCI

Magnitude

- Threshold measures detectable changes
- How to measure what happens once we are past the threshold?
- Magnitude Estimation
 - Present subjects with different strength of stimuli at random
 - Ask them to number the strength of perception
 - Plot these to estimate the magnitude

Slide 44

Adapted to Functions of Organisms

- Bright sunlight would not appear very bright since n=0.6
- If n>1.0
 - Brightness of outdoor scenes would not allow us to see anything inside
 - May even impair our ability to see

Slide 48 Aditi Majumder, UCI

Adapted to Functions of Organisms

- For electric shock, small changes cause large perception of pain
- Acts as a warning mechanism
- So that we can react before much damage is done

Slide 49

Aditi Majumder, UCI

Searching

- Can be easy if objects stand out
- Difficult if they mingle well with their surrounding

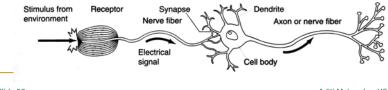
Slide 50

Physiological Approach

- Sensors have receptors that transduce environmental energy to electrical energy
- Nerves carry these signals to the brain
- Processing in brain leads to the experience of perception

Slide 51

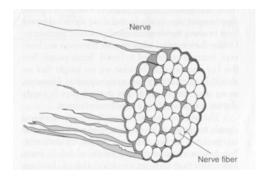
Aditi Majumder, UCI


Intrigued people for a long time

- In mid 19th century by Johannes Mueller
 - Showed that electrical energy flows down the nerve
 - Can measure electrical signals in brain to assure brain activity
 - Nature of perception depended on which nerves were stimulated
 - Quality of perception depended on how these nerves were stimulated

Slide 52

Neurons


- Neuron: Basic element of the nervous system
- Three parts of a neuron
 - Cell Body: Has the elements to keep it alive
 - Dendrites: Branches out from cell body to receive signals from other neurons
 - Axon: Tube filled with fluid that conducts the electrical signals

Slide 53 Aditi Majumder, UCI

Nerve

■ The nerve is formed by a bunch of axons

Slide 54 Aditi Majumder, UCI

Perception

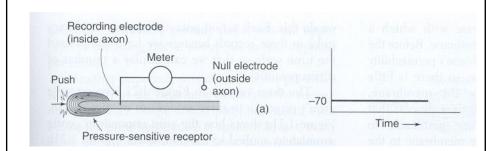
- Recording of electrical signal in receptors
- Transmission of signals to the brain
 - Some low level processing occurs at this time
- Processing in brain

Slide 55

Aditi Majumder, UCI

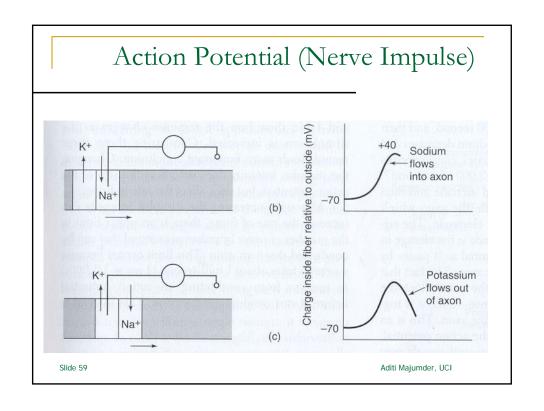
Receptor Neuron

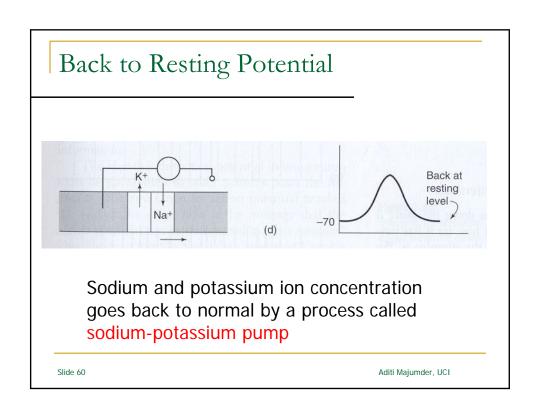
- This is a special type of a neuron present in sensors
- Have a receptor (transducer) in place of a cell body


Slide 56

Recording the Electrical Signal

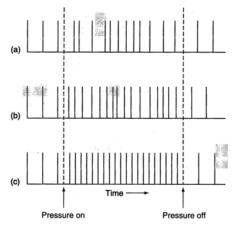
- At the receptor
- Electricity is not carried in the nerves as electricity is carried to our home
- Neurons are immersed in solutions rich in ions (molecules carrying electrical charge)
- The solution outside the axon is rich is Na⁺
- The solution inside the axon is rich is K^+


Slide 57 Aditi Majumder, UCI


Resting Potential

At normal state, the difference of charge is -70 mV

Slide 58 Aditi Majumder, UCI


How is it caused?

- Change in the permeability of the axon membrane
- Before stimulus, the permeability to sodium and potassium is low
- The receptor when excited triggers a process which increases this permeability
- Everything happens in 1ms
- Propagated response: This action potential travels through the axon

Slide 61 Aditi Majumder, UCI

Strength of Signal

- Action potential magnitude is always same
- How is strength of stimulus denoted?
 - Rate of firing

Slide 62

Rate of Firing

- After every firing there is a refractory period of 1ms
- This limits the maximum firing rate to a maximum of 800 pulses per second
- In the normal state, there is some firing called spontaneous activity

Slide 63

Aditi Majumder, UCI

Transmission of Electrical Signals

- From one neuron to another
 - End of axon of one neuron to dendrite of another
- No physical contact between neurons
- Synapse: Small space between neurons
 - Discovered by Spanish anatomist Santiago Ramon Cajal
 - Won Noble Prize for this in 1906

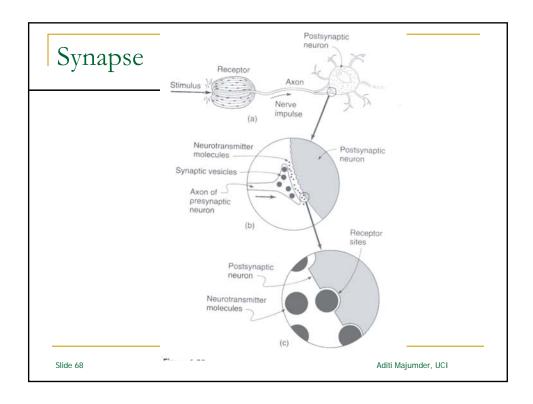
Slide 64

Synapse

- Electrical signal triggers a chemical process in the synapse that is instrumental in transmitting the signals
- Presynaptic Neuron: From whom the signal is transmitted
- Postsynaptic Neuron: The one who is receiving the signal

Slide 65 Aditi Majumder, UCI

Synapse


- Axons of neurons have synaptic vesicles that can release neurotransmitters
 - Neurotransmitters can be of different shapes
- Dendrites of neurons have receptor sites
 - Receptor sites can be of different shapes too

Slide 66 Aditi Majumder, UCI

Synapse

- When electrical energy reaches the end of presynaptic neuron
 - Releases the neurotransmitters
- If the shape matches the receptor site in postsynaptic neuron
 - □ Generates electric energy again
- Transmission is controlled by the type of neurotransmitters generated

Slide 67 Aditi Majumder, UCI

Synapse

- Electrical signals transmitted may not be identical to the presynaptic neuron
- Can be excitation or inhibition
- Low level processing while transmission

Slide 69

Aditi Majumder, UCI

Brain

- Cerebral Cortex
 - 2mm thick layer that covers the surface of the brain
 - Used for perception, language, memory and thinking
- Modular organization

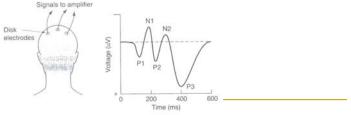
Slide 70

Brain

- Primary Receiving Areas
 - First areas in Cerebral Cortex to receive the signals
 - Occipetal lobe: For eye
 - □ Temporal lobe: For ear
 - Parietal lobe:For skin
- Advanced processing
 - Involves other areas of the brain too

Slide 71

Aditi Majumder, UCI


Studying Brain Activity

- Neuropsychology
 - Studying the effects of brain damage on behavior
- Microelectrodes on cats and monkeys
 - Intrusive

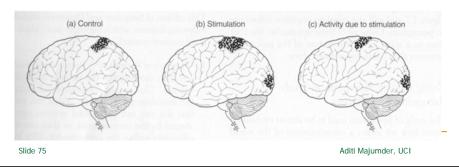
Slide 72

Studying Brain Activity

- Now can study on humans by less intrusive disk electrodes
 - Can study evoked potentials
 - Record activity of thousands of neurons

Slide 73

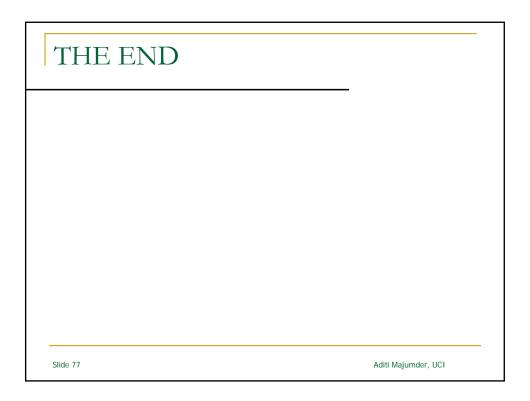
Aditi Majumder, UCI


Neuroimaging

- Using positron emission tomography (PET)
- Person is injected with low activity radioactive tracer (not harmful)
- This tracer indicates volume of blood flow
- Basic concept:
 - Activity in brain is accompanies with changes in the volume of blood flow
 - Monitoring blood flow

Slide 74

Subtraction technique


- Find state before stimulus
- Find state after stimulus
- Difference gives what was cause by stimulus

Functional Magnetic Resonance Imaging (fMRI)

- Hemoglobin has iron
- If presented with magnetic field, they line up like tiny magnets to indicate volume of blood flow
- Especially, with activity hemoglobin loses some of it oxygen making it more magnetic
- Popularly called Brain Scan

Slide 76 Aditi Majumder, UCI

