Sensitivity to color variations & Spatial Localization

Setareh Rafatirad Behzad Sajadi

•

Outline

- Part 1
 - Color Spatial Contrast Sensitivity Function
 - Significance of Color CSFs for Vision
- Part 2
 - Multiple Color Spatial Frequency Channels
 - Luminance-Color Interactions
- Part 3
 - Introduction to Phase and Position
 - Spatial Localization in Visual System
- Part 4
 - Physiology of Phase and Position Sensitivity
 - Some Limitations in the Visual System

Visual System

- Study of Visual System
 - Spatial Vision
 - Color Vision
- Field intersections
 - Variation across both *chromaticity* and *luminance*
 - Shadowing
 - Objects in shadow

3

Vision ▶Part 2

□Multiple Color Spatial Frequency Channels

□Color Spatial CSF

Color CSFs for

□Luminance-Color Interactions

≻Part 3

□Introduction to Phase and Position □ Spatial Localization in

Visual System ➤ Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations

Wavelength Distribution

- □Color Spatial CSF
 □Significance of
- Color CSFs for Vision

▶Part 2

≻Part 1

□Multiple Color Spatial Frequency Channels

□Luminance-Colo Interactions

≻Part 3

□Introduction to Phase and Position

☐ Spatial Localization in Visual System

⊳Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual System

- Trivial color contrast
- More veridical
- More information
- Low and middle frequency
- Very expensive
- Birds, insects

□Color Spatial CSF

□Significance of Color CSFs for Vision

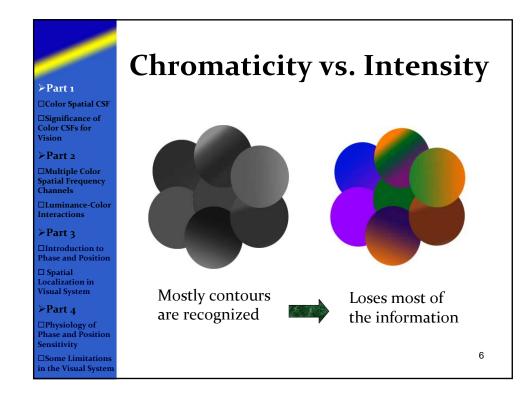
≻Part 2

□Multiple Color Spatial Frequency Channels

□Luminance-Color Interactions

▶Part 3

□Introduction to Phase and Position


□ Spatial Localization in Visual System

□Physiology of Phase and Position

□Some Limitations in the Visual Systen

Intensity Distribution

- Non-trivial luminance contrast
- Middle and high frequency
- Less veridical
- Rapidly changing or moving pattern
- Ungulates and grass eaters

Chromaticity vs. Intensity

≻Part 1

□Color Spatial CSF

□Significance of Color CSFs for Vision

≻Part 2

☐Multiple Color Spatial Frequency Channels

□Luminance-Color Interactions

≻Part 3

□Introduction to Phase and Position

□ Spatial Localization in Visual System

Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual Systen

Mostly contours are recognized

Loses most of the information

7

≻Part 1

□Color Spatial CSF

□Significance of Color CSFs for Vision

≻Part 2

□Multiple Color Spatial Frequency Channels

☐Luminance-Color Interactions

≻Part 3

□Introduction to Phase and Position

□ Spatial Localization in Visual System

≻Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual System

Color-mixture Grating

- Mixing colors → Intermediate colors
- Create an isoluminant red-green grating
 - Summing two out-of-phase isochromatic luminance gratingsmatched in luminance
 - Red grating (180° out-of-phase) + Green grating

Color-mixture Grating

≻Part 1

□Color Spatial CSF

□Significance of Color CSFs for Vision

≻Part 2

□Multiple Color Spatial Frequency Channels

□Luminance-Color Interactions

▶Part 3

□Introduction to Phase and Position

□ Spatial Localization in Visual System

≻Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual Systen

Result:

Red-Green grating →

- -The same spatial frequency
- -Varies sinusoidally (red-green)
- -Invariant luminance

9

Cone Responses ≻Part 1 □Color Spatial CSF Pure Color Grating Pure Luminance Grating □Significance of В □Multiple Color Spatial Frequency Channels C D Interactions Receptor Sum □Introduction to Phase and Position □ Spatial Localization in Visual System Ε ≻Part 4 Receptor □Physiology of Phase and Position Difference Sensitivity C,D: Receptor sum: varies with luminance contrast ☐Some Limitations 10 E,F: Receptor Difference: varies with color contrast in the Visual System

Pure Color Gratings ≻Part 1 □Color Spatial CSF □Significance of Color CSFs for Vision ≻Part 2 □Multiple Color Spatial Frequency Channels □Luminance-Color Interactions ▶Part 3 □Introduction to Phase and Position □ Spatial Localization in Visual System •Isoluminant | Equiluminant Chromaticity variation □Physiology of Phase and Position •No variation in luminance or chromaticity along the orthogonal axis □Some Limitations in the Visual Systen

A Phenomenon ≻Part 1 □Color Spatial CSF □Significance of Van der Hoarst, de Weert, and Bouman (1967) Color CSFs for Van der Hoarst and Bouman (1969) Measures of color sensitivity Experiment: ▶Part 2 □Multiple Color Spatial Frequency Channels - Low spatial frequencies - High spatial frequencies □Luminance-Color Interactions • Peculiar experiment: Luminance Artifacts!!! ▶Part 3 □Introduction to Phase and Position Localization in Visual System ≻Part 4 □Physiology of Phase and Position Sensitivity ☐Some Limitations 12 in the Visual System

□Color Spatial CSF

□Significance of Color CSFs for Vision

≻Part 2

□Multiple Color Spatial Frequency Channels

□Luminance-Color Interactions

▶Part 3

□Introduction to Phase and Position

□ Spatial Localization in Visual System

≻Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual Systen

Aberration

- Axial chromatic aberration
 - Partial demodulation
 - Variation in luminance and chromaticity
 - Elimination
- Diffraction by the pupil
- Radial chromatic aberration
 - Slightly different wavelengths are differentially magnified
 - Producing beats for extended patterns

13

≻Part 1

□Color Spatial CSF

□Significance of Color CSFs for Vision

≻Part 2

□Multiple Color Spatial Frequency Channels

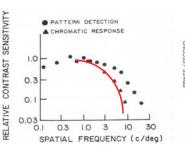
□Luminance-Color Interactions

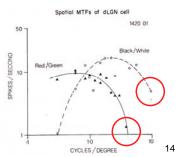
▶Part 3

□Introduction to Phase and Position

☐ Spatial Localization in Visual System

≻Part 4


□Physiology of Phase and Position Sensitivity


☐Some Limitations in the Visual System

Spatial CSFs

How different is the Color Spatial CSF from Luminance Spatial CSF?

- Sooner sensitivity fall-off on high-frequency for pure color patterns.
- 2. Color CSF is low-pass while Luminance CSF is band-pass.

□Color Spatial CSF

□Significance of Color CSFs for Vision

≻Part 2

□Multiple Color Spatial Frequency Channels

□Luminance-Color Interactions

▶Part 3

□Introduction to Phase and Position

□ Spatial Localization in Visual System

≻Part .

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual Systen

RG vs. BY grating

- R.L. DeValois & K.K. De Valois, 1975; Boynton, 1979; Hurvich, 1981
 - Visual system color analysis:
 - · Black-white axis
 - Red-Green axis (RG)
 - Yellow-Blue axis (YB)

15

≻Part 1

□Color Spatial CSF

□Significance of Color CSFs for Vision

≻Part 2

□Multiple Color Spatial Frequency Channels

☐Luminance-Color Interactions

≻Part

□Introduction to Phase and Position

☐ Spatial Localization in Visual System

≻Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual System

RG vs. YB grating

- Little information on RG & YB
- Both have the similar sensitivity
- YB gratings fall off sooner in high frequencies
 - Might be because of sparse distribution of S cones.

□Color Spatial CSF

□Significance of Color CSFs for Vision

≻Part 2

□Multiple Color Spatial Frequency Channels

□Luminance-Color Interactions

▶Part 3

□Introduction to Phase and Position

□ Spatial Localization in Visual System

≻Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual System

RG vs. YB grating

Mullen (1985): no difference

- Effects of chromatic aberration
 - Affect blue-yellow more than red-green grating

17

≻Part 1

□Color Spatial CSF

□Significance of Color CSFs for

≻Part 2

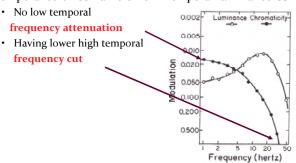
□Multiple Color Spatial Frequency Channels

□Luminance-Color Interactions

≻Part 3

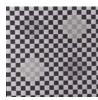
□Introduction to Phase and Position

□ Spatial Localization in Visual System


≻Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual System


Temporal CSFs

- Experiments by Regan & Tyler ,1971; D.H. Kelly, 1974,1975 conclude:
 - Temporal color CSF differs from Temporal luminance CSF in:

Color Contrast and

Patterns	Low Spatial frequencies	Mid Spatial frequencies	High Spatial frequencies	Very high Spatial frequencies
Luminance varying patterns	-	Contrast	Contrast	Similitude
Color varying patterns	Contrast	Similitude	-	-

Similitude

19

≻Part 1

≻Part 1 □Color Spatial CSF □Significance of Color CSFs for Vision ≻Part 2

□Multiple Color Spatial Frequency Channels □Luminance-Color Interactions ▶Part 3 □Introduction to Phase and Position □ Spatial Localization in Visual System

□Physiology of Phase and Position

□Some Limitations in the Visual Systen

✓ Color Spatial CSF

☐Significance of Color CSFs for Vision

≻Part 2

□Multiple Color Spatial Frequency Channels

Interactions

≻Part 3

□Introduction to Phase and Position

☐ Spatial Localization in Visual System

≻Part 4

□Physiology of Phase and Position

☐Some Limitations in the Visual System

Minimally Distinct Borders

- First task in identifying objects
- Boynton (role of luminance and color differences)
 - Equal luminance gives minimal distinction
 - Indistinct borders with only chromatic differences
 - Sharper borders with luminance differences

- ✓ Color Spatial CSF
- ✓ Significance of Color CSFs for Vision

≻Part 2

□Multiple Color Spatial Frequency Channels

□Luminance-Color Interactions

▶Part 3

□Introduction to Phase and Position

□ Spatial Localization in Visual System

≻Part

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual System

Psychophysical Evidence for Multiple Spatial Frequency Channels

- Evidence 1:
 - Selective adaptation studies (Blakemore & Campbell, 1969)
 - Adaptation to isoluminant red-green gratings:
 - K.K. De Valois, 1978
 - Bradley, Switks, & K.K. De Valois, 1985
- Evidence 2:
 - Masking studies
 - K.K. De Valois & Switkes, 1983

2

≻Part 1

- ✓Color Spatial CSF
- ✓ Significance of Color CSFs for

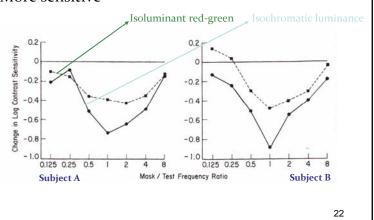
≻Part 2

- ✓Multiple Color Spatial Frequency Channels
- □Luminance-Color Interactions

▶Part 3

□Introduction to Phase and Position

☐ Spatial Localization in Visual System


≻Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual Systen

Spatial frequency masking functions

- Broader in bandwidth
- · More sensitive

✓Color Spatial CSF

✓ Significance of Color CSFs for Vision

≻Part 2

✓Multiple Color Spatial Frequency Channels

□Luminance-Color Interactions

▶Part 3

□Introduction to Phase and Position

□ Spatial Localization in Visual System

≻Part .

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual Systen

Cross Masking Conditions

- Pure-color grating masking effect
 - Profound
 - More sensitivity
 - Effectively as luminance mask
- Luminance grating masking effect
 - Much less profound
 - Significant loss when mask and test are in the same frequency
 - Discriminating contours

23

⊳Part 1

✓ Color Spatial CSF

✓ Significance of Color CSFs for Vision

⊳Part 2

✓Multiple Color Spatial Frequency Channels

□Luminance-Color Interactions

▶Part 3

□Introduction to Phase and Position

□ Spatial Localization in Visual System

≻Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual System

Summary

- Pure color vs. pure luminance gratings
- Color mixture gratings
- Luminance artifacts
- Temporal CSFs
- Similitude
- Cross Masking effects

- ✓ Color Spatial CSF
- ✓ Significance of Color CSFs for Vision

≻Part 2

- ✓Multiple Color Spatial Frequency Channels
- ✓Luminance-Color Interactions

▶Part 3

□Introduction to Phase and Position

□ Spatial Localization in Visual System

▶Part .

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual Systen

Spatial Localization: Phase and Position

25

⊳Part 1

✓ Color Spatial CSF

✓ Significance of Color CSFs for Vision

≻Part 2

✓Multiple Color Spatial Frequency Channels

✓ Luminance-Coloi Interactions

⊳Part

□Introduction to Phase and Position

□ Spatial Localization in Visual System

≻Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual System

Introduction

- How visual system detects position of objects?
- Each neural element is integrating information over some spatial region → loose some degree of localization
- In a Fourier Analysis phase is the localization component → Is it relevant to spatial localization?

✓ Color Spatial CSF

✓ Significance of Color CSFs for Vision

⊳Part 2

✓Multiple Color Spatial Frequency Channels

√Luminance-Color Interactions

▶Part 3

□Introduction to Phase and Position

□ Spatial Localization in Visual System

▶Part .

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual Systen

Absolute vs. Relative Phase

- Two ways can be considered for absolute spatial localization:
 - Absolute phase mechanism
 - Positional mechanism: Which local area is activated?
- Relative phase:
 - Two gratings at the same region (e.g. f & 3f)
 - Relative phase will result in different peaks and troughs

27

⊳Part 1

✓ Color Spatial CSF

✓Significance of Color CSFs for Vision

⊳Part 2

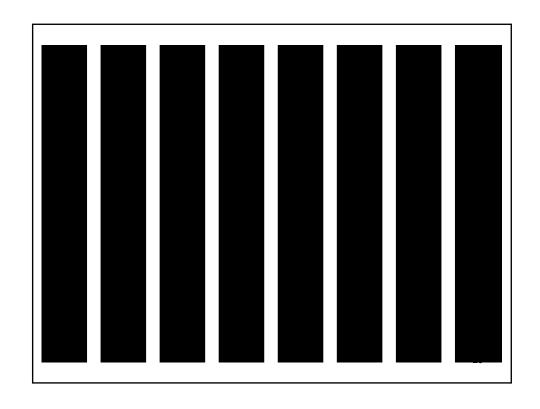
✓Multiple Color Spatial Frequency Channels

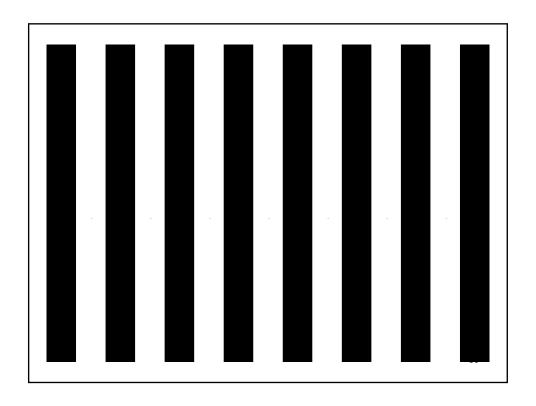
✓Luminance-Colo Interactions

≻Part

✓Introduction to Phase and Position

□ Spatial Localization in Visual System


≻Part 4


□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual System

Is the visual system phase sensitive?

- Visual system process spatial info. similar to auditory system process temporal info.
- · Auditory system use phase info minimally
- Unlike auditory system we can detect dark and light bars in a grating (absolute phase)
- We can discriminate an f + 3f combination in sine and cosine phase (relative phase)

✓ Color Spatial CSF

✓Significance of Color CSFs for Vision

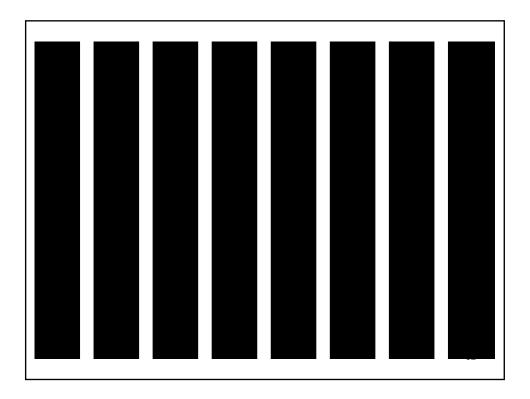
≽Part 2

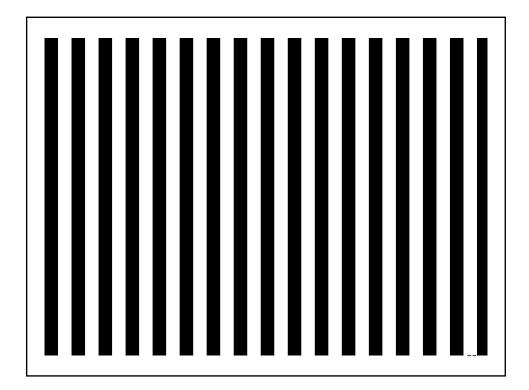
- ✓Multiple Color Spatial Frequency Channels
- ✓Luminance-Color Interactions

≻Part 3

✓Introduction to Phase and Position

☐ Spatial Localization in Visual System


≻Part


□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual System

What can cause this adaptation?

- Adaptation of phase sensitive system
- Adaptation of separate black bar and white bar detectors:
 - It should be frequency independent

⊳Part 1

✓ Color Spatial CSF

✓ Significance of Color CSFs for Vision

≻Part 2

✓Multiple Color Spatial Frequency Channels

✓ Luminance-Color Interactions

> Part

✓Introduction to Phase and Position

□ Spatial Localization in Visual System

⊳Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual System

Some points about phase sensitivity

- Relative phase can only be discriminated between gratings of nearby frequencies (about a 2 octave range: e.g. f and 3f)
- Delectability of compound gratings does not depend on their relative phase, however it changes the contrast

✓ Color Spatial CSF

✓ Significance of Color CSFs for Vision

≻Part 2

- ✓Multiple Color Spatial Frequency Channels
- ✓Luminance-Color Interactions

▶Part 3

✓Introduction to Phase and Position

□ Spatial Localization in Visual System

≻Part

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual Systen

Sensitivity to absolute phase or position

- Auto kinetic
 - A subject in a dark room with a point light source: Light source will start to move in a random direction after a few minutes
 - Might be related to eye movement? Not enough for such an apparent movement.
- Dot within a box framework: We percent moving of dot or framework both as moving of the dot.
- We can perceive a line jump to right or left as small as 3" => Good in relative position, poor absolute position.

35

≻Part 1

✓ Color Spatial CSF

✓ Significance of Color CSFs for Vision

≻Part 2

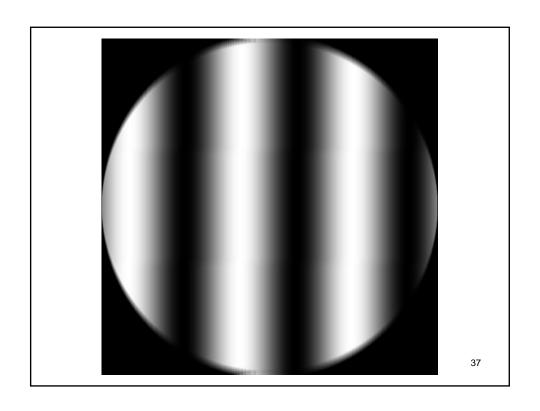
✓Multiple Color Spatial Frequency Channels

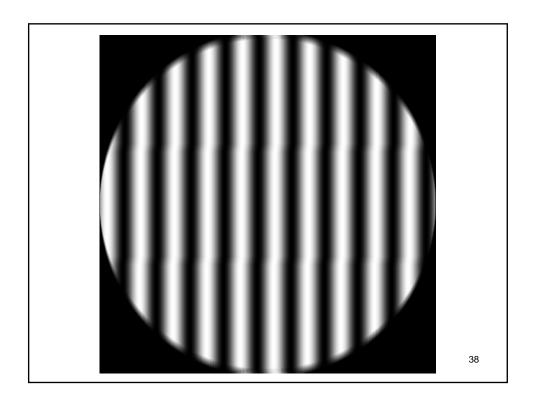
✓Luminance-Color Interactions

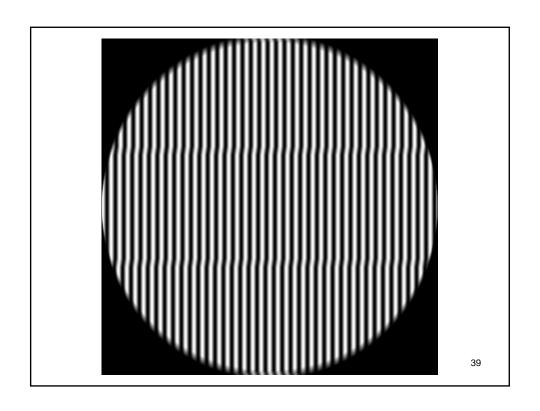
≻Part 3

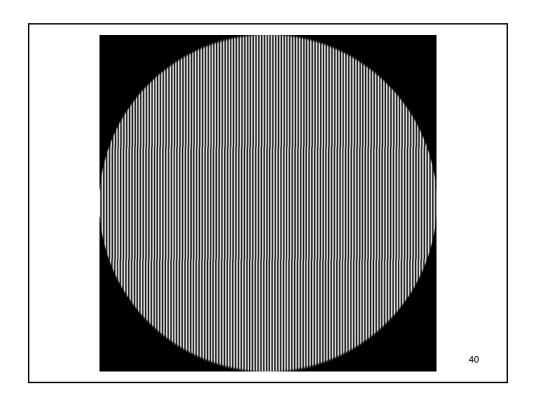
✓Introduction to Phase and Position

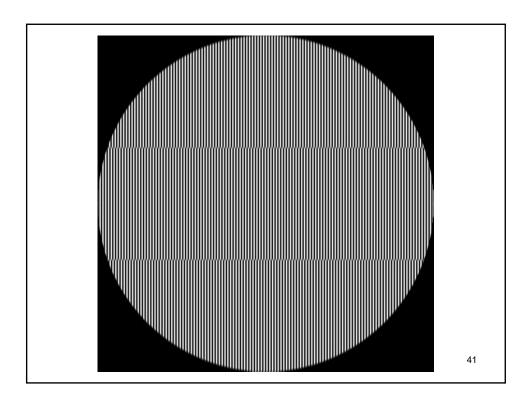
☐ Spatial Localization in Visual System


≻Part 4


□Physiology of Phase and Position Sensitivity


□Some Limitations in the Visual System


Relative contribution of phase and position in localization (Cont.)


- Two gratings of 1c/deg and 1oc/deg
 - Threshold was 3' for both of them
 - 3' displacement: 18° and 180° phase shift respectively
 - Only position not phase contributes in spatial localization.
- For lower than 1c/deg frequencies phase threshold is constant!

⊳Part 1

- ✓ Color Spatial CSF
- ✓ Significance of Color CSFs for Vision

≻Part 2

- ✓Multiple Color Spatial Frequency Channels
- Interactions
- ≻Part 3
- ✓Introduction to Phase and Position
- ☐ Spatial Localization in Visual System
- ≻Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual System

Relative contribution of phase and position in localization

- Hypothesis: Threshold is linear sum of a position threshold and a phase threshold
- Roughly compatible with the experimental results
- Might be due to two successive processing stages

Part 1

- ✓ Color Spatial CSF
- ✓Significance of Color CSFs for Vision

▶Part 2

- ✓Multiple Color Spatial Frequency Channels
- ✓Luminance-Color Interactions

▶Part 3

- √Introduction to Phase and Position
- ✓ Spatial Localization in Visual System

≻Part 4

- □Physiology of Phase and Position Sensitivity
- □Some Limitations in the Visual Systen

Physiology of phase and position sensitivity

- One-to-One retinotopic mapping
 - Different regions of the retina are mapped to different cortical regions in a symmetric way
 - Evidence: Destruction of restricted cortical areas produce correspondingly restricted scotomas
 - Is this mapping enough to detect small displacements within a cortical region consist of different cell types?
- Capacity of some specific cells to localize patterns within their input region

43

⊳Part 1

- ✓ Color Spatial CSF
- ✓ Significance of Color CSFs for

≻Part 2

- ✓Multiple Color Spatial Frequency Channels
- ✓Luminance-Color Interactions

≻Part 3

- ✓Introduction to Phase and Position
- ✓ Spatial Localization in Visual System

≻Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual System

Phase sensitive and phase insensitive cells (Cont.)

- Recorded from cat ganglion cells two main cell types was found
 - Excitatory center, inhibitory annular surround
 - Inhibitory center, excitatory annular surround
 - Named X cells by Enroth-Cugell and Robson
- Another variety of cells which are totally phase insensitive was found: Named Y cell

✓ Color Spatial CSF

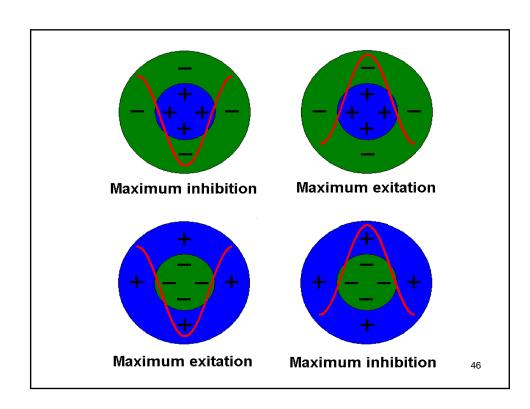
✓Significance of Color CSFs for Vision

≻Part 2

- ✓Multiple Color Spatial Frequency Channels
- ✓Luminance-Color Interactions

≻Part 3

- ✓Introduction to Phase and Position
- ✓ Spatial Localization in Visual System


≻Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual Systen

Phase sensitive and phase insensitive cells

- Simple and complex cortical cells are functionally similar to X and Y cells respectively
- Simple cells: max excitation for o°, no response for 90°, max inhibition for 180°
- Complex cells: Almost totally phase insensitive

⊳Part 1

✓ Color Spatial CSF

✓ Significance of Color CSFs for Vision

≻Part 2

✓Multiple Color Spatial Frequency Channels

✓Luminance-Color Interactions

≻Part 3

✓Introduction to Phase and Position

✓ Spatial Localization in Visual System

≻Part 4

□Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual System

Hubel and Wiesel's Model

- Simple cells only act as inputs to the complex cells
- Consequence: Visual system should be totally unaware of phase information!
- Alternative hypothesis: Two parallel systems in the striate cortex
 - Complex cells with only frequency information
 - Simple cells with both frequency and phase information

47

≻Part 1

✓ Color Spatial CSF

✓ Significance of Color CSFs for Vision

⊳Part 2

✓Multiple Color Spatial Frequency Channels

✓ Luminance-Color Interactions

Part

✓Introduction to Phase and Position

✓ Spatial Localization in Visual System

≻Part 4

□Physiology of Phase and Position Sensitivity

☐Some Limitations in the Visual System

Odd and even symmetric simple cells

- In addition to even symmetry cells cortical simple cells of odd-symmetry are also found
 - Type one responds optimally to cosine gratings with 90° phase
 - Type two responds optimally to cosine gratings with 270° phase

✓Color Spatial CSF

✓ Significance of Color CSFs for Vision

≻Part 2

- ✓Multiple Color Spatial Frequency Channels
- ✓Luminance-Color Interactions

▶Part 3

- ✓Introduction to Phase and Position
- ✓ Spatial Localization in Visual System

≻Part 4

- ✓Physiology of Phase and Position Sensitivity
- □Some Limitations in the Visual System

Variation with spatial frequency

- Found from monkey striate cortex: Most of the cells tuned for high spatial frequencies are complex cells
- Reasons for phase insensitivity at high spatial frequency
 - Small eye movements make it difficult
 - On the other hand a small complex cell tuned to a high frequency can determine position of the grating by just firing or not firing

49

⊳Part 1

✓ Color Spatial CSF

✓ Significance of Color CSFs for Vision

≻Part 2

- ✓Multiple Color Spatial Frequency Channels
- ✓Luminance-Colo Interactions

≻Part 3

- ✓Introduction to Phase and Position
- ✓ Spatial Localization in Visual System

≻Part 4

✓Physiology of Phase and Position Sensitivity

□Some Limitations in the Visual System

Sensitivity to relative phase

- For complex cells addition of another frequency with a different phase found to has no effect on the response
- For simple cells response inhibited slightly more than half in a non-phase-specific manner by adding another frequency
- Some other simple cells found to be sensitive to relative phase of gratings of f and 2f, and less to gratings of f and 3f

- ✓ Color Spatial CSF
- ✓ Significance of Color CSFs for Vision

≻Part 2

- ✓Multiple Color Spatial Frequency Channels
- ✓ Luminance-Color Interactions
- ≻Part 3
- √Introduction to Phase and Position
- ✓ Spatial Localization in Visual System

≻Part

- ✓Physiology of Phase and Position Sensitivity
- □Some Limitations in the Visual System

Variations in phase sensitivity with eccentricity

- Nachmias and Weber found that a contrast interval in which:
 - Two gratings of f and 3f can be discriminated in a compound f + 3f grating
 - Relative phase can not be detected
- Hypothesis: Detection at a threshold is based on a pooled response. Frequency threshold is lower because there are more frequency sensitive cells.

51

Dort .

- ✓ Color Spatial CSF
- ✓ Significance of Color CSFs for Vision

≻Part 2

- ✓Multiple Color Spatial Frequency Channels
- ✓Luminance-Color Interactions
- ▶Part ?
- ✓Introduction to Phase and Position
- ✓ Spatial Localization in Visual System

≻Part 4

- ✓Physiology of Phase and Position Sensitivity
- □Some Limitations in the Visual System

Sensitivity to color phase

- At low spatial frequencies we can distinguish different colors
- At high spatial frequencies we only a perceive a mix of colors
- Because we don't have spatial phase information in high frequencies we can not determine which part is which color