INF 117
Project in Software Engineering

Lecture Notes ~-Winter Quarter,
2008

Michele Rousseau
Set6 - qutem Axchitecture

System Architecture

!

. Set 6 3

Architectural design process
kSystem structuring
® Decompose the system into principal sub-~
systems

@ identify communications between them

kControl modelling

® A model of the control relationships between
the different parts of the system

. kModular decomposition
® The identified sub-systems are decomposed
sote into modules s

Announcements

kDue 2/15

.Design [teration #5 (Final)

o Customer Milestone (Design Approvecl)
kDue2/18

o Code lteration #1

oProject Plan #3
KCan submit Subjective Assessments

online (but only if prior to the due
wdate) .

NI e "I I

Software Architecture: Essentials

K Components
® What are the main parts?

® What aspects of the requirements do they
correspond to? Where did they come from?

[] E.xamples: filters, databases, GUIs, interpreters
K Connections
® How do components communicate?

® Examples: procedure calls, messages, pipes, event
broadcast

k Constraints (inclucling constraints on change)

How is it all organized?
Set6 4

NN) EDE R b e

Architecture Design: Advanced
K Architectural styles

® Restrict the way in which components can be
connected

® Prescribe patterns of interaction
® Promote fundamental principles

® Common stglesz lagerecl, client server, etc

K Architecture description
® Boxes and arrows
e UML
® Architecture description languages

Set 6 6

From Architecture to Modules
K Repeat the design process

® Design the internal architecture of a component
® Define the purpose of each module
® Define the provicled interface of each module
® Define the required interface of each module
K Do this over and over again
® Until each module has..
O.a simple, well-defined internal architecture
o ..asimple, well-defined purpose
o ..asimple, well-defined provided interface

O ..a simple, well-defined required interface

S|§6Until all modules “hook up”

18 I

Some More Principles
k Antici}gation of change

® allows changes to be absorbed seamlessly

K What makes a good module?
® High cohesion: all internal parts are closely related.
® Low coupling: modules rely on each other as little as
possible
® Each module hides its internal structure.
o Genexalih] allows components to be reused
throughout the system

® Incrementality allows the software to be developed with
intermediate working results

I EEE N e el

Kk Remember to document your rationale!

F

Set6 9

Diagrams in UML

KA diagram is a view into a model

®Presented from the aspect of a particular
stakeholder

oProvides a partial representation of the
system

ols (shoulcl be?) semanticallg consistent with

other views

18 I

Set 6 11

NN] EDE b b e

Some Principles
kRig Y

® ensures élll requirements are aclclressecl
kSeparation of concerns
[Moclularitg

Dallows work in isolation because components are
independent of each other

Bdecompose a complex system into less complex
su]:>~sq stems; divide and conguer

o (1e~)use existing modules
Bunderstand the system in pieces
® Abstraction

Dallows work in isolation because interfaces

guarantee that components will work together
Set6

NI e

F

UML Concepts

K Display the boundary of a system & its major functions using use
cases and actors

K Illustrate use case realizations with interaction diagrams

K Illustrate scenarios with use case diagrams and sequence

diagrams
K Represent a static structure of a system using class diagrams
K Model the behavior of objects with state transition diagrams

K Reveal the physical implementation architecture with
component & deployment diagrams

Set6 10

NI e

Types of UML Diagrams

Structure . Behavior .

(6 types) (4 types)

K Class diagrams K Activity diagram

K Object diagram K Use Case diagram

K Package diagram K State machine diagram

] K Interaction diagrams
Kk Compos1te structure di
di agram L Seq'uence agram

Kk Co tdi ® Communication diagran
mponent diagram © Interaction overview

K Deployment Diagram diagram

©® Timing diagram

If the appropriate diagram is not part of UML
use it anyways 1

IRl I E

UML & the S/W Process

(D

(]

o

(]

Set 6

esign)

Use Cases
O Define the system Boundaries
Class Diagrams
From a software perspective
o Show classes & how they interrelate
Sequence Diagrams
For Common Scenarios
o Pick most significant scenarios from Use Cases
o Use CRC cards or sequence diagrams to determine how the software should
Class, Responsibilities, Collaborators (CRC) cards are index cards used to represent

» the responsibilties of classes
» interaction between the classes

Package Diagrams

Show large-scale organization of the system
State Diagrams

Used for classes with complex lifecycles
Deployment Diagrams

Show the physical layout of the software

All of these can be used for desig
13

