Fourier Transform in Graphics and Vision

Aditi Majumder
ICS 288

Frequency Based Representation of a Spatial Signal

- Any one dimensional function can be represented as a linear combination of sine waves of different frequencies
1D Signal

- Example: Once scan line of an image
- Amount of each wave defined by its amplitude and phase

Sine Waves form a Basis

- Forms a basis for the set of functions
 - Sine wave of one frequency is linearly independent of another
 - Any function is a linear combination of this linearly independent basis function
- Infinite Basis
 - When we do it in digital domain, we can find a finite basis
 - Matlab
Fourier Transform (FT)

SPATIAL DOMAIN

\[h(x) \]

FREQUENCY DOMAIN

\[A(f) \]

\[P(f) \]

FT

IFT

Extending it to 2D

- Any 2D function (an image) can be represented as a linear combination of sine waves of different frequencies and orientation
Extending it to 2D

Amplitude

- **Amplitude**
 - **How** much details?
 - Sharper details signify higher frequencies
 - Will deal with this mostly
Phase

- **Where** are the details?
- Though we do not use it much, it is important, especially for perception.

Properties of Fourier Transform

- **Symmetric**

\[
\begin{align*}
 h(x) & \rightarrow H(f) \\
 H(x) & \rightarrow h(f)
\end{align*}
\]
Properties of Fourier Transform

SPATIAL DOMAIN

FREQUENCY DOMAIN

Convolution

Convolution Kernel

Imaging and Adding
Convolution and Multiplication

SPATIAL DOMAIN

\[h_1(x) \quad h_2(x) \]

\[x \quad \ast \quad x \]

FREQUENCY DOMAIN

\[A_1(f) \quad A_2(f) \]

\[f \quad \rightarrow \quad x \]

Slide 13

Convolution and Multiplication

SPATIAL DOMAIN

\[h_1(x) \quad h_2(x) \]

\[x \quad \ast \quad x \]

FREQUENCY DOMAIN

\[A_1(f) \quad A_2(f) \]

\[f \quad \rightarrow \quad x \]

Slide 14
Convolution and Multiplication

SPATIAL DOMAIN

\[h_1(x) \ast h_2(x) = f \]

FREQUENCY DOMAIN

\[A_1(f) \ast A_2(f) = \]

Image Filtering

SPATIAL DOMAIN

\[h_1(x) \ast h_2(x) \]

FREQUENCY DOMAIN

\[A_1(f) \ast A_2(f) \]

Reduced the Bandwidth

= Low pass filter
Ideal Low Pass Filter

Types of Filters
Choosing Right Filters

- Should not pass high frequency
- Should be limited in spatial domain
- Box Filter in spatial domain
 - Not good since passes high frequencies
- Synch Filter in spatial domain
 - Infinitely long in spatial domain
- Gaussian is a good compromise

Hierarchical Image Filtering

\[
\begin{array}{c}
\text{h}_1(x) \quad \ast \quad \text{A}_1(f) \\
\text{h}_2(x) \quad \ast \quad \text{A}_2(f)
\end{array}
\]

SPATIAL DOMAIN

FREQUENCY DOMAIN
Hierarchical Filtering

1/4 1/4
1/4 1/4

N x N
N/2 x N/2
N/4 x N/4

Gaussian Pyramid

Image Pyramid
Low resolution
High resolution

Image Pyramid
Low resolution
High resolution

Image Pyramid
Frequency Domain
Low resolution
High resolution
Band-limited Images (Laplacian Pyramid)

\[f_{n-2} < f_{n-1} < f_n \]

\[B_{n-1} = G_{n-1} - G_{n-2} \]

\[B_n = G_n - G_{n-1} \]

\[G_{n-2} \]

\[G_{n-1} \]

\[G_n \]
Sampling and Reconstruction

Sampling

Convolution

-\(f_s \) \(f_s \) \(f_s \) \(f_s \) \(2f_s \) \(3f_s \)

Original signal
Sampling
Sampled signal
Reconstruction
Reconstructed signal
Reconstruction

Multiplication

Sampling

Convolution
Reconstruction

- f_s
- f_s
- $2f_s$
- $3f_s$

Multiplication

Slide 29

Aliasing

Slide 30
Aliasing

Signal is band-limited first
Reconstruction

Multiplication

Slide 33

Reconstruction

Multiplication

Slide 34
Blurring

Slide 35

Blurring

Slide 36