THE VISUAL SYSTEM

Visual Perception
Aditi Majumder, UCI

Visual System
- Eye - sensor
- Lateral geniculate nucleus
- Striate cortex
 - Striped Appearance
- Extra striate cortex
Visual System

Slide 3
Aditi Majumder, UCI

Visual System

Slide 4
Aditi Majumder, UCI
Eye: The Sensor

Eye: Structure
Eye: Accommodation

- Accommodation: Flexible focusing ability
 - Cornea – 80% of focusing ability
 - Lens – 20% adaptable focusing ability
- Focus at one depth at a time
- Limitation
 - Depth of field
 - Near and far point

Myopia/Presbyopia

- Far and near point is different for different individuals
 - If near point is far: presbyopia
 - If far point is near: myopia
Iris

- Muscle controlling the pupil size
- Controls the illumination on the retina
- 3mm – 7mm
- Increase by 5 times
- Cannot explain the 10 orders of magnitude light sensitivity

Other

- Pigmented Epithelium
 - Behind the retina – dark
 - Absorbs light and avoid scattering
 - Allows high-contrast sharp retinal image
- Fovea
 - 2 degrees of angle subtended
 - Most densely populated with photoreceptors
 - Image fixated on the retina
 - Stiles-Crawford effect
Receptors in Eye

Receptor Organization

- Rod and cone receptors (R)
- Horizontal cells (H)
- Bipolar cells (B)
- Amacrine cells (A)
- Ganglion cells (G)
- Receptor outer segments
- Receptor inner segments
- Receptor cell bodies
- Optic nerve fibers
Receptors

- Rods
 - 120 million
 - Only in periphery
- Cones
 - 6 million
 - 1% in fovea
 - Rest in periphery
- In periphery 20:1 ratio for rods and cones
- Blind Spot

Receptor Distribution

- Diagram showing receptor distribution with high density in fovea and decrease towards the periphery.
Receptor Distribution

- Turned away from light
- To get nutrition from opaque pigment epithelium
- The other cells are transparent not to block light reaching the retina
- Block the axons of the ganglion cells from leaving the eye

Blind Spot

- Ganglion nerve fibers fold and leave by crossing a part of retina
- This part does not have any receptors
- Filled out by the brain
- Experiment
Receptor Functions

- Cones – for vision in photopic conditions
- Rods – for vision in scotopic conditions
 - Saturate at high light levels
- Both – for vision in mesopic conditions

Conversion of light to electrical energy

- Light sensitive chemical pigment in the receptors
- Absorbs photons and changes the shape to create a graded potential across the membrane of the outer segment
- Logarithmic response supports Stevens Law
- Potential is transmitted down the outer membrane to other cells
Receptor Functions

- Pigment Bleaching
- Pigment Regeneration
 - 30 minutes for rods and 6 minutes for cone

Effects of Visual Pigments on Perception
Dark Adaptation Curve

Initial rapid increase
- 6 minutes

Slower further increase
- 25-30 minutes

Rods have higher sensitivity than cones
- Rods responsible for dark vision

Pigment Regeneration
- 6 minutes for cones
- 30 minutes for rods
Spectral Sensitivity

Threshold Curve

Sensitivity Curve

Relative threshold of light required to detect monochromatic light of each wavelength

Rod and Cone Sensitivity

- Rods have sensitivity to shorter wavelengths
- Peak near 500nm being maximum sensitive to the blue-green region
- Shift of wavelengths in dark
 - Purkinje shift
 - Things appear bluish in dark
 - Green foliage seems to stand out in the dusk

Green foliage seems to stand out in the dusk
Cone Sensitivity

- Cone curve is the combined sensitivity of three cones
- Short wavelength – S cones
- Medium wavelength – M cones
- Long wavelength – L cones

Inconsistent with parts? – NO
Relative proportions of the S,M and L cones are different
S:M:L = 1:6:12
Rods does not help in color vision. No color perception in dark
Why do we need three cones?

- What happens with one cone?
 - 10 photons of 500nm produce x reaction
 - 10 photons of 560nm produce 4x reaction
 - 40 photons of 500nm produce 4x reaction
- No way to tell between the wavelength

Why do we need three cones?

- What happens with one cone?
 - Two parameters: Which wavelength and what brightness?
 - Cannot measure both with one sensor
Why do we need three cones?

- What happens with two cones?
 - You can distinguish both intensity and wavelength
 - Need more wideband sensitivity to cover all colors
 - Miss out completely parts of the spectrum

With three cones

- We do not need more than three since they cover the visible spectrum
Why rods not considered as the fourth cone?

- Spatial distribution and nature of convergence are completely different
- They are activated usually in completely different light conditions

Effects of Neural Processing on Perception
Convergence

- Measured number of neuron synapse on another neuron
 - Eye: Number of receptor neuron synapses on a ganglion cell
- Each ganglion cell receives many synapses
 - Rods to cones convergence ratio is 20:1
 - 1 million ganglion cells, 120 million rods and 6 million cones
 - Rods have higher convergence than cones

Rods are more sensitive in dark

Rods have greater spatial summation than cones

Threshold for ganglion triggering = 10

Not triggered
Cones give visual acuity

Slide 35
Aditi Majumder, UCI

Cones give visual acuity

Slide 36
Aditi Majumder, UCI
Neural Circuits and their Effects on Perception

Neural Circuits

- Many neurons connected through convergence
 - Small – a few neurons
 - Large – a few hundred thousand neurons
Neural Processing by Excitation and Inhibition

Slide 39
Aditi Majumder, UCI

Neural Processing by Excitation and Inhibition

Slide 40
Aditi Majumder, UCI
Neural Processing by Excitation and Inhibition

Receptive Fields

- The area of the retina that when stimulated influences the firing rate of the ganglion cells
- Excitatory center
- Inhibitory surround
- Lateral Inhibition
Hermann Grid

Explanation: Lateral Inhibition
Mach Bands

Actual Intensity

Percieved Intensity

Explanation: Lateral Inhibition
Explaination: Lateral Inhibition

Simultaneous Contrast

Slide 47 Aditi Majumder, UCI

Slide 48 Aditi Majumder, UCI
Simultaneous Contrast

Explanation: Lateral Inhibition
Artifact of Mach Band

Theory of Continuity
Mach Bands

- Artifacts when any patch or curve does not show C^1 continuity
- They are always avoided
 - Shading
 - Blending
 - Image editing, contrast compressing, tone reduction
 - Geometric Modeling
Shading

- \(I_d = k_d \ (L \cdot N) \)
- \(I_s = k_s \ (2N \ (L \cdot N) - L) \cdot V \)

Flat Shading
- \([I(v1)+I(v2)+I(v3)]/3\)
- Is not \(C^1 \) continuous

Interpolated Shading
- Linear Interpolation of \(I(v1), I(v2) \) and \(I(v3) \)
- Is \(C^1 \) continuous
Shading

Flat Shading – Mach Bands

Interpolated Shading

Intensity Blending

 Depends on
 • Width of blending
 • Blending Function

Intensity

0.0

Spatial Location

Overlap Region
Intensity Blending

Depends on
- Width of blending
- Blending Function

Intensity

Overlap Region

Spatial Location

0.0

Proj2
Proj1

Proj2
Proj1

Overlap Region

Overlap Region
Intensity Blending
Applications

- Image Mosaics
- Multi-Projector Displays
- Image Editing

Geometric Modeling Primitives

- Three properties
 - Continuous
 - Continuous with transformations
 - Continuous with subdivisions