
1

INF 117
Project in Software Engineering

Lecture Notes -Winter Quarter,
2008

Michele Rousseau
Set 5 – System Architecture
*some slides adapted from Ping Wang Set 5 2

Announcements
k Due (next week)2/4

● Requirements Iteration (Final)
● Design Iteration #1
● Project Plan #2

k Project Plan #1 – would like by Thursday
k Have Requirements approved ASAP (no later

than 2/5)
k Keep your team sites up to date

● Include Minutes from meetings
● Meeting Schedules
● Calendar
● Updates on what is going on

k Reminder – Have regularly scheduled meetings

Set 5 3

Today

kTeam Roles

kUse Case Based Testing

Set 5 4

What is your role?
k Team should define roles

● Equal distribution of workload
● Work together (labs, laptops, etc…)
● What should the Lead do? Roughly…

◘Organize meetings
◘Define agenda
◘ … beyond that is team dependent
◘Everyone else should be contributing to ideas and

whatnot --- take turns in the meeting

k Some will have all members work equally
throughout… others may not..
● … all should be involved at some level in each phase

Set 5 5

Meetings
kAlways have an agenda

●What is the objective of the meeting?
●Main discussion points

◘Level of detail is up to you

kMinutes
● Include who was present
● Ideas discussed – who contributed what?
● Include a variety of ideas
●Best to make up a simple template to fill out
●One person (not the lead) should take

minutes

Set 5 6

Example Minutes
k Present

Axxxx
Bxxxx
Cxxx (Lead)
Dxxxxx*
*Absent

k Agenda
● Xxxx xxxxx xxxxxxx xxxx

k Discussion, decisions, assignments
● First agenda item.

Xxxx
xxxxx.

● Second agenda item.
Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.

k Tentative agenda for the next meeting
● Xxxxxxxxxxxxxxx Xxxxx Xxxxxxxxxxx

2

Set 5 7

V-Model of Development & Testing
(the big picture)

Develop Acceptance Tests
Acceptance Test Review

Requirements Review
Develop Requirements Execute System Tests

Develop Integration Tests
Integration Tests Review

Design Review
Design Execute Integration Tests

Develop Unit Tests
Unit Tests Review

Code Review
Code Execute Unit Tests

Set 5 8

Acceptance Test Plan
kAccompanies a requirements specification

kSpecifies, in an operational way,
consistency between the requirements
specification and the system that will be
delivered

kBinds a customer to accept the delivered
system if it passes all the tests

kCovers all aspects of the requirements
specification

Set 5 9

Motivation
kTest planning reveals ambiguities and

defects early
●Many defects originate in requirements phase

●Much less costly if caught early

●Must verify requirements document

kSystem/acceptance testing
●Specify what is required of the system

●Based on scenarios/flows

Set 5 10

Questions to answer
kIs the requirements specification

complete?
kIs each of the requirements

understandable?
kIs each of the requirements unambiguous?
kAre any of the requirements in conflict?
kCan each of the requirements be verified?
kAre are all terms and concepts defined?
kIs the requirements specification

unbiased?

Set 5 11

Verification & Validation
kVerification

● “Are we building the product right?”

kWhat about validation?
● “Are we building the right product?”

● Ensure software meets customer’s intent

●External consistency

kHow can we do it?
●Prototypes

●Observing the customers
Set 5 12

Where Use Cases Are Used
kRequirements:

●Collect

●Clarify

●Validate

kAnalysis & design
●Object modeling

● Interface design

●Object interaction diagrams

kTest
●Verify needs are met

kUse cases are often
kused to describe

kpossible user
kinteraction (input)

3

Set 5 13

Use Case Based Testing
kDevelop a naming convention

●Match the test to the use case to test cases

●Name the actors

kFor each test case
● Identify the actors involved

● Identify the use case it covers

● Identify pre-reqs and inputs
◘Remember to test the boundary cases!

●Define expected output
◘Based on the scenarios! Set 5 14

Use Case Based Testing
k There are often tool support

●Automatically generate test suites with
specified coverage criteria

k Enhance use case diagrams with

● Inputs from actors

●Output to the actors

●How the system’s state changes

●Can also describe flows between use cases

k Useful for integration, system testing

Set 5 15

ReadySET

kOpen source S/E tools

khttp://www.tigris.org

khttp://requirements.tigris.org

khttp://readyset.tigris.org

Set 5 16

ReadySET: Test Case Format

Extra notes or questionsNotes and
Questions

Steps to carry out the test

(brief list here but detailed explanations
below)

Steps

List of variables and their values. Can be
exact values or ranges.

Test Data

Assumptions that must be satisfied prior
to running the test case

Prereq

Short sentence about the aspect of the
system

Purpose

Unique test case ID: Test Case Title

Set 5 17

ReadySET: Example Steps
k Login Test

1. visit LoginPage

2. enter userID

3. enter password

4. click login

5. see the terms of use page

6. click agree radio button at page bottom

7. click submit button

8. see PersonalPage

9. verify that welcome message is correct
username Set 5 18

ReadySET: Example Steps
k login [as ROLE-OR-USER]

● Log into the system with a given user or a user of the
given type. Usually only stated explicitly when the
test case depends on the permissions of a particular
role or involves a workflow between different users.

k visit LOCATION
● Visit a page or screen. For web applications,

LOCATION may be a hyperlink. The location
should be a well-known starting point (e.g., the
Login screen), drilling down to specific pages should
be part of the test.

4

Set 5 19

ReadySET: Example Steps
k enter FIELD-NAME [as VALUE] [in SCREEN-

LOCATION]
● Fill in a named form field. VALUE can be a literal

value or the name of a variable defined in the "Test
Data" section. The FIELD-NAME itself can be a
variable name when the UI field for that value is
clear from context, e.g., "enter password".

Set 5 20

System Architecture

Set 5 21

Software Architecture: Essentials
k Components

● What are the main parts?

● What aspects of the requirements do they correspond to?
Where did they come from?

● Examples: filters, databases, GUIs, interpreters

k Connections
● How do components communicate?

● Examples: procedure calls, messages, pipes, event broadcast

k Topology
● How are the components and connections organized

topologically?

k Constraints (including constraints on change)

