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Architectural design process
kSystem structuring
® Decompose the system into principal sub-~
systems

@ identify communications between them

kControl modelling

® A model of the control relationships between
the different parts of the system

. kModular decomposition
® The identified sub-systems are decomposed
sote into modules s

Announcements

kDue 2/15

.Design [teration #5 (Final)

o Customer Milestone (Design Approvecl)
kDue2/18

o Code lteration #1

oProject Plan #3
KCan submit Subjective Assessments

online (but only if prior to the due
wdate) .
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Software Architecture: Essentials

K Components
® What are the main parts?

® What aspects of the requirements do they
correspond to? Where did they come from?

[ ] E.xamples: filters, databases, GUIs, interpreters
K Connections
® How do components communicate?

® Examples: procedure calls, messages, pipes, event
broadcast

k Constraints (inclucling constraints on change)

How is it all organized?
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Architecture Design: Advanced
K Architectural styles

® Restrict the way in which components can be
connected

® Prescribe patterns of interaction
® Promote fundamental principles

® Common stglesz lagerecl, client server, etc

K Architecture description
® Boxes and arrows
e UML
® Architecture description languages
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From Architecture to Modules
K Repeat the design process

® Design the internal architecture of a component
® Define the purpose of each module
® Define the provicled interface of each module
® Define the required interface of each module
K Do this over and over again
® Until each module has..
O.a simple, well-defined internal architecture
o ..asimple, well-defined purpose
o ..asimple, well-defined provided interface

O ..a simple, well-defined required interface

S|§6Until all modules “hook up”
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Some More Principles
k Antici}gation of change

® allows changes to be absorbed seamlessly

K What makes a good module?
® High cohesion: all internal parts are closely related.
® Low coupling: modules rely on each other as little as
possible
® Each module hides its internal structure.
o Genexalih] allows components to be reused
throughout the system

® Incrementality allows the software to be developed with
intermediate working results
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Kk Remember to document your rationale!
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Diagrams in UML

KA diagram is a view into a model

®Presented from the aspect of a particular
stakeholder

oProvides a partial representation of the
system

ols (shoulcl be?) semanticallg consistent with

other views

18 I
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Some Principles
kRig Y

® ensures élll requirements are aclclressecl
kSeparation of concerns
[ Moclularitg

Dallows work in isolation because components are
independent of each other

Bdecompose a complex system into less complex
su]:>~sq stems; divide and conguer

o (1e~)use existing modules
Bunderstand the system in pieces
® Abstraction

Dallows work in isolation because interfaces

guarantee that components will work together
Set6
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UML Concepts

K Display the boundary of a system & its major functions using use
cases and actors

K Illustrate use case realizations with interaction diagrams

K Illustrate scenarios with use case diagrams and sequence

diagrams
K Represent a static structure of a system using class diagrams
K Model the behavior of objects with state transition diagrams

K Reveal the physical implementation architecture with
component & deployment diagrams
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Types of UML Diagrams

Structure . Behavior .

(6 types) (4 types)

K Class diagrams K Activity diagram

K Object diagram K Use Case diagram

K Package diagram K State machine diagram

] K Interaction diagrams
Kk Compos1te structure di
di agram L Seq'uence agram

Kk Co tdi ® Communication diagran
mponent diagram © Interaction overview

K Deployment Diagram diagram

©® Timing diagram

If the appropriate diagram is not part of UML
use it anyways 1
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UML & the S/W Process
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Use Cases
O Define the system Boundaries
Class Diagrams
From a software perspective
o Show classes & how they interrelate
Sequence Diagrams
For Common Scenarios
o Pick most significant scenarios from Use Cases
o Use CRC cards or sequence diagrams to determine how the software should
Class, Responsibilities, Collaborators (CRC) cards are index cards used to represent

» the responsibilties of classes
»  interaction between the classes

Package Diagrams

Show large-scale organization of the system
State Diagrams

Used for classes with complex lifecycles
Deployment Diagrams

Show the physical layout of the software

All of these can be used for desig
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