Sensitivity to color variations & Spatial Localization

Setareh Rafatirad
Behzad Sajadi

Outline

• Part 1
 – Color Spatial Contrast Sensitivity Function
 – Significance of Color CSFs for Vision
• Part 2
 – Multiple Color Spatial Frequency Channels
 – Luminance-Color Interactions
• Part 3
 – Introduction to Phase and Position
 – Spatial Localization in Visual System
• Part 4
 – Physiology of Phase and Position Sensitivity
 – Some Limitations in the Visual System
Visual System

- Study of Visual System
 - Spatial Vision
 - Color Vision
- Field intersections
 - Variation across both chromaticity and luminance
 - Shadowing
 - Objects in shadow

Wavelength Distribution

- Trivial color contrast
- More veridical
- More information
- Low and middle frequency
- Very expensive
- Birds, insects
Intensity Distribution

- Non-trivial luminance contrast
- Middle and high frequency
- Less veridical
- Rapidly changing or moving pattern
- Ungulates and grass eaters

Chromaticity vs. Intensity

- Mostly contours are recognized
- Loses most of the information
Chromaticity vs. Intensity

Mostly contours are recognized → Loses most of the information

Color-mixture Grating

- Mixing colors ➔ Intermediate colors
- Create an isoluminant red-green grating
 - Summing two out-of-phase isochromatic luminance gratings-
 matched in luminance
 - Red grating (180° out-of-phase) + Green grating
Color-mixture Grating

Result:

Red-Green grating ➔
- The same spatial frequency
- Varies sinusoidally (red-green)
- Invariant luminance

Cone Responses

C,D: Receptor sum: varies with luminance contrast
E,F: Receptor Difference: varies with color contrast
Pure Color Gratings

- Isoluminant | Equiluminant
- Chromaticity variation
- No variation in luminance or chromaticity along the orthogonal axis

A Phenomenon

- Van der Hoarst, de Weert, and Bouman (1967)
- Van der Hoarst and Bouman (1969)
- Measures of color sensitivity Experiment:
 - Low spatial frequencies
 - High spatial frequencies
 - Peculiar experiment: Luminance Artifacts!!!
Aberration

• Axial chromatic aberration
 – Partial demodulation
 – Variation in luminance and chromaticity
 – Elimination

• Diffraction by the pupil

• Radial chromatic aberration
 – Slightly different wavelengths are differentially magnified
 – Producing beats for extended patterns

Spatial CSFs

How different is the Color Spatial CSF from Luminance Spatial CSF?

1. Sooner sensitivity fall-off on high-frequency for pure color patterns.
2. Color CSF is low-pass while Luminance CSF is band-pass.
RG vs. BY grating

 - Visual system color analysis:
 - Black-white axis
 - Red-Green axis (RG)
 - Yellow-Blue axis (YB)

RG vs. YB grating

- Little information on RG & YB
- Both have the similar sensitivity
- YB gratings fall off sooner in high frequencies
 - Might be because of sparse distribution of S cones.
RG vs. YB grating

Mullen (1985): no difference
- Effects of chromatic aberration
 - Affect blue-yellow more than red-green grating

Temporal CSFs

- Experiments by Regan & Tyler, 1971; D.H. Kelly, 1974, 1975 conclude:
 - Temporal color CSF differs from Temporal luminance CSF in:
 - No low temporal frequency attenuation
 - Having lower high temporal frequency cut
Color Contrast and Similitude

<table>
<thead>
<tr>
<th>Patterns</th>
<th>Low Spatial frequencies</th>
<th>Mid Spatial frequencies</th>
<th>High Spatial frequencies</th>
<th>Very high Spatial frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminance varying patterns</td>
<td>_</td>
<td>Contrast</td>
<td>Contrast</td>
<td>Similitude</td>
</tr>
<tr>
<td>Color varying patterns</td>
<td>Contrast</td>
<td>Similitude</td>
<td>_</td>
<td>_</td>
</tr>
</tbody>
</table>

Minimally Distinct Borders

- First task in identifying objects
- Boynton (role of luminance and color differences)
 - Equal luminance gives **minimal** distinction
 - Indistinct borders with only chromatic differences
 - Sharper borders with luminance differences
Psychophysical Evidence for Multiple Spatial Frequency Channels

- Evidence 1:
 - Selective adaptation studies (Blakemore & Campbell, 1969)
 - Adaptation to isoluminant red-green gratings:
 - K.K. De Valois, 1978
 - Bradley, Switkes, & K.K. De Valois, 1985
- Evidence 2:
 - Masking studies

Spatial frequency masking functions

- Broader in bandwidth
- More sensitive
Cross Masking Conditions

- Pure-color grating masking effect
 - Profound
 - More sensitivity
 - Effectively as luminance mask

- Luminance grating masking effect
 - Much less profound
 - Significant loss when mask and test are in the same frequency
 - Discriminating contours

Summary

- Pure color vs. pure luminance gratings
- Color mixture gratings
- Luminance artifacts
- Temporal CSFs
- Similitude
- Cross Masking effects
Introduction

- How visual system detects position of objects?
- Each neural element is integrating information over some spatial region ➔ loose some degree of localization
- In a Fourier Analysis phase is the localization component ➔ Is it relevant to spatial localization?
Absolute vs. Relative Phase

- Two ways can be considered for absolute spatial localization:
 - Absolute phase mechanism
 - Positional mechanism: Which local area is activated?

- Relative phase:
 - Two gratings at the same region (e.g. f & 3f)
 - Relative phase will result in different peaks and troughs

Is the visual system phase sensitive?

- Visual system process spatial info. similar to auditory system process temporal info.
- Auditory system use phase info minimally
- Unlike auditory system we can detect dark and light bars in a grating (absolute phase)
- We can discriminate an f + 3f combination in sine and cosine phase (relative phase)
What can cause this adaptation?

- Adaptation of phase sensitive system
- Adaptation of separate black bar and white bar detectors:
 - It should be frequency independent
Some points about phase sensitivity

- Relative phase can only be discriminated between gratings of nearby frequencies (about a 2 octave range: e.g. f and 3f)
- Delectability of compound gratings does not depend on their relative phase, however it changes the contrast
Sensitivity to absolute phase or position

- Auto kinetic
 - A subject in a dark room with a point light source: Light source will start to move in a random direction after a few minutes
 - Might be related to eye movement? Not enough for such an apparent movement.
- Dot within a box framework: We percent moving of dot or framework both as moving of the dot.
- We can perceive a line jump to right or left as small as 3° => Good in relative position, poor absolute position.

Relative contribution of phase and position in localization (Cont.)

- Two gratings of 1c/deg and 10c/deg
 - Threshold was 3’ for both of them
 - 3’ displacement: 18° and 180° phase shift respectively
 - Only position not phase contributes in spatial localization.
- For lower than 1c/deg frequencies phase threshold is constant!
Relative contribution of phase and position in localization

- Hypothesis: Threshold is linear sum of a position threshold and a phase threshold
- Roughly compatible with the experimental results
- Might be due to two successive processing stages
Physiology of phase and position sensitivity

- One-to-One retinotopic mapping
 - Different regions of the retina are mapped to different cortical regions in a symmetric way
 - Evidence: Destruction of restricted cortical areas produce correspondingly restricted scotomas
 - Is this mapping enough to detect small displacements within a cortical region consist of different cell types?

- Capacity of some specific cells to localize patterns within their input region

Phase sensitive and phase insensitive cells (Cont.)

- Recorded from cat ganglion cells two main cell types was found
 - Excitatory center, inhibitory annular surround
 - Inhibitory center, excitatory annular surround
 - Named X cells by Enroth-Cugell and Robson

- Another variety of cells which are totally phase insensitive was found: Named Y cell
Phase sensitive and phase insensitive cells

- Simple and complex cortical cells are functionally similar to X and Y cells respectively
- Simple cells: max excitation for 0°, no response for 90°, max inhibition for 180°
- Complex cells: Almost totally phase insensitive
Hubel and Wiesel’s Model

- Simple cells only act as inputs to the complex cells
- Consequence: Visual system should be totally unaware of phase information!
- Alternative hypothesis: Two parallel systems in the striate cortex
 - Complex cells with only frequency information
 - Simple cells with both frequency and phase information

Odd and even symmetric simple cells

- In addition to even symmetry cells cortical simple cells of odd-symmetry are also found
- Type one responds optimally to cosine gratings with 90° phase
- Type two responds optimally to cosine gratings with 270° phase
Variation with spatial frequency

- Found from monkey striate cortex: Most of the cells tuned for high spatial frequencies are complex cells
- Reasons for phase insensitivity at high spatial frequency
 - Small eye movements make it difficult
 - On the other hand a small complex cell tuned to a high frequency can determine position of the grating by just firing or not firing

Sensitivity to relative phase

- For complex cells addition of another frequency with a different phase found to has no effect on the response
- For simple cells response inhibited slightly more than half in a non-phase-specific manner by adding another frequency
- Some other simple cells found to be sensitive to relative phase of gratings of f and 2f, and less to gratings of f and 3f
Variations in phase sensitivity with eccentricity

- Nachmias and Weber found that a contrast interval in which:
 - Two gratings of \(f \) and \(3f \) can be discriminated in a compound \(f + 3f \) grating
 - Relative phase cannot be detected

- Hypothesis: Detection at a threshold is based on a pooled response. Frequency threshold is lower because there are more frequency sensitive cells.

Sensitivity to color phase

- At low spatial frequencies we can distinguish different colors
- At high spatial frequencies we only perceive a mix of colors
- Because we don’t have spatial phase information in high frequencies we can not determine which part is which color