Performance Evaluation of Data
Locality Exploitation

Paolo D’Alberto

Technical Report UBLCS-2000-9

July 2000

Department of Computer Science
University of Bologna

Mura Anteo Zamboni 7

40127 Bologna (Italy)

The University of Bologna Department of Computer Science Research Technical Reports are available in
gzipped PostScript format via anonymous FIP from the area ftp.cs.unibo.it:/pub/TR/UBLCS or via
WWW at URL http://www.cs.unibo.it/. Plain-text abstracts organized by year are available in the direc-
tory ABSTRACTS. All local authors can be reached via e-mail at the address last-name@cs.unibo.it. Ques-
tions and comments should be addressed to tr-admin@cs.unibo.it.

Recent Titles from the UBLCS Technical Report Series

99-17 A Simple Game Semantics Model of Concurrency, Asperti A., Finelli M., Franco G., Marchignoli D., July

99-18

99-19

99-20

99-21
99-22

2000-1

2000-2
2000-3

2000-4

2000-5

2000-6
2000-7

2000-8

2000-9
2000-10

2000-11
2000-12

1999.

A Complete Axiomatization for Observational Congruence of Prioritized Finite-State Behaviors, Bravetti, M.,
Gorrieri, R., July 1999.

Middleware for Dependable Network Services in Partitionable Distributed Systems, A. Montresor, R. Davoli,
O. Babaoglu, October 1999 (Revised April 2000).

Performance Analysis of Software Architectures via a Process Algebraic Description Language, Bernardo, M.,
Ciancarini, P, Donatiello, L., November 1999 (Revised March 2000).

Real-Time Traffic Transmission Over the Internet, Furini, M., Towsley, D., November 1999.

On the Expressiveness of Event Notification in Data-Driven Coordination Languages, Busi, N., Zavattaro,
G., December 1999.

Compositional Asymmetric Cooperations for Process Algebras with Probabilities, Priorities, and Time,
Bravetti, M., Bernardo, M., January 2000 (Revised February 2000).

Compact Net Semantics for Process Algebras, Bernardo, M., Busi, N., Ribaudo, M., March 2000.

An Asynchronous Calculus for Generative-Reactive Probabilistic Systems, Aldini, A., Bravetti, M., May
2000.

On Securing Real-Time Speech Transmission over the Internet, Aldini, Bragadini, Gorrieri, Roccetti, May
2000.

On the Expressiveness of Distributed Leasing in Linda-like Coordination Languages, Busi, N., Gorrieri, R.,
Zavattaro, G., May 2000.

A Type System for JVM Threads, Bigliardi, G., Laneve, C., June 2000.

Client-centered Load Distribution: a Mechanism for Constructing Responsive Web Services, Ghini, V.,
Panzieri, F., Roccetti, M., June 2000.

Design and Analysis of RT-Ring: a Protocol for Supporting Real-time Communications, Conti, M., Do-
natiello, L., Furini, M., June 2000.

Performance Evaluation of Data Locality Exploitation (PhD Thesis), D’Alberto, P., July 2000

System Support for Programming Object-Oriented Dependable Applications in Partitionable Systems (PhD
Thesis), Montresor, A., July 2000

Coordination: An Enabling Technology for the Internet (PhD Thesis), Rossi, D., July 2000

Coordination Models and Languages: Semantics and Expressiveness (PhD Thesis), Zavattaro, G., July 2000

Dottorato di Ricerca in Informatica

Universita di Bologna, Padova, Venezia

Performance Evaluation of Data
Locality Exploitation

Paolo D’Alberto

January 2000

Coordinatore: Tutore:

Prof. OZalp Babaoglu prof. Gilberto File

To my father Giacomo

Oct. 7 1999

Abstract

Data Locality exploitation and Performance Evaluation are important issues in compiler
and algorithms so that modern architectures can be fully utilized. Multiprocessor plat-
forms, with RISC processor and multiple level of caches, are becoming very common
platforms. In spite their computational capability, they are not easy to be modeled and
therefore application performance is not easy to be estimated. Indeed, it is often the case
that developers code applications that can obtain very different performance on different
platforms. This almost magic but unpleasant behavior is due to many factors. One of
them is Data Locality. A smart reutilization of data, stored at the different levels of the
memory hierarchy, may improves performance.

In this investigation we are looking for a machine independent definition of data lo-
cality, inherent to the application and a general technique to exploit it automatically at
source code level: reorganizing the schedule of instructions or, sometime, rewriting the
algorithm. Indeed, we are proposing a machine independent method to estimate data
locality, Access Complezity, we are proposing an heuristic to schedule instructions and

manage memory, then we apply our ideas on a case study, matriz matriz multiplication.

vi

Acknowledgements

For all the advises I got from, for the help 1 got when applications could not work, and
for all the neverending discussions | have to thank the following people (in alphabetical

order):
e Azevedo, Ana: about optimizations and SPARC architecture consulting
e Bilardi, Gianfranco: my advisor.
e Capitanio, Andrea: suggestion for application and different subjects.
e Fiorini, Paolo: support.
e Nicolaescu, Dan: master of gee, multiple load/store
e Nicolau, Alex: my advisor
e Pietracaprina, Andrea: k-marking

e Savoiu, Nicolae: without him I think I would not have run any application on Win-

dows

vii

Contents

Abstract

Acknowledgements

List of Figures

1 Introduction

2 Data Locality

2.1

2.2

2.3

2.4

2.5

Definitions and Notations. oo
Hong and Kung’s Results
k-closed Marking Method o 0oL
Space Complexity Based on k-closed Set
2.4.1 Partitionability
Examples e e
2.5.1 Diamond
2.5.2 Binary Tree without Recomputation (BTWR)
2.5.3 Fast Fourier Transform
254 TheFan

2.5.5 k-Bridgeo

vi

vil

x1

3 Code Reorganization, Idea and Practice

3.1 Scheduling of an evaluation DAG without recomputation
3.2 Idea e

3.2.1 Algorithms
3.3 Exampleo
3.4 CDT: Intermediate Code Representation

3.4.1 Description
3.5 Application and Copy optimization

Micro-benchmarking RISC Architectures

4.1 Not only FLOPS, Floating Point Unit Performance

4.2 Memory Hierarchy, Latency
421 First Level Ly o
422 Level Lyand Level Lz

4.2.3 Implementation Lo

Fractal Matrix-Matrix Multiplication
5.1 Introduction
5.2 2F x 2% Matrix Multiplication
5.2.1 Fractal Layout and Blocked Algorithm.
5.2.2 Misses of Fractal Algorithm
5.3 Square Matrix Multiplication o000
5.3.1 Square Matrixes, Fractal Layout.
5.3.2 From Call Tree to Type DAG
5.3.3 Scalar Replacement of Array Element
5.3.4 Unfolding: notations and considerations
5.4 Experimental Results L o
5.4.1 Cache Simulation 00 o
5.5 Multiple Load and Store in a Single Cycle
5.6 Dense Matrix Multiply Applications
5.6.1 Multiple Right Hand sides

ix

27
27
29
30
32
33
35
37

39
39
49
50
50
51

5.6.2 LU-factorization without Pivoting

5.7 Sparse Matrix

5.7.1 Fractal Approach based on Q-tree
5.7.2 Sparse Matrix Multiplication, Related Works

6 Consideration

References

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1

3.2

3.3

3.4

5.1
5.2
5.3

5.4

5.5

Example o 5
Bipartition, case B is not possible. 0 L. 14
Diamond 17
Recursive Decomposition o oo 19
Eight Points FFT e 20
Fan. . . . 23
k-Bridge Directed Acyclic Graph o 0000 26
Splitting of the computation and of the DAG. 28
Diamond decomposition and 16-node FF'T decomposition, first iteration. . . 32
Example of copy propagation: a value computed in v is used in z, we can see how to

determine the least common ancestor respectively in a direct fashion or one level at time. 34

Description of the Tree and of its associated structure 36
The way a matrix is split and its recursive lay out definition. 59
The call tree of the blocked matrix multiplication. 60
C' AB-fractal and ABC-fractal as Hamiltonian cycles in a binary cube a

node (4,7, k) stays for (A;, B;,Cr). oo o oo 61
From left to right: in the first picture we can observe the layout in the cache
of the sub-matrixes involved in the computation, in the second the layout
in memory with a padding between consecutive matrixes and in the third
how matrix C; and matrix Ag can interfere in the same slot. 62

Splitting matrix A kX ko 63

xi

5.6
5.7

5.8

5.9

5.10

5.11
5.12
5.13
5.14

5.15

5.16

5.17

5.18

A < 17,17,17 > Call Tree reduced to a < 17,17,17 > type DAG.

ABC-fractal algorithm in forward (left picture) and backward order (right picture).From
the top to the bottom: the layout of the matrixes marked with different level of gray, the
computation and the liveness of matrix elements during the computation.
We can see the C AB-fractal algorithm in forward (left picture) and backward order (right
picture). From the top to the bottom: the layout of the matrixes marked with different
level of gray, the computation and the liveness of matrix elements during the computation.
Register allocation for power of two register files and general near square
matrix multiplication
A parametric tiling of matrixes C'; A and B, the parameters are kq, ks and k3. In
this picture is depicted out the solution when matrix A is split by rows, a similar
tiling techniques can be applied when B is split by columns. The arrows indicate
the computation order. L L L e e e
Matrix C tiling with (kq, k2) tile and its effect on the computation.
Excerpt from a call tree
Example of possible schedule for five sub problems of equal size.

On the left the ratio when the number of registers is 8 and on the right when is 16. With
+ is depicted Ratiofractah with X RatiOATLAS and with dashed line Ratioy
On the left the ratio when the number of registers is 32 and on the right when is 64.
With + is depicted Ratiofracta.h with X RatiOATLAS and with dashed line Ratioyg . . .
On the left the ratio when the problem has size < &,8,8 > and on the right when is
< 16,16,16 >. With + is depicted Ratiog., .1, With X Ratiopp,ag and with dashed
line Raltiom . . . v v v v o e
On the left the ratio when the problem has size < 32,32,32 > and on the right when is
< 44,44,44 >. With + is depicted Ratiop., 51, With X RatiopT1,aAg and with dashed
line Ratior. The size < 44, 44,44 > has been chosen because is the basic case in ATLAS
for SPARC ULTRA architectures. oo oo oo
Performance evaluation on four platforms: SGI R5000 IP32, Ultra 2-170,
Ultra 2-250 (Rodan-Adaptive), when fractal approach is used at every level

xii

72

87

89

5.19

5.20
5.21
5.22

5.23
5.24

5.25
5.26
5.27
5.28
5.29
5.30

Ratio fractal over ATLAS when we change strategy: On the left for Ultra

2-170 on the right for Ultra 2-250, 89
Ratio fractal over ATLAS when we change strategy for Ultra 5-10 90
LX = B block decomposition and columns elimination 96

Recursive decomposition of RSL and first level of the type DAG associated

with the matrix multiplication B=LX 97
LU = A block decomposition 0. 98
Performance evaluation on Ultra 5-10 (Lola), when fractal approach is used

atevery level L 99
Quad Tree and Fractal Matrix Decomposition. 101
Quad tree and matrix are stored in different space storage. 102
Q-tree and matrix are stored in the same space storage. 103
From a fractal matrix we build upa Q-Tree. 105
Example of CSR structure on areal case. 110
Example of BSR structure on areal case. 112

xiii

Chapter 1

Introduction

Programmers would like available unlimited amount of zero time access memory so that
their scientific application can grow in size without loosing any CPU’s cycle waiting data
from memory. Current memory chips are cheaper and more capable day by day, but
memory latency has not followed neither the increasing capacity nor the increasing pro-
cessor performances. Data Accessing is becoming a bottleneck for actual computations.
An economical solution to avoid high latency time is to build up a hierarchy of memory
levels with different latencies, but since applications do not access uniformly the memory
space, an architecture solution can be good for an application but for others might not.
Instead to find the right application for the right architecture, usual approach for embed-
ded systems, we can adapt, or tune, the code of the application, which is software, to the

architecture.

A common model for the current memory hierarchy is to identify a location by an
address, locations in caches closer to the processor are indicated by low addresses, and so
the lower it is the address location the faster it is the time to access data [2], [4], [39],
[56], [58], [37]. The most used data are to fit into low addresses. This model can be
generalized for parallel and distributed machine. Communications among processors can
be seen as remote accesses to a memory location, communications as memory accesses

within an extended range of addresses [3], [12], [10], [41], [47], [14].

Most of the trails to reach high performance through exploiting data locality are carried

on in two no distinct subjects. Transforming source code to satisfy machine memory

2 Chapter 1. Introduction

hierarchy is automatically carried on by a compiler [5], [7], [16], [19], [33], [45], [53], [54],
[52], [66], [67], [68] or hand coded by a programmer, in parallel programming environments,
[8], [11], [35], [62]. Experimental results indicate that these last paradigms might be no
complete and some authors identify this model lack through a no correct model of memory

hierarchy and interprocessor communications [42], [25].

Current software applications are based on different paradigms and technologies. The
most used model it is proposed by the WWW world, which usually can be seen as dynamic
client/server paradigm [51], [21], [48]. There are many applications on this paradigm where
exploitation of the data locality can give interesting results. Consider an applet [6], [46],
this is a semi interpreted code which a server sends to a remote host. The code cannot be
written with any dependent machine optimization because hosts are unknown until the
applet is sent to. Only the receiving host can perform machine dependent optimization of
the code before applet execution. But very often, local compiler needs more information,
which is available only from the original code, high level implementation, [1], [36]. Such
a result can be amplified when applications sent are more than simple applets but more
complex applications [22], [50], [36], i.e. CPU time consuming and in general resources
consuming. This example underlines important aspects of data locality and in particular
inherent data locality of a program (independent from any host machine). We think that
data locality optimization can be performed in steps. First of all there is the exploitation of
inherent data locality of the program, and then locality exploitation respect any particular

support, where applications are executed.

We propose a model of computation based on computation DAG (direct acyclic graph)
which is not new [39], [10], [2]. A computation DAG describes precedence relations of sim-
ple functions. A node in a DAG is a simple function whose arguments are the output of
node’s predecessors. We propose a technique which estimates the minimum number of
accesses over a threshold location in memory. Such a minimum number is called access
complexity [10], and it is a reformulation of well known I/O complexity [39]. The thresh-
old is a parameter. We can say that our technique counts inherent data locality of the
algorithm. But also it can be used to estimate data locality respect a specific architecture,

just fixing the value of threshold to machine parameters.

DAGs express algorithms. We can see that a strict topological order of a DAG induces

an instruction schedule and therefore it specifies a particular execution of the algorithm.

Chapter 1. Introduction 3

A compiler should decompose properly a DAG, in sub-DAGs, and it should induce a de-
composition and a strict topological order among nodes of DAG, so that every sub-DAG
can be executed sequentially and/or concurrently. We propose heuristics that automat-
ically partitions the DAG using a divide and conquer technique and it is based only on
topological properties of DAG. This algorithm suggests a way to exploit data locality.
We propose also an algorithm so that for a scheduled DAG the memory can be managed

properly and it can be written the code for the DAG.

But performance is determined not only by data locality. To maximize performance
of current workstations, parallelism, such as pipelined and multiple functional units archi-
tectures, must be fully utilized. To achieve such goal the stream of instructions should be
organized properly. At very fine grain, we can claim that code should have no data locality
at all. We are implying that data locality exploitation is not always our goal, we have
to understand when our goal changes. This is a very challenging problem, because often
when we have to change policy it is machine dependent. For this reason, we think that
a divide and conquer technique can offer the required flexibility to change policy during

problem decomposition ([31]).

Any complexity model is based on estimation of single operation, or basic operation.
To give an idea of the estimation problem, we propose an example. Consider a pipelined
unit with nine stages. If we consider a worst case scenario, an algorithm do not utilize
the pipeline structure and every instruction is finished every nine cycles. A best case is
when the pipeline is fully utilized and any instruction is accomplished every cycle. There
is a factor of nine. A constant factor in worst case analysis can be negligible but for
real application performance is remarkable. In this work when we estimate performance
we are taking in account carefully the constant factor. Data misses in memory hierarchy
can affect execution time in several ways, because they do or do not stop execution of
instructions. Some architectures permits to hide memory latency, in particular, latency
among caches, feeding the CPUs with useful instructions while they are waiting data
from memory. We know that to give a complete model of modern complex architecture
is not feasible, but we want to gain a taste of the problem and to formalize a naive
complexity model. We propose a general approach to measure computational performance
of different platforms. From our point of view, performance of a platform is its capacity to

execute computations and memory accesses. We have devised a set of performance tests to

4 Chapter 1. Introduction

measure the characteristics of a platform. We are interested to understand average values
and quantitative measure of the architecture itself. Indeed, we can measure cache sizes,
cache line sizes, number of stages of a pipelined functional unit through a sequence of time
measures. We had designed and written performance tests in €' and we have not forgotten
an important detail, we want to understand how compilers exploit hardware characteristics
of processors. Very often we use native compiler, but not always is possible. So, we obtain
an average value which comprises not only hardware but also software properties.

We propose an intriguing, and well known, example: matriz multiplication ([54] ,[24]
and [27]). Indeed, this is a well known algorithm where data locality exploitation and
instruction reorganization characterize execution time. We study the good and old divide
and conquer approach (O(n?®) algorithm). It exploits data locality because divides the
problem in sub-problems, it solves them locally and combine the results. A non standard
layout of matrixes minimizes cache misses, capacity misses and cross interference among
data (Z-Morton layout). We highly optimized the algorithm reducing the overhead due
to its recursive implementation, we devised a heuristic to unfold leaves and we suggested
register allocation. In the literature we can find all these aspects investigated separately,
but rarely they were considered together and how they can affect each other. The effi-
ciency of our algorithm and its implementation is compared with other algorithms such
as in standard libraries, in vendor libraries and libraries obtained by machine dependent

approach. The experimental results are very competitive.

Chapter 2

Data Locality

2.1 Definitions and Notations.

Let G = (V, A) be a directed acyclic graph (D.A.G) where V is the set of nodes and A
is the set of arcs. The number of outcoming arcs from a node v € V is denoted by d,
and the number of incoming arcs to a node v is denoted by ~,. The maximum out degree
of any node in a DAG is denoted by A = maxy,cv d,, and the maximum in degree of
any node is denoted by I' = maxy,ecv 7. If a node has no incoming arcs we say that the
node is an input node. If a node has no outcoming arcs we say that the node is an output
node. Any node, which is neither input nor output, is called internal node. For every arc
a = (u,v) € A we say that the node v is a successor of v and the node u is a predecessor
of v. For every pair of nodes u,v € V such that there is a directed path in G from u to

v, we say that the node u is an ancestor of v and v is a descendant of u. For example, in

Q Q Input, u
o
i/) Y @ Inendv

¢

@

h . Output, w

Figure 2.1: Example

Figure 2.1, the output w is successor of v and descendant of any node. The input node «

is ancestor of any node.

A computation DAG is a directed acyclic graph G whose nodes are associated with

6 Chapter 2. Data Locality

values as follows: value of a node with in degree zero is regarded as input, while value of
any other node is obtained by applying a certain function, associated with the node, to
values computed at the node’s predecessors. Consequently, to evaluate an internal node
v, it is necessary to evaluate every ancestor of node v. At time node v is evaluated, there
must be available the values of v’s predecessors. It can be easily seen that to evaluate
every output node we need to evaluate every node of the DAG G (otherwise no evaluated
nodes can be removed safely). We define as DAG evaluation of DAG G, the evaluation of
all output nodes in G. Every DAG evaluation must start from input nodes. Inputs have
no predecessor and they cannot be evaluated as other nodes. We suppose that input values
are available by a function without arguments that we call query. A query is performed in
two steps: we look input value up, which can be into a dedicated space memory devoted
to store input values, and then we store value into a location of the memory workspace
of DAG evaluation. We spend no time looking inputs up, but it takes time to store input
values. In every DAG evaluation it is permitted more than one query for an input node.
So, there can be many copies of the same input value into different locations. Note that for
a computation DAG there can be different DAG evaluations. Certain DAG evaluations
evaluate every node once but other DAG evaluations evaluate some nodes more than
once. The first DAG evaluation is called DAG evaluation without recomputation[12].
Such a DAG evaluation performs the minimum number of node evaluations. We consider
DAG evaluations of G such that the operations devoted to DAG evaluation are performed
sequentially and we define what we mean as operation shortly. In another words, a DAG
evaluation can be described as a sequence of operations on nodes performed one at time.
We consider a node evaluation as an operation. An example of node evaluations follows.
Consider an internal node u € V with predecessors v, w,z € V and z is an input node.
Before evaluation of u at time ¢, the values of u’s predecessors are available in memory.
The values of v and w are stored at addresses add, and add,,, respectively, after theirs
evaluations. The value of z is stored at address add, after a query. Node values are
computed before ¢, through every DAG evaluation. At time instant ¢,, these values are
accessed one at time and u is computed. The result value is stored at address add, and
the node evaluation is considered done. Note that we do not specify any order of accesses
for operand read. Access a value, we mean to load a value or to store a value at a memory

address. A query can be considered as a computation without arguments and therefore

Chapter 2. Data Locality 7

without arguments fetching. We consider any data moving within memory as an operation
(i.e to load a value stored at an address and to put it into another one, which may be

easier to access for performance purpose).

We can note that for a computation DAG G, there can be many different sequences of
operations that evaluate output nodes. With symbol &5 we indicate ordered sequence of
operations performed by DAG evaluation of G. With symbol =4 we indicate the set of all
ordered sequences of operations that are DAG evaluations of G. We can note that whether
we take in account number and type operations performed in a DAG evaluation, we can
give an estimation of the time spent to do the DAG evaluation. We are interested to in-
vestigate lower bounds of time complexity for computation DAG. We are not interested to
count all operations but a specific kind that can be considered as indispensable operation.
In particular we are interested on evaluations that access node values stored over a thresh-
old location. We indicate as evaluation access, q({c,T), the number of memory accesses
over the location of address T, threshold included, performed by a DAG evaluation &g.
We call Access Complezity, Qa(S) = ming ez, ¢(ég, 1) the minimum number of memory
accesses over the location of address T for all DAG evaluations. The concept of access
complexity is equivalent to the notion of I/O complexity in [39] and the access complexity
in [12] but it is different the type of DAG evaluation considered. In the first paper [39], the
authors consider input values stored over the threshold location at the beginning of DAG
evaluation. In the second paper [12], the authors consider only DAG evaluation without
recomputation. Now, we briefly recall the machine model used to perform DAG evaluation
in [39] and their ideas. They describe a computational model with an unbounded memory
workspace splits in two levels. The first level is bounded. It ranges from the location 0
to S-1 and the access time to any one of its locations is considered inexpensive, zero time
access. The second level is unbounded. It ranges from S to infinity and access time to
any one of its locations is a constant. The time spent for a node evaluation is considered
zero. In this model a lower bound to time complexity for a computation DAG is access
complexity Q¢ (S — 1). The results obtained from access complexity can be applied when
memory model is more complex. A hierarchical memory model is a possible unbounded
memory such that if we access a memory location of address z then we spend time f(z)
(f(z) is a monotone non decreasing function on z which is a positive integer number).

We call such a model an f(z)-memory model, [4]. Also for a machine which has such a

8 Chapter 2. Data Locality

hierarchical memory as support and any computation time is negligible (therefore latency
cannot be hidden), time complexity of a computation DAG is access complexity. In fact,
the time spent by any DAG evaluation is at least 107, F(B)[Qa(k) — Qg (k+1)] [4]. The
right term of the sum, Qg (k) —Qa(k+1) , is the minimum number of accesses on memory
location of address k. f(k) is the latency time to access a memory location. As we did for
access complexity we can define what we mean for memory workspace of a computation
DAG. We call evaluation space, u(£c), the number of memory locations needed for a DAG
evaluation £g. We call Space, Mg = ming ez, (), the minimum number of memory
locations needed for all DAG evaluations.

We reformulate Hong and Kung’s theory proposing a new method based on space
complexity. Indeed, if we know that a computation DAG needs at least Mg memory
locations for each DAG evaluation, then each location is accessed at least once. Therefore
Qa(S) > Mg — S with 1 < S < Mg. This naive method cannot take into account
multiple accesses to the same location and during a DAG evaluation memory locations
can be accessed several times. Suppose to observe an interval time of a DAG evaluation
and to observe the accesses at a location add,. A node value can be stored at add,
and it can be read many times, it is reused, but node values can replace value at add,.
We propose a technique which induces a partition in subDAGs on a computation DAG,
and it permits to count part of these data replacements. In fact, we can look for access
complexity of every subDAG by a lower bound to the space complexity and we can sum

each contribution.

2.2 Hong and Kung’s Results

The first example and characterization of access complexity for computation DAGs was
formalized by Hong and Kung [39]. They associate every DAG evaluation with a so called
S-Partition through a particular sequence of rules. Then, they look for access complexity
lower bound, Q¢ (S), based on S-Partitions. The model of the evaluation is not equal to

our model. Consider a DAG G' = (V, A) and suppose that before the beginning of any

'We define Af(m) = f(m) — f(m — 1), 1(z) the step function and f(z) = 0z < 0: f(z) =
Zm<x Af(m) = Zm Af(m)l(z —m) then if we indicate with n; the number of accesses at address x the
time_spent in this model is Ty = Z f(z)nz = Z Z Af(m)l(z—m)ng = Z Af(m Z Hz—m)ng >
2o AF(m)Qa(m) = 3 [f(m) = f(m - 1)]Qa(m) =3, f m)QG m) = 32, f(m = 1)Qa(m).

Chapter 2. Data Locality 9

evaluation, input values are already in memory. We can consider such an evaluation as a
DAG evaluation which performs for every input exactly one query at the beginning of the
evaluation and all these operations are considered time inexpensive.

We define as minimum set M(U) of a set U C V the set of nodes in U that have
all directed successors not in U. We define as dominator set D a set of nodes in V such
as for every path that connects an input node to a node in W there is at least a node
into the path that is into the dominator set. Since for any set of node there can be many
dominator sets, we define as the minimum dominator class D(W) = {D : D is a dominator
set of Wand YR dominator set of W, |D| < |R|}. We can see any member of the minimum
dominator class as a minimum cut. Whether the nodes of a minimum cut are removed
from the DAG the inputs are disconnected from any node in W. We recall the following

definition which is necessary to understand the results obtained by Hong and Kung.
Definition 2.1 an S-Partition for V is a partition Vi, Va, ..., Vi of V such that:

UL, Vi =V and Vi,j such as i # j and V;NV; = {.

Vi € [1,h] there is a D € D(V;) so that |[D| < S.
o Vi€ [1,h] it must be |M(V;)] < S.
e For any 1 > j, there is no arc from a node v € V; to a node v € V.

And now, we recall the result of Hong and Kung [39, Theorem 3.1]

Theorem 2.1 Fvery DAG computation £ on DAG G is associated with a 2.5-Partition
such that Sh > q(ég,S) > S(h — 1), where h is the number of sets in the 2S-Partition.

The proof of the theorem is based on the following idea. Let T be the time interval
associated with an DAG evaluation £ and consider a set of instants t; < t; < ... <
tn_1 that divide T into h subintervals 13,715, ...T,. This partition induces a partition

Vi, Vo, ..., Vi of V where V; contains all nodes v satisfying the following three properties:

1. during T; v is evaluated or its value is read from a memory location of address greater

than S;

2. at the end of Tj, v is either in memory or it has a descendant in V;;

10 Chapter 2. Data Locality

3. v does not belong to any V; with j < 7.

In [39], they show that for any DAG evaluation it is possible to select instants ¢; < t5 <
... < tp_1 such that the induced partition Vi, Vs, ..., V} is an 25-Partition and such that
Sh > q(&a,S) > S(h—1). The argument given in [39], is rather complex and the difficulty
is represented by proving that the union of the V;’s is indeed V. They prove that for any
DAG evaluation there is a 25-Partition. They prove that to find a lower bound to h, the
cardinality of the set of the partition, it is to find a lower bound to any access evaluation,
that is, the access complexity. For any 25-Partition of a DAG composed by h parts we can
see that A > —1V

= max [V;]"

Any technique to estimate upper bounds to any V; of a 25-Partition
induces an estimation of a lower bound to h. They propose the concept of span from 25
values, p(25). They define p(25) = max{|W| : Vd € D(W) and |d| < 25}. It is easy to
see that for all V; in any 2S5-Partition of a DAG |V;| < p(2S). Eventually, we can write
that Qg (S) > %(S — 1). This idea is refined and simplified in several articles [2], [58].

From a motivating example, Diamond DAG, we start our investigation. For diamond
DAG the authors suggest a naive lower bound. Our model of DAG evaluation is more
general and it cannot be accepted their assumption on input nodes. We prove that the
lower bound it is still the same but with different arguments. We can say that our method
improves the method proposed but it is not better. In the sense that our technique gives
tighter lower bound than the technique proposed by Hong and Kung for the diamond
DAG but it does not give every time the tightest result for other DAG (i.e. FFT DAG).

We investigate why such technique differs in the following.

2.3 k-closed Marking Method

Our aim is to find a topological characteristic of DAG evaluations. We want to infer a
technique which is able to take care of accesses in any DAG evaluation but it can be
applied directly to the DAG without any knowledge how DAG evaluations are performed.
This simple idea is well known and applied. But our work differs from previous ones
because we introduce the concept of marking. Informally, we can say that a marking is a
method for choosing evaluations, that is, it is a method to select from a DAG evaluation
node evaluations. We know that a node can be evaluated more than once: between two

consecutive evaluations of a node, its value can be stored in a memory location or it can

Chapter 2. Data Locality 11

be removed at any time after its evaluation. We need a preliminary sieving of evaluations
because we do not have to consider all evaluations. We need to focus on node evaluations
used to evaluate its successors, unless it is recomputed successively. We need to focus on
the evaluations carried for the evaluations of output nodes. So, we introduce the concept
of useful evaluation. If v is an output, its first evaluation is a useful evaluation. If v has
successors, then we define as useful any evaluation, or query, such that value computed is
used for a useful evaluation of at least one of its successors. We do not consider isolated
nodes because they are trivial DAGs. They are inputs and outputs at the same time. For

our purpose, we can restrict our DAG evaluations to useful evaluations.

Lemma 2.1 Fvery node v in a computation DAG G has at least a useful evaluation in

every DAG evaluation of G.

Proof: by induction on the distance from outputs of G. Every output has at least a useful
evaluation in any DAG evaluation. Suppose that every node v, which has distance at most
k — 1 from an output node, has a useful evaluation in any DAG evaluation. Consider any
node w at distance k£ from any output, that is, there is an output which has distance k
from w and the other outputs have distance greater than &k from w. Then, take a successor
s of node w which in the DAG computation uses the node value of w. It exists otherwise
we can remove the node w from the DAG without changing the meaning of the DAG.
From the node s we can keep on with the same arguments above until we meet a node
u which has distance at most £ — 1 from outputs. The node u has a useful evaluation in
every DAG evaluation. When a useful evaluation of u is performed, there are available
the values of predecessors of u. There must exist an evaluation or a query on predecessor
which produces such a value, and this is a useful evaluation. If we propagate backward
such a useful evaluation we reach the node w. The node w has a useful evaluation. O

We can say that choosing from any DAG evaluation only useful evaluations is a first
sieving. The precedence relation between nodes u and v where u is descendant of u is

respected by their first useful relation as the following lemma states.

Lemma 2.2 If in a DAG evaluation &g the first useful evaluation of node u is at time

instant t,, then every descendant of v has a useful evaluation after time instant t,,.

Proof: the proof is done by contradiction. Suppose there exists a successor v of u which

has a useful evaluation at time instant ¢, before the time instant ¢,. Node v at time

12 Chapter 2. Data Locality

instant ¢, needs the value of its predecessors and therefore of u. The evaluation of which
produces such a value would be a useful evaluation and since it is performed before instant
t, it would be the first useful evaluation of w. This is a contradiction. Therefore every
successor of node v has its first useful evaluation after the first evaluation of v. We can
continue in the same manner with the successors of v and eventually we can find that
every descendant of node v has its first useful evaluation after instant ¢,. a
For sake of simplicity, in the following we omit the adjective useful and for us evaluation
of a node means useful evaluation of a node.

The marking of a computation DAG G = (V, F) is the choice of only one node eval-
uation of node v, for all v € V, in each DAG evaluation {g. Shortly, we indicate the
evaluation selected in a DAG evaluation by a marking as a marked evaluation and the
node, which has a marked evaluation, as marked node. Therefore a marking method on
computation DAG G is a specific method to mark every node of G in any one of its DAG

evaluation &g.

Definition 2.2 as k-closed marking method of a DAG evaluation &5 we define the fol-
lowing technique: we go backward from the last to the first operation in the DAG evalu-
ation &g and we mark an evaluation of a node v, if it is not marked yet and if at least

max(1,d, — k + 1) of its direct successors are marked.

Note that the outputs have no successors in DAG G and in any DAG evaluation &5 they

have at least an evaluation, therefore they can always be marked.
Lemma 2.3 The k-closed marking method is a marking method.

Proof: by construction every node is marked at most once and we can prove that every
node is marked by contradiction. We know that every output is always marked. Suppose
there exists a no output node v that is not marked in a DAG evaluation ;. We observe
the first evaluation of v at time instant ¢, in £z. Clearly, before time instant ¢, there is no
evaluation of any successor of v. Since we cannot mark the evaluation of v at t,, there is
at least one of its direct successors that is not marked after time instant ¢, and therefore
in £g. Let u be such a no marked node and let £, be the time instant of its first evaluation
on £;. Time instant t, follows time instant ¢,. Now, from the node u we can keep on
searching no marked node and by the acyclicity of DAG eventually we can find out an

output which cannot be marked and this is a contradiction. a

Chapter 2. Data Locality 13

We do not state that the first evaluation is always the evaluation marked. We state that
since there is the first evaluation of a node there exists an evaluation that can be marked.
There can be more than one evaluations for a node v but when we go backward on the

computation we will mark the first allowed.

2.4 Space Complexity Based on k-closed Set

We consider a DAG evaluation ¢ on DAG G = (V, A) and we observe at time instant ,,
which is the first evaluation of a node v. Time instant ¢, splits the DAG evaluation in two
parts. Then we can split the DAG into two subsets. Into the first subset there are all nodes
evaluated before time instant ¢, and into second subset there are all nodes evaluated no
early time instant £,. By Lemma 2.2 we know that all successors of v must belong to the
second set because they are associated with the right part of the DAG evaluation ;. We
can obtain a bipartition of the DAG from any DAG evaluation £z and any time instant
in £g. k-closed set is a set Wi, C V which can be seen as the composition of two disjoint
sets I and By. For every node v € Wy, if v has at least max(1, d, — k + 1) successors into
V — W;, then v is into By and if v has at most min(d,, k) successors in W}, then it is into
I,. We define as k-closed bipartition (Wy, W() in G = (V, A) two subsets of V' such that
Wi UW. =V and W), is k-closed.

Lemma 2.4 Take a computation DAG G = (V, A) and time instant to into DAG eval-
uation g, the set of nodes marked by the k-closed marking method earlier than ty, is a

k-closed set.

Proof: DAG evaluation &g is marked through k-closed marking method, so any marked
node v has at least max(1l,d, — k + 1) successors marked in time instants after the
marked evaluation of v. There must be some nodes marked before {5 which have at least
max(1,d, — k + 1) successors marked after ¢y, we call such set of nodes B. There must be
all other nodes marked before ¢ which have at most max(1, d, — k) successor marked after
to, otherwise the set is empty. Therefore they have at most min(d,, k) successors marked

before to, we call such a set I. W = I U B and it is k-closed. a

For every DAG evaluation &5 and a time instant ¢ into &g we can derive a bipartition

of the DAG G. The bipartition is a k-closed bipartition and set indicated as W} has an

14 Chapter 2. Data Locality

interesting characteristic, its subset indicated as By, frontier, can derive space complexity

for the DAG evaluation &g.

Theorem 2.2 For every DAG evaluation &g and time instant t in g, we can derive a
k-closed bipartition (Wy, W() such that Wi, = (I,UBy) and at t the values of the no output

nodes in By are stored in memory.

Proof: by Lemma 2.4, any time instant ¢ into £ can determine a k-closed bipartition

A bipartition : wW . VYA

WC A

at timeinstant t
Figure 2.2: Bipartition, case B is not possible.

(W, W{) such that Wy = (/U Bg). The outputs evaluated have not to be stored until the
end of DAG evaluation, so we cannot state that they are in memory at time ¢t. If v € By
is not an output node it has at least max(1,d, — k + 1) successor in W} then 1) one of
its successors is in Wy and in W and its value is used by both, 2) one of its successors
is in Wy, it uses v, no node in Wy uses it before ¢ and it is re-evaluated after ¢ or 3) it is
re-evaluated right before ¢. But the second case is not possible, because the node v would
belong to W[, since it has the necessary number of successors marked in Wy and it is
evaluated after or at time instant ¢. a
We have now a technique to estimate the minimum space which is needed by a DAG

evaluation &5 on computation DAG G.

Theorem 2.3 Take a computation DAG G = (V, A) with size |V| = n and indicate with
O the set of output node in G then the minimum space Mg for all DAG evaluations in

=g is at least

B(G) = 1r§nk2%XA{112]a<Xn{mm{|Bk_0| : (Wi = IlUBy, WE) k-closed bip., |Wi| =37} (2.1)

Chapter 2. Data Locality 15

Proof: by contradiction. Suppose Mg is smaller than Equation 2.1 indicates. It exists a
DAG evaluation &g such that it has at any time instant at most Mg node values stored
in memory. On &g we apply the k-closed marking method (1 < k£ < A). Sequentially,
we can find out any instant time when an node evaluation is marked. We indicate such
a sequence of time instants as {¢;} with 1 < j < n. So, at any instant time ¢; we can
determine a k-closed bipartition (Wj, W,;Z) such that the size of |W} ;| = i. Note that
the node values of the frontier By; \ Og are in memory at ¢;. Obviously, Mg must be
greater than | By ; \ Og| for every 1 < i < m, in turn, greater than miny, =;{|Bx \ O] :
By, frontier of Uy, (Ug, Uf) k-closed bipartition and |Uy| = j} (for every 1 < j < n). This
is a contradiction. a
For sake of readability, hereafter we indicate as i ;(G) = min{| By \ O |: (W; = [U
By, W¢) k-closed bip. of G and | Wy |= j}. Furthermore we concisely define §(G) =

maxy; Og,;. The Equation 2.1 can be concisely written as maxj<z<a Br(G).

2.4.1 Partitionability

Note that we can apply formula 2.1 to achieve an estimation for the access complexity. A
naive approach is to say Q(9) > Mg — S > (G) — S where §(G) is the estimation of the
space needed by Equation 2.1. Every memory location is counted as an access. But we
know that memory space can be reused and accesses may be multiple on same location for
different node values. We explain a method to overcome, partially, this problem and for
this purpose we introduce the concept of partitionability of a computation DAG G = (V, A).
We identify as [(H) with H subDAG of G = (V, A) the set of nodes in V such that either
they are input nodes or they have at least a predecessor not in H. The nodes in I(H) is
defined as extended ed inputs. To consider H as a DAG, we remove every arc a € A(G)
which is incoming to a extended inputs (if we perform a query to evaluate an extended
input, it is not necessary any predecessor). So if the subDAG H is considered as isolated
DAG, its inputs and extended inputs are the same. We identify as O(H) the set of nodes
in V such that either they are output nodes or they have at least a successor not in
H. The nodes in O(H) is defined as extent ed outputs. For these nodes, we remove arc
outcoming from any extended output but arc which is outcoming from extended output
and is incoming to extended output. Any evaluation of extended outputs are treated as

output evaluations. Therefore, if we apply any k-closed marking method on any DAG

16 Chapter 2. Data Locality

evaluation £y as isolated DAG to evaluate space pr we must remove from the frontier of

every k-closed set its extended outputs (recall Theorem 2.2).

Definition 2.3 A DAG G is a composition of j DAGs without overlapping if they respect

the following rules:
o for every 1 < i< j the subDAG G; can be seen as 1(G;) UG; UO(Gy).

o for every 1 <i < k < j it must be G; NG}, = 0?

Theorem 2.4 Let G be obtained by the composition without overlapping of j DAGs
Gi,y., G then Qg (S) > L, (B(Gy) - S).

Proof: let £&; be a DAG evaluation. It is always possible to recognize j sets of subintervals
of g, A; with 1 <4 < j, so that in A; there are all the operations (evaluations, queries and
data movements) on nodes of G;. Then we reorganize every A; in AZ so that it becomes a
time interval. The precedence relation between operations in Ai, respects the precedence
relation between operations in A;. In other word, A; are a compacted time intervals of
A; and if a node v is evaluated at time ¢, and a node w at t,, with ¢, < t,, and ¢, and
t, are in A;, then the corresponding evaluation time instants in Ai, say t1 and tL, have
the same precedence relation ¢ < .. We consider the DAG G; as a single DAG. We can
see that queries can be performed only on the input nodes. The inputs are into I(G;).
The node in I(G;) and in O(G;) have a lesser number of constrains than the same node in
G. Therefore it easy to see that there is a DAG evaluation {g, of (7;, as single DAG, for
which to mark &g, or A; gives the same result. To each DAG evaluation so determined, we
can apply the estimation of a lower bound to the space complexity by k-closed marking
method. There are at least 3(G;) — S accesses over the location S. Since A; are distinct
intervals, on which are involved nodes of different subDAGs, we can add the contribution

to the access complexity of each subDAG. We are done. a

2.5 Examples

We apply the k-closed marking method to different DAGs. Our aim is to show that there

is no preferential k to estimate the space complexity of a DAG with a k-closed marking

2V(G’,‘) N V(Gk) =0

Chapter 2. Data Locality 17

method. We propose DAGs for which different values of &£ must be chosen to obtain tighter
lower bounds. Furthermore, we compare the goodness of our technique quantitatively (£
notation) respect to the other techniques in literature. Such a comparison will permit to
understand what is captured from any DAG evaluation by the k-closed marking method
and what cannot be captured. We show that our technique is different from the other
techniques and for particular DAGs is the best, and we show why we can obtain such a

results.

2.5.1 Diamond

We identify the DAG D = (V, A) as diamond if |[V| = N = n?, each node can be labeled
with a pair of numbers (i, j), Vi, j € [1,n] and the arcs are: ((¢,7), (¢4 1,7)), ((¢,5), (4, 5+
1)) € E with Vi,5 € [1,n — 1].

D(n) @y uP

n @1

o) DOWN
Figure 2.3: Diamond

In Figure 2.3 there is an example of a diamond n X n. In the leftmost picture there
are two horizontal dashed lines that split the DAG in two parts: the upper part and the
lower part. In the rightmost picture the borders are indicated.

Suppose to apply the 1-closed marking method. In every 1-closed bipartition (W; =
By U1y, WY) the frontier By coincides with the minimum set of Wy ([39]). We can note the
input node is the minimum dominator of any subDAG of D. There is a DAG evaluation
&p such that the frontier of every 1-closed bipartition on £p has at most two nodes.
Suppose we have evaluated the sub-diamond & x k rooted on the input node and we have
all node values in memory. The size of its frontier is one. We compute the node (k+1,1).

The frontier has size two. We compute the nodes (k,2), (k,3) and we go on until node

18 Chapter 2. Data Locality

(k,k+ 1). The size of frontier of every set so evaluated is at most two. We evaluate the
nodes (1,k+ 1), (2,k+ 1) till node (k+ 1,k + 1) is evaluated. The frontier size of every
set is at most two. We have computed a sub-diamond £+ 1 X k£ + 1 from the sub-diamond
k x k with frontier size at most two. Since the sub-diamond 1 x 1 has frontier of size one

we have done. The diamond is insensitive to the 1-closed marking method.
Theorem 2.5 For diamond D of size n?, B, 2 (D) =Q(n).
'2

Proof: let (W; = By U I3, WS) be a 2-closed bipartition of D such that |W;| = % The
frontier By can be seen as the composition of two sets By ; and By . The former is the set
of node without any predecessor in I5. The latter is the set of nodes of the frontier such
that they have at least a predecessor in /. We can see the set Bj ¢ as the border set which
determines the set Iy. |By| = |Bg;| + |Bg,f| and we consider |By| = k and |By | = j. In
turn, the set By ¢ can be viewed as the set of nodes {b;} with 0 < 7 < j. The set W5 can be
seen as the union of 2-closed disjoint sets Wy, ,..., Wy, ,, By ; such that they have disjoint
frontiers By, , ..., By,,, By ;. By construction, Iy C U;W,. If we connect the nodes in By ¢
with a path, the maximum size of the path is at most of 3j nodes length. In other words,
let w and v be the farthest nodes in By y and let P any undirected path which connects
them, then the nodes that belong to the path P and to Wy are at most 3j. Indeed, take
a node u which is not on any lower borders of the diamond. There exists a predecessor v
of u which belongs to I;. The node v has both successors in By ¢, © and w, the distance
from u to w is at most of three nodes (at most two nodes into B; ; have one predecessor
in I3 and they are located in the border /3 and I4 Figure 2.3). There exists a node b; which
has greatest distance among the others from the input node. Let e¢n with 2n > ¢ > 0 be
its distance from the input node. We consider ¢n and 35 as the two sides of a no square
diamond. This no square diamond has size 3cnj and we can see that

2
Benk > 3enj > | U Wa,| > L] > 5~ k

and therefore k > #@mn) = Q(n). O
It easy to prove that there is a computation of the DAG that needs only n memory
locations and therefore the diamond has Mp = ©(n). Our lower bound is tight. The
naive access complexity it would be Qp(S) = Q(n — S). But we can improve it by the

partitionability property of the diamond. We can divide the diamond D in subDAGs and

Chapter 2. Data Locality 19

Figure 2.4: Recursive Decomposition

recursively to apply the k-closed marking method on each subDAG. Then, we maximize
the contribution of each subDAG. For example, if we chose to decompose the DAG D of
size n? into diamonds of size k, say D;, and then to apply the A-closed marking method on
them we can improve the naive lower bound. Indeed, a(D;) > @ where ¢ is a constant
and A (D) is a contracted form of miny; Ba (D). Then @Qp(S) > (@ — 5)72_2 and we

obtain the maximum value for vk = 2¢S and therefore Qp(S) > 42225 for every S < n.

Again, it is easy to see this is is an upper bound.

2.5.2 Binary Tree without Recomputation (BTWR)

We consider a binary tree and any DAG evaluation is a DAG evaluation without recom-

putation.

Lemma 2.5 Let BT = (V, A) be a binary tree of size n = 2' —1. The root is the input node
and the leaves are the output nodes. Fvery output node has the input node as ancestor. If

every node is evaluated once then Mpr > 89 > [— 1.

Proof: Let ty be the time instant in any DAG evaluation without recomputation >
when the first leaf is evaluated. We mark the DAG evaluation £gr and we obtain a 2-
closed bipartition (Ws, W$) of BT. We know that all the nodes belonging to the only
path from the root to the leaf are evaluated and there are at least [— 1 subtrees with any
leaves not evaluated yet. Each tree which has the no evaluated leaves must have a root.

Such a root is stored in memory and it permits the evaluation of its leaves. Such a root

20 Chapter 2. Data Locality

is stored in By. The set of these roots with minimum size is the path itself, without the
input node. a
The Lemma above says that Mpr = Q(logn) for any DAG evaluation without recompu-
tation. The naive access complexity is @p7(S) > logn—S. But we can improve the result
when we apply the partitionability of the DAG. Decompose the DAG BT in sub-BTs of

size 25%2. Every sub-B7T has access complexity of one. Therefore Q(S) > 2';/12 = Q(5%)-

The Lemma 2.5 can be generalized on every j-ary balanced tree.

Note that we have considered only the DAG evaluation characteristics, that is, every
node is evaluated once. On this kind of DAG evaluation, we know that every k-closed
marking method obtains the same bipartition (W, = W, for all j # k) but we can note
that the frontiers are different (B; C B; for all i < j). We have not considered any
possible 2-closed bipartition of BT to achieve the lower bound cited. In fact, if a node
can be evaluated more than once the binary tree is insensitive to any k-closed marking
method. It is easy to see because BT can be evaluated with constant space. This simple
DAG offer a quantitative idea of different performances achieved when a DAG is evaluated

without and with node re-evaluations.

2.5.3 Fast Fourier Transform

Figure 2.5: Eight Points FFT

An example of FF'T DAG is drawn in Figure 2.5. The authors in [39] give Qrrr(S) =

Q(nl(lfégsn) when DAG FFT has size nlogn. The inputs are in memory at the beginning

of the computation then the memory space is at least ©Q(n) but we know that it is also

an upper bound to the space memory, because the FF'T can be evaluated in place (space

Chapter 2. Data Locality 21

memory is ©(n)). Obviously, we can perform an algorithm which performs O(nlog(n —

S)) = O(nklf%) access over the S memory location. Therefore, Q(S5) is @(%). Our
method cannot do better. We prove that we give a worse lower bound and we explain
why.

Before to start any arguments we must introduce some definitions. A reverse DAG of
aDAG G = (V,A)isa DAG G, = (V, A,) where for every (u,v) in A then (v,u)is into A,
and vice versa. We define as F'I'T tree the DAG T'(u) = (V, A) such that 7" is a binary
tree embedded in a F'/F'T' DAG. The tree has one root u which is an output of the FFT.
The leaves are the inputs of the FFFT. In Figure 2.5, a I'FT tree is represented by the

set of blackened nodes.

Lemma 2.6 The space memory of a DAG FFT of size nlogn is O(logn) in any DAG

evaluation.

Proof: It is easy to see that to evaluate an output node u it is to evaluate the node of
its F'I'T tree T'(u) from its leaves to its root. The recurrence formula to the space of a
binary tree can be written as follows. If & = 2 then R(k) = 3 and if 2 < k < n then
R(k) = 1+R(£). The solution is R(n) = 2 +logn. The algorithm which uses exactly the
space above it can be recursively described as follows. It evaluates and stores in memory
the left child of the root u. It evaluates the right child. It accesses the left child and
evaluate the root. We can repeat the algorithm for every output. Since the inputs are

queried only on demand they may not waste space. a

Lemma 2.7 The space memory of a DAG FFT of size nlogn is Q(logn) in any DAG

evaluation.

Proof: Let T'(u) = (V, A) be the FI'T tree with u an output node of the FF'T DAG, and
let (Wa,WS) be any A-closed bipartition of T'(u). Then take the reverse DAG of T'(u),
T.(u). We prove that the A-closed bipartition (Wa(7T), WZ(T)) in T(u) determines a
1-closed bipartition (W{(T,), Wi(T,)) in T, (u) such that Wa(T') = W{(T,) and WL (T) =
Wi(T,). The set WX (T') has the property that if it is not empty, the node v € WZ(T)
has a direct successor in Wg(T') too (we can see the set of nodes Wa (T') is composed by

completed and balanced binary trees). Therefore if a node u is into Wy (1)) then every its

22 Chapter 2. Data Locality

predecessor is into Wy (7). It is a 1-closed set. We can apply the result of Lemma 2.5 on
T (u). |Bo(T)| > |Bo(T})| = B2(T;) = Q(logn). =
Clearly, an obvious lower bound to the access complexity is logn — S or using the par-
titionability property we can decompose the FE'T into subFFT of size mlogm. There-
fore Q(S) > (logm — S)% and for example with 25 = logm we obtain Q(S5) >
(nlog 71)/22E

To understand why the two approaches differ we can take the following case. We take
a machine which has 1+log n locations available as space memory. Take S = logn. Apply
the algorithm suggested in Lemma 2.6. The access complexity of the DAG evaluation
associated with the execution of the algorithm is null, because it never uses the location
of address logn. If we substitute the value of S in the lower bound proposed by Hong
and Kung we obtain an access complexity of n. This difference is due to the fact that in
their model the inputs must be read at least once and they are to be present in memory
at beginning of the computation. So the results are different. The FFT DAG is a good
example in which the data might input one at time but many times. A simple example
of application is a periodic signal with very high frequency for which we can pick up a
sample in every period but we can sample accurately the whole waive form in different
cycles. The source give n samples every n cycles and we have to choose whether store the
input values or not. In this case it may be useful take the algorithm which uses a low
number of locations in particular such an algorithm which uses exactly logn locations.

Note that the situation changes sharply when S < logn.

2.5.4 The Fan

We describe an example of DAG such that the DAG is almost insensitive to the 2-closed
marking method but it is not insensitive to 1-closed marking method. We write LA(j)
and we refer to an oriented linear array of j nodes. The input is one end and the output
is the other end of the array. The k-th node in the linear array is the node that is £ nodes
far from the input. We refer as LAg(j) a specific linear array from a set. The index k
is discriminant index. We write Cp(r) and we refer to the nodes that belong to a circle
of radius r on the plane P. Since we are build a three dimensional DAG the meaning of
plane is the same of plane in a three dimensional space. We introduce the DAG Fan, it is

a parametric DAG, i.e. Figure 2.6.

Chapter 2. Data Locality 23

2nd Floor

1rst Floor

Figure 2.6: Fan

Definition 2.4 the constructive definition of a fan with parameters p, h, L follows:

1. We take the 3-D space where aze x is width, aze y is depth and aze z is height. The
azes system is oriented by the rule of the right hand, the thumb index is forward the

aze and the medium finger is forward the axe y.

2. We choose the following relations:
o [=2
e p=2"el<p<L/2

o |L/2p| =L/2p.

3. The Base of the fan is plane (z,y,0) where we put a composition of linear arrays
of size L. We put a node into (0,0,0) and we lay down p LA(L — 1)s on the Base.
An arc connects each output of every LA(L — 1) to the node into the origin of the
space. Fvery i-th node in the linear array, with 1 < ¢ < L — 1, belongs to the
CBase(L — @) (i.e. the inputs of the LA(L — 1)’s belong to Cpase(L — 1) and the
outputs to Cpgse(1)). Also there is an arc from every node in Cpqs.(L — 1) to every
node in Cpgse(L — 2).

4. The first floor is a combination of% LA(2)s which we put on the line which lays on
(,0,1). Indeed, the input node of the LA;(2) with 0 < i < % — 1 is into the point

24 Chapter 2. Data Locality

that has coordinates (21,0, 1) and its output node has coordinates (2 +1,0,1).

5. We connect by arcs the fist floor with the Base as follows: there is an arc from any
node in (2i+1,0, 1) to every node in Cgyse(21)UCBqse (214 1) for every 0 < ¢ < %—2.
There is an arc from any node in (2i41,0, 1) to an input of the LA(L—1)’s embedded
in the Base as follows. Consider the LA, (L — 1) with 1 < k < p, there is an arc
from every node in (2,0,1) for all 0 < i < % — 2 to the input of LAL(L — 1) such
that 14+ || =Fk .

z
6. The second floor is a LA(L) such as the i-th node has coordinates (L — ¢,0,2).

7. We connect by arcs the second and the first floor as follows: there is an arc from a
node in (21,0,2) with 0 < ¢ < %— 2 to a node in (21,0,2). There is an arc from any
node in (i,0,2) such as i mod 4 = 3 to the nodes in (1,0,1) and (i — 2,0,1).

Lemma 2.8 In any DAG evaluation in Epy, 1y min; fa; < h+2p—1 for all1 < i <|V].

Proof: it is a constructive proof, for every i € [1,|V|] we obtain a A-closed set such that
its frontier is no greater than h+2p—1. (0,0, 0) belongs to WX. We define Uy = {(0,0,0)}.
The complementary set of a A-closed set is the set of node such as whether a node z is in
here it exists a path from it to the output so that every node of the path is into the set too.
Let Uy be the set Uy U {(1,0,1)}, this set of node satisfies the necessary conditions and
therefore is a complementary set of a A-closed set. |Ba ,,—2| is p+2. We keep on to building
in this fashion: U; = U3U{(0,0,1)} and the correspondent bipartition has |Ba ,—3| = p+2.
Us = U,U{(0,0,2),(1,0,2),(2,0,2),(3,0,2)} and |Ba 7| = p+1; Uy = UsUCB4sc(1) and
|Ba,.| = p+1; Us = UsUCB,se(2) and |Ba, | = p+2; Us = UsU{(3,0,1) } and | Ba| = p+2;
U; = UsU{(2,0,1)} and |Ba,.| = p+1; Us = U7 UCByse(3) and |Ba,| = p+ 1. The
method follows similar steps and when we reach the node of Cpgyse(L — 2) there is no
problem because the cut edge is not the frontier. a

The number of incoming arcs into a node v in F(h,p, L) is:
® Y000 =pr+1
e Every node v in Cpgse(L — 2) has v, = p+ 1.

e Every node v in Cpgse(L — 1) has v, = | L/2p] + 1.

Chapter 2. Data Locality 25

o '=max(p+1,|L/2p|+1,L/2—(p—1)|L/2p] +1).
Lemma 2.9 §,(F(p,h,L))>p—1+4+|L/2p]

Proof: let ¢y be the time instant in the computation on F'(h, p, L) such as only a node v
in Cpgse(L — 1) is marked after ¢ and exactly at to, we recall that if we use the 1-closed
marking method every successor of v is marked after ¢y therefore the output node (0,0, 0)
is marked after g too. By construction, the direct predecessors of the node v in the
first floor, or their direct successors that are in the first floor too, they have every direct
successor marked after time instant fy. Immediately, we can find that |By| > p—1+ L%J
Indeed, p— 1 is due to the nodes in Cpqge(L — 1) and [%J is due to the direct predecessors

of node v in the first floor. O

IS

We give just a little summary of the results choosing p = (%)

1
1. By Lemma 2.9, 1 (F(h,p,L)) > (%)% + (&7 -1

We can see that for p = (%)% the fan DAG F(h,p, L) is insensitive to the A-closed
marking method because the marking gives as result a lower bound which is lesser than
the maximum in-degree ' of the DAG. Note than the most obvious lower bound to the
space complexity for any DAG evaluation is the maximum in-degree I' of the DAG. This

no simple DAG is useful because it is an example in which the A-closed marking method

fails respect other k-closed marking.

2.5.5 k-Bridge

We have drawn in Figure 2.5.5 a k-Bridge DAG. Its name derive from its seeming with a
bridge with &k support columns. This DAG is insensitive to 1-closed and A-closed marking
method but it is not insensitive to 2-closed marking method. So this DAG can be viewed as
exception from the DAGs we have proposed. It states that any k-closed marking method
with 1 <k < A must be tested.

Lemma 2.10 Let BR = (V, A) be a k-Bridge DAG, then $;(BR) < 2.

26 Chapter 2. Data Locality

k-Bridge DAG

Figure 2.7: k-Bridge Directed Acyclic Graph

Proof: we show a DAG evaluation £gp such that for every time instant ¢ onto £pg,
the frontier of the l-closed bipartition determined at ¢ is |By| < 2. We evaluate the
nodes hy, hg,...,hx in sequence and therefore |B;| = 1. Then, we evaluate the nodes

hiq, h(k—l),h ..., h1,1. We have done. O
Lemma 2.11 Let BR = (V, A) be a k-Bridge DAG then a(BR) < 2.

Proof: we determine for every 1 < j < |V| a A-closed bipartition such that |Ba| < 2.
Take the k-th node Ay ; and in particular let WZ = hq the set such that at any instant we
add the following nodes: hg, hr_1,1,hz—21,...,h1,1, after we can add the nodes h,...A;.
From the arguments above it is easy to see that the frontier Bp is limited above by the

constant value 2. O
Lemma 2.12 Let BR = (V, A) be a k-Bridge DAG then (32(BR) > k.

Proof: let t be the time instant in any DAG evaluation £gpr such that at ¢ it is marked
the last node in h; with 1 <1 < k. Let h,, be the node which is marked last respect other
node h; (with 1 < 7 < k and j # m), The node h,, is marked at time instant ¢. Every
node h; is into Wy after t. By construction at least max(1,d, — 1) > k direct successor
of h,, are into Wy. they are connected with the output node by a directed path. Every
node h; has at least k direct successor in Wy. They are into the frontier By. O
For this DAG the minimum space is naively the maximum in-degree I'ggr and it is also
the maximum space. It is insensitive to 1-closed and A-closed marking method, but the

2-closed marking method obtain a tight lower bound.

Chapter 3

Code Reorganization, Idea and Practice

Suppose we have a DAG and we want to exploit data locality and write the code which
implements the DAG. In this Chapter we study the application of Convex Decomposition
Tree (CDT) as intermediate representation to write the code, and therefore, the algorithm
expressed by a DAG so that Data Locality is exploited. The CDT is a tree which recur-
sively decompose the DAG in subDAGs rooted at internal nodes of the tree and the order
from left to right of the children infers a schedule of operations of the DAG. The construc-
tion of a CDT from a DAG is equivalent to the scheduling problem (AN P-hard), therefore
we know that an optimal solution can be obtained only with an exhaustive search (unless
P = NP). In the following we propose an heuristic to build a CDT from a DAG and an

algorithm to manage memory accesses when a CD'T is available.

3.1 Scheduling of an evaluation DAG without recomputa-

tion

The problem of scheduling operations of a evaluation DAG is complex, to simplify the
problem we restrict the computation model. We consider only DAG evaluation without
re-computation. In other words, every node is evaluated once. When we mark a node
v € V in any DAG evaluation we know several information. We know that at instant time
v is marked, its predecessors are evaluated and its successors are not evaluated yet.

If we say that Wy is the set of all ancestors of node v, then they are evaluated and
marked when we mark node v. If we say W5 is the set of all descendants of node v, then

they are not evaluated yet. We say that W3 is the set of all nodes that are neither in W;

28 Chapter 3. Code Reorganization, ldea and Practice

W

py
Al

Figure 3.1: Splitting of the computation and of the DAG.

nor Wy (W3 = V' \ (W1 UW3), note that Wy and W, are disjoint sets). We can say nothing
about these nodes with respect to v, some of them can be evaluated and other cannot be

evaluated yet.

Lemma 3.1 W, Wy and W3 are convex set.

Proof: we prove Wy is convex. Let node w and v be in Wy so that there exists a node
u ¢ Wy which is descendant of w and ancestor of v. But if u is a descendant of node v
by construction u# would belong to W;. We can prove in similar way that W5 is convex.
We prove W3 is convex. Suppose there exists a node u € W3 which has a descendant in
Wi (resp. in W3). We call this node v. Suppose v has a descendant in W5, but u would
belong to Wy (resp. the node successor of v would belong to W5), this is a contradiction.
O

Our idea is based on a simple consideration. We know that every node in Wj is
evaluated before every node in Wy for every DAG evaluation. The bigger the sizes of the
sets Wy and W, are the smaller the size of the unknown W3 should be. In fact, we know
that W3 can be evaluated after Wy and before Wy, but it can be evaluated in several ways.

Let us introduce some definitions and notation.

Definition 3.1 A node v is a h-balanced node if the number of its ancestors differs from

the number of its descendants by h (absolute value).

Definition 3.2 A node v is a central node if v is a h-balanced node and h is minimum.

Definition 3.3 A node v is ¢ maximum node if v is a central node and the number of its

ancestors and descendants is mazrimum.

Definition 3.4 A node v is a left node if v is ¢ maximum node and the number of its

ancestors is greater that or equal to the number of its descendants.

Chapter 3. Code Reorganization, ldea and Practice 29

For every left node v € V we can split the DAG. We know that the set Wy, W5, and W3,

are convex sets. The size of W;, and W;, is maximum.

Lemma 3.2 Let L be the set of left node in computation DAG G = (V,A). The set

W = U,er Wi, is a convex set.

Proof: by contradiction, suppose there is a node w € W and there exist two nodes z ¢ W
and y € W so that z is descendant of w and y is a descendant of z. If 2 ¢ W then Av € L
so that z € Wy, but Ju € L so that y € W;, and therefore z should be in W;,. O

Following the similar arguments, we can prove that W = U,cr, W3, is a convex set and

W =V \ (Uper, (W1, UWs,)) is a convex set.

3.2 Idea

A Convex Decomposition Tree (CDT) is a tree based on a DAG G. From the root of a
CDT it is possible to reach all the nodes in G. The leaves of a CDT are the nodes of G.
SubDAGs of GG are associated with internal nodes in CDT(G). A preorder visit of a CDT
determines a total order for the nodes in G. Take for example an internal node v in a
CDT(G) with three children vy, vy and vs in order from left to right. Rooted at vy, vy
and vz there are CDTs that infer a total order on their leaves, and therefore on subsets of
node in G. The order on the internal nodes vy, vy and vs infers a order among the subset
of nodes in G. We propose an heuristic algorithm to produce such structure, therefore a

scheduler algorithm.

p—

1. Determine the set L C V of left nodes in G.

2. Let W be the set of ancestor nodes of any node in L. Let W5 be the set of descendant
nodes of any node in L. Let W5 be the set of node V' \ (W; UW3). Let t; be the left
child of the root t. #; is the root of the CDT associated with the DAGs identified
by Wi. The node t,, is the middle child of the root ¢. t,, is the root of the CDT
associated with the DAGs identified by W3. The node ¢, is the right child of the
root r and it is the root of the CDT associated with the DAGs identified by Wy U L.

30 Chapter 3. Code Reorganization, Idea and Practice

3. Recognize and collect the isolated DAG obtained by the decomposition (previous
steps). Associate with every DAG a node at the same level in the BCDT.

4. Apply BCDT(left, W1),BCDT(middle,Ws) and BCDT(right, W, U L).

)

This algorithm infer a topological order to the nodes in W3, which can be non optimum.
Indeed, nodes in W3 may not be evaluated between evaluations of nodes in W; and nodes in
Ws,. And in general it is an arbitrary choice to say that nodes in L splits the computation
perfectly. These choices are always correct when W3 is an empty set and L is composed
by only one node. The heuristic try to reduce the size of W3 and L, so as an erroneous

topological order has minimum effect on the overall DAG evaluation.

3.2.1 Algorithms

The algorithm BCDT must be specified further so that we can achieve a better under-
standing of the implementative details and also achieve a complexity estimation, how
many steps are required in function of the size of the problem. We start describing an

algorithm to determine the left node in a DAG G.

Algorith
Left Node Determination, LND

1. For every node v € V() compute the number of its ancestors and its descendants
with algorithm PSA(G), store these results in the attributes v, and v, associated

with node v.

2. Let k be the min,ev |v, — vg| and let [be max,ey v, + vs. Sort the node v € V in a
such way that the first nodes have |v, — vs| = k and v, + vs = [. Let H be the set

of the first nodes after the sorting.

3. From the set H obtained in the previous step we pick up the node v € H such that

vp > v and we put it into L.

Algorith
Predecessor Score Algorithm, PSA

Chapter 3. Code Reorganization, ldea and Practice 31

1 PSA(G) {
2 Gl = G;
3 while (I(G1) is not null) {
4 for any s in I(G1);
5: C = Pulse(G,s);
6 for each v in C {
7 V.pt+t;
8 }
9 s.s = |Cl;
10: remove s from G1;
11: }
12: }
where I(() is the set of input nodes of G. [)

The following algorithm send an impulse to its descendants. When a node receives an
impulse it is considered touched, further impulses received from the same source must be

ignored.

Algorith
Pulse, Touched = Pulse(G,s)

1: Pulse(G,s) {
2: return BFS(G,s)
3: }

[)

The algorithm BFS(G,s) is a breadth-first search from s into G and returns the node
touched by the search. It is easy to see that the algorithm PSA computes correctly the
number of successors for every node. In every iteration, one input at time subscribes
its contribution to its successors without repetition. The number of predecessors for a
node v is the number of impulses received from its predecessors. We estimate the time
complexity of PSA(G). Let G = (V, A) be a DAG with |V| =n and |[A| =m > n— 1.
Tpsa(nm) = Sy TBFS(n—i) < SESK(n4+m—2i) = Kmn? — Kn(n — 1) = O(mn?).
TrnD(G) is dominated by the time spent to execute PSA, because any sorting can be
performed in O(n?).

An iteration of Tgepr is the execution of two steps. The first step is the determination

of the left node set and the splitting of DAG G in its three parts. We know its time

32 Chapter 3. Code Reorganization, Idea and Practice

complexity. The second step is to recognize and collect subDAGs, obtained as side effect
of the splitting. In this case we can use DI'S (Depth-First search), and the family of trees
identifies isolated DAGs. The time complexity is O(n 4+ m). The total time has upper
bound O(mn?) (We think that this upper bound can be improved to O(nm logn)).

If the CDT is balanced and |W3| ~ 0 we can write a recurrence equation as follows.
T(nm) = 2T(%~) + O(mn?) this has simple solution T'(nm) < O(mn?log(mn)). More

sofisticated analisys must be devised for the general case.

3.3 Example

We propose two examples of DAG and we apply our heuristic approach.

Figure 3.2: Diamond decomposition and 16-node FFT decomposition, first iteration.

For the diamond in Figure 3.2 the set L is composed by one node, the node v at coor-

dinate (%, %). In fact, any central node is 0-balanced node. The number of its ancestors
and descendants is 2(n — k)& for any k € [1,n — 1]. The maximum value is for k = . The
induced partition and computation is optimal even if set W3 is not empty. For the FFT
in Figure 3.2, set L is composed by sixteen nodes and L is a cut set for DAG G. Note

that the partition suggests the well known in-place evaluation of FFT DAG.

Chapter 3. Code Reorganization, ldea and Practice 33

3.4 CDT: Intermediate Code Representation

A CDT T is a tree with internal nodes and leaves. The leaves are nodes of a computation
DAG G = (V, A). The internal nodes are build up from a topological sort of the nodes of
the DAG . Indeed, the tree represents a topological sort of the DAG and any visit of the
tree induces a strong order among any two nodes in the DAG. In this Section we study the
problems related to the implementation of the mapping and scheduling algorithm MSA,
[12] and in particular how to write the code such as we can attain a DAG evaluation of
G. Shortly we recall the MSA algorithm but now we introduce some terminology and
notation which will be used. We say that an internal node u € T is the common father
for the set of nodes U C V. Lowercase letters of the alphabet always identify a single
node in the CDT T and the correspondent uppercase determine the set of nodes for which
the node is common father. We indicate with S(U) the memory space necessary for
the evaluation of the subDAG determined by a set U. Therefore with S(V) we identify
the space necessary to a DAG evaluation of G. Furthermore, we recall that I'(U) =
{v € V — Ulv has at least on successor inU} and it is called pre-boundary of set U. The
statement of the MSA follows.

Algorithm
It is defined recursively. If u € T is a leaf, we can execute the single operation

in w. If u is an internal node it has children wuq,ug,...,u; with £ > 2 and ordered from
left to right. For every u; starting from u; and ending to uz. Copy the values of node
I'(U;) into the memory locations from S(U;) — |I'(U;)| to S(U;) — 1. Execute U;. Copy
the values that are input to successive subsets into suitable memory locations in the range

from S(U) — S5 [0(U3)] to S(U) - 1.)

The last step of the algorithm it is not completely clear, unless we specify what the authors
mean for suitable. The left to right data dependency, which this algorithm exploits, is
between sets. Instead to consider the root we consider an internal node w with children
w; with 0 < ¢ < j — 1. Suppose we have evaluated the node w; (therefore the set W;).
It may be that the input nodes for the successive sets and node in W; are not input for
any child of w, but for right siblings of w. How to solve this case is not clear, because in
general it cannot be claimed that data locality among sub problems can be exploited so

that data are required among nodes with common father and at the same level.

34 Chapter 3. Code Reorganization, Idea and Practice

A tree-like structure is a very familiar structure to generate code. A simple example
is the code generation for expression in three address code. Given an internal node u,
suppose the data computed by a child, v, cannot be managed by u. There must be an
internal node w which is common father of » and of all the siblings of w that need the node
values computed in W, i.e. 2 Figure 3.3. w is the right node to manage this information.

This problem is known as the least common ancestor problem.
1. There is a node evaluation phase.
2. There is an ascending phase from the leaves to the internal nodes.

3. There is a descending phase where the data are transmitted from the common father

to its children.

We can see that the ascending phase is completely determined by the least common an-
cestor of two nodes, the node where the datum is produced and the node where the datum

is consumed. There are two possible cases describing the ascending phase. We can copy

B S
- / T~
_-7 1 RN
- 1 N
- | ~
g \
’ \ N
g « e
~o--u x z
v * t
,,,,, N T . < z

Figure 3.3: Example of copy propagation: a value computed in v is used in x, we can see how to

determine the least common ancestor respectively in a direct fashion or one level at time.

directly the node values to the nearest common father of the node evaluated and of the
node who uses that value. We can store node values into the local common father and
when all the children are evaluated we perform a mapping to an upper level. We can see
that the second solution does not follow strictly the idea of MSA algorithm. But we have
to produce code, which evaluates G, we do not evaluate the tree. So we can use the second
technique to determine the right mapping between nodes and their evaluations. We have

to decide how to perform the copy propagation between leaves and internal nodes. If we

Chapter 3. Code Reorganization, ldea and Practice 35

want to write the code as soon as possible we have to determine the address location to
store the result of every node evaluation just after its evaluation. An alternative solution
is we can apply a back patching technique: if a leaf has to store its node value into a
least common ancestor but it does not know exactly what is this node, it can delegate the
problem and the solution to its father. When we reach the least common ancestor we can
go back and complete the code generation of the left children. This case is represented in
Figure 3.3 by the dashed path which connects the node v and node w by the node u. The

final choice can be done when we define the final structure and the definitive algorithm.

3.4.1 Description

We introduce some notations such that it is easier to describe the following steps. Let
T be a CDT of DAG GG = (V, E). The level of an internal node is its distance from the
root of the CDT 7' (the common ancestor of every node). Two internal nodes v and w in
T such that v is direct predecessor of w, if v is at level [— 1 then w is at level [. If the
tree is balanced, there are at most O(log|V|) levels (we will abuse the notation and we
will write O(log V)). The tree exploits a strong order relation among node in G. We can
codify the node in G by an integer that we define as key of the node. We gave a definition
to pre-boundary of a set of node W, I'(W) can be intuitively see as the set of nodes in
G that must be evaluated and stored in memory before the evaluation of W (we remind
that the DAG evaluation are restrict to be without node re-evaluation and the concept of
pre-boundary is a particular dominator set or boundary for A-marking).

We introduce an ausiliary data structure for the CDT. It is another tree structure
which is very similar to a range tree [9]. Each node w in a CDT is the root of a sub-tree
and stores an associated trees. We identify the associated structure at every node w by
L{(w), and we call it the canonical set of node w. L(w) is a binary search tree. Consider
the children of w, wy, ..., w,, then L(w) stores not only ['(W) but also I'(W;),...,T'(W,).
We do not need to store >, |I'(W;)| keys, we need | U; I'(W;)| keys, without repetitions.
L(w) stores UI_,I'(W;) and ['(W) C U_,I'(W;). L(w) associates each leaf with an integer
number such that it expresses the number of leaves at its left. The root of L£(w) stores
the total number of leaves. We remind that W is the set of leaves rooted at w. The space
required for the tree is O((|E|+ |V]) log |V|) or shortly O((E+V)log V). Indeed, whether

we identify the outdegree of a node v as §, then we must store node v in at most 1+ §,

36 Chapter 3. Code Reorganization, Idea and Practice

L)

L W)

\ LW

Figure 3.4: Description of the Tree and of its associated structure

canonical sets at same level, one in its leaf and the other in its direct successors in DAG
(. This is done for each node v. Then every node may be present in O(logV') levels of
the tree. Note that we proposed an heuristic to determine the CDT T from a DAG G so
that the tree is balanced as much as it is possible.

To apply the algorithm proposed we must compute the work space for every sub-tree.
This can be done by a bottom-up visit of the tree. Indeed, if we indicate with v, the
indegree of node v € V, the space required to evaluate a leaf in the tree is S(v) =1+ v,.
We can note that v, = |I'({v})|, that is, the indegree of node v is the pre-boundary
cardinality of the set {v}. For each internal node w with children uy,...,u,, S(w) =
max;— 4 S (ui) + |UiZ; T(U;)]. We identify such space by S(w) = Sy, (w) + Sr(w), we say
that S, (w) is the low part and Sr(w) is the high part. In this phase we use the canonical
sets to compute Sr. If the number of children, we proposed a technique such that ¢ < 4,
is a constant, this step can be done in O((V + E)logV') for all node in the same level.
Indeed, we can read UL_,I'(U;) in O(| U, I'(U;)|) step and we can introduce them into
L(w) in O(JUL_, ['(U;)|log V) steps. A node v can be handled at most 14§, times in the
same level, because there are only 1+ 4, sub trees that store such nodes. At every level
we handle at most V nodes and therefore it follows the upper bound. We compute not
only |Sr(w)| but also £(w) for every w at the same level of the tree. And therefore the
overall work will be O((V + E)log? V). We can see that the time spent to make up the
tree with its canonical sets is not optimal by a factor O(logV'). Shortly, we describe how

to use the data structure.

e Let u and w be two nodes. u is nearest predecessor of w and w is visited for the first
time. By construction I'(W) C ['(U), and if T(W) N[(U) # 0 we must copy from

St(u) the nodes in I'(W) to Sr(w). Sr(w) is a array of locations. The canonical set

Chapter 3. Code Reorganization, ldea and Practice 37

L(w) is used to determine the mapping value-node in Sr(w). Indeed, every leaf in
L(w) store an integer value that can be considered as offset in Sr(w). This step can

be accomplished in O(|I'(W)|log V') steps.

o Let u be aleaf. We evaluate . We must copy its value in all least common ancestor
w in the tree T. Copying takes O(7,log? V). Let P be the path which connects the
root of the tree with u. P identifies O(log V') sub-trees and canonical sets. We look
for in each canonical set if the node u is stored. If it is in, we must perform a copy.

Searching in a binary search tree takes O(log V') steps.

The code generator performs such steps in order to produce the final result and the total
time is O(Vlog®V + Elog* V). Indeed, the work associated with the first step can be
estimated saying that all nodes in the DAG G is copied (O(V)) from a level to another
(O(log V) levels) and each copy costs O(logV'). The work associated with the second step
can be estimated considering that every node in DAG G is evaluated and all the arcs are
tested. Then we can say that we determine in O((E + V) log? V) steps the copying rules

and we are done.

3.5 Application and Copy optimization

Suppose that we want to generate code for an architecture with a three levels memory:
register files, a very fast but small cache memory and a huge RAM memory. The access
to a datum in the memory is determined by three constants. Each constant represents
a different access time in each memory level. With this memory hierarchy we must pay
attention when we copy values in different locations. Copying a node value from a memory
location to another one in the same level has the only side effect to execute a useless copy.
Copying must be done when source and destination belong to different levels. The CDT T
has an interesting characteristic. When we have computed for each node w the parameters
Sy (w) and St(w), we know the required space to compute all the nodes in W, and therefore
if it is contained completely in the first level, in the second and so on. If W is contained
in the first level we know that can be computed when there are available the node values
of I'(W).

Furthermore, we know where node values are stored in memory and therefore we can

compute the trade off between copying and recomputation. To evaluate a node we restore

38 Chapter 3. Code Reorganization, Idea and Practice

a node value from a location and this is done incrementally. We push down the values
from an internal node to its children. We can compute how much is expensive to copy up
and down in the memory hierarchy a node and we can compute how much expensive is to

re-evaluate it.

Chapter 4

Micro-benchmarking RISC Architectures

We propose an general approach to measure computational performance of different plat-
forms. Performance is the capacity to execute computations and memory accesses. We
measure time to compute double precision floating point operations, integer operations
and we measure time to manage data from and into memory, different level of caches and
main memory. An interested reader on micro-benchmarking can find interesting the tests
proposed in [40]. This Section can be seen as an investigation of the available parallelism
in current general purpose workstations and also as the searching of a set of tests such that
a simplified model of the architecture may be obtained automatically. Many automatically

tuned software packages use this approach to produce high optimized code.

4.1 Not only FLOPS, Floating Point Unit Performance

Without loss of generality, we can say that current platforms exploit in two different
ways parallelism: through pipeline architectures and multiple functional units (scalar and
super-scalar platform). Number of functional units and number of stages in a functional
unit may vary. In general there is a main distinction between integer functional units and
floating functional units. Operations on different types can be executed in parallel, floating
point operations and integer operations. Certain operation on the same type of values (i.e.
integer) can be performed in parallel because there are multiple (integer) functional units.
Data dependency among operations is key to measure the properties of an architecture.
Indeed, two operations related each other, where there is a data dependency, they cannot
be neither executed in parallel nor put into consecutive stages of a pipeline unit. This

simple case is the base for every micro tests and we can go beyond, we can figure out

40 Chapter 4. Micro-benchmarking RISC Architectures

the architecture by quantitative tests, at least a rough and simplified model. Hence its
basic functionality, we pay particular attention to operation ¢+ = a * b, where a,b and
c are floating point. This operation is ideally executed in two steps: first multiplication,
a * b, and right after sum. The second cannot be started before the end of the first
one. The dynamic scheduler of processor can take different policy to compute a stream
of operations and our purpose is to understand and measure the execution time of the
operation due to the different policies and architectures. Basically, floating point units
are so structured: there are a floating point register set, a multiply unit, an add unit, a
divide unit and optionally other features. In other word two multiplications cannot be
executed in parallel but a multiplication and an addition can. All units are pipelined and
the number of stages can be identified by an integer k. We are talking about the number
of stages to execute an operation, or latency. So if we try to measure the execution time
of a stream of operations of the same type, with a tight data dependency, we should be
able to measure the time k7T, where T, is the clock cycle of the machine. We measure
the number of stages of the machine. If the stream of operation has enough independent
operations, they can be pipelined and we should be able to measure the single stage of
the pipeline, therefore the clock cycle. Unfortunately this measure is affected by error,
we measure these properties using the machine itself. The relative measure error for our
tests set can be estimated as 10%. Perhaps it is too much, but it is a result of a trade-off
between accuracy and time execution of the test. Whether we know the clock cycle we can
measure the number of stages of functional units and we can understand their architecture

and their scheduling policy.

The tests can be described as follows. We determine a loop with two dependent

operations:

for (i=1; i<=MAX; i++) {

op(a,a,i); // a=aop ij;

op(a,a,i); // a=aop ij;

Data dependency does not permit pipeline, and therefore there should be & — 1 empty
cycles. If in the body loop we insert independent operations, these can fit the empty

cycles. If we put k£ independent operations the execution time should increase at least by

Chapter 4. Micro-benchmarking RISC Architectures 41

a cycle for every iteration of the loop. This simple test works when the operation is a
single instruction. But our target is a composition of instructions. The behavior observed
is slightly different, because dynamic scheduler and native compiler can choose different
scheduling policies respect to the hardware available and the number of instructions in the
body loop. Such test can be very useful to understand how much data dependency among
operations can affect the execution time of an application and how much the architecture
is efficiently used. For ¢+ = a * b, the difference of execution time between pipelined and
not pipelined stream of operations can be quantified as (2k — 1)7.. This suggests that
at very fine grain, it can be better to have no data dependency at all, or at least longer

stream of independent operations, at least & independent operations.

We remind that we are not writing test in assembly code, and therefore is duty of
the compiler to optimize code, so that characteristics of processors are exploited. The
complexity of the actual processor is so high that we know that modeling its behavior can
be infeasible, especially if we have not control of the executable produced by a compiler.
Our goal is to achieve an understanding how compiler and platform interact, and therefore
to determine in a quantitative way their performance. The idea suggested about the
exploitation of the pipeline architecture makes sense but there are exceptions: Pentium
IT and SGI R5000. When we run our tests on R5000 processors we noted that we cannot
achieve the maximum performance. The compiler unrolls the body of loops and using an
heuristic reorganizes operations schedule. The performance is slightly unstable because
the heuristic works better for different numbers of instructions in the loop body. In other
words, when we insert an instruction in the body loop, it can affect execution time in non
intuitive way. When we run our test on Pentium Il we noted that the pipeline architecture
is not used properly. The floating point functional unit in the Pentium II uses a stack
register. If we look at the assembly code generated by Microsoft compiler, we can see
that among floating point operations there are (a lot of) register data exchanges. Such
operation can be done in parallel with floating point operations. But the experimental
results suggested that the pipeline properties of this functional unit is not exploited and it
seems that managing the stack is the bottleneck. Furthermore execution time of the single
operation is input values sensible. Indeed, the test for DELL machines was re-designed
so that no overflow can occur. Quantitatively, handling exceptions is very expensive,

tests suggested that with overflow the computation takes 30 times the execution without

42 Chapter 4. Micro-benchmarking RISC Architectures

exception (these are not reported, obviously).

This scenario is very interesting. The platforms we have studied are very different
and we have understood that there are different optimizations that cannot be achieved
or understood only looking the C' code. Fine grain code reorganization can be a good
idea, and almost all the times it can increase performance, but such reorganization should
be done by the native compiler of the machine. Indeed, the compiler is aware of real
properties. For our purposes, we can reorganize the code such as whether native compiler
does not perform a good work, the executable might still have good performance (our
experience say that the compiler may reorganize the code in a such a way that our intent

of right organization is completely messed up).

In Table 4.1 and following we summarized the experimental results. We can see as
SPARC ULTRA Table 4.10, 4.11 and 4.12 has the most predictable behavior and as the
Pentium II has the most unpredictable behavior, i.e. Table 4.13, 4.14 and 4.15.

We measure performance of three operations: integer addition, double floating point
addition and double floating point add-and-multiply. In Table 4.1 there are experimental
results of the integer addition. The test is split in two parts. The Table where is written
SEQUENTIAL we introduce in the body loop 1, 2, 3, 4, 5 and 6 dependent operations (the
loop contains 3, ..., 8 operations) such as the body loop increases in size and the average
execution time of the body loop should increase by a constant, the latency through the
number of stages of the architecture. Below the first row, we can see the differential time
between basic body loop and incremented one. In the second row we can see the time
expressed in nanosecond and in the third row the time expressed in number of machine
cycles. If we say that T is the average time to execute the two operations body loop with
data dependency and T} is the average time to execute the body loop with £+2 operations,
we reported the average time Ty, — T'. The Table where is written PIPFLINABLF follows
the same idea but the operation inserted are independent, no data dependency. The
average values reported here are computed on the base of at least 10,000,000 iterations,

the number of iterations varies from architectures.

Chapter 4. Micro-benchmarking RISC Architectures

43

PIPELINE

9.62 cycles

1 2 3 4 5 6
r=y+z 9.0 nsec 19.5 nsec 42.5 nsec 42.0 nsec 53.5 nsec 65.0 nsec
cycles 1.62 cycles | 3.51 cycles | 7.64 cycles | 7.55 cycles

11.69 cycles

SEQUENTIAL 1

r=y+z

11.5

22.5

34

b

44.5 | 57.0

67.0

cycles

2

4

6 8 10

12

Table 4:.1: SGI R,5000 Integer addition. In the second table we can see that every two cycles it is started an operation, that

is, the integer unit is a two stages integer unit. In the first table we can see how the performance are increased by the reorganization

of the code by the compiler when the instruction are independent. We can see that the architecture is not completely utilized.

PIPELINE 1

r=y+z

0.0

0.5

39.0

6.5 | 11.0

17.5

cycles

1.1 | 1.98

3.1

SEQUENTIAL 1

3

4 5

rT=y+z

22.0 | 45

5| 67.0

90.0 | 112.0

133.5

cycles

3.9

8 12

16.1

20.1

24

Table 4:.2: SGI R,5000 Double floating point addition. In the second table we can see that every four cycles it is started

an operation, that is, the floating point unit is a four stages floating point addition unit.

In the first table we can see how the

performance are increased by the reorganization of the code by the compiler when the instruction are independent. We can see that

we can achieve a throughput of one operation at every cycle. Note that the behavior of the functional unit is not stable for small

body loop

PIPELINE

x4+ =y*z | 39.5|79.0 | 117.0 | 156.5 | 195.5 | 234.0

cycles 7.1 | 14.2 21 | 28.1 | 35.1 42
SEQUENTIAL 1 2 3 4 5 6
T+ =yx*z 39.5 | 78.5 | 157.0 | 156.0 | 195.5 | 235.0
cycles 7.1 14 28 | 35.1 42

Table 4:.3: SGI R5000 Double floating point low latency multiply-addition. In the second table we can see that every

seven cycles it is started an operation, that is, the floating point unit, for this operation, is composed by seven stages. In the first

table we can see how the performance are increased by the reorganization of the code by the compiler when the instruction are

independent. We can see that we could not improve the throughput.

44 Chapter 4. Micro-benchmarking RISC Architectures

PIPELINE 1 2 3 4 5 6

r=y+z |-6.27|-6.25 | 6.88 | 3.68 | 3.69 | 3.68

Wi
W=
W=
W=

cycles -5 -5

SEQUENTIAL 1 2 3 4 5 6

r=y+z 28.8 | 46.8 | 55.8 | 76.2 | 99.6 | 115.2
cycles 29| 47| 56| 7.70 10| 11.6

Table 4:.4:: HAL station 300 Integer addition. In the second table we can see that it seems that every two cycles it is
started an operation, that is, the integer unit, for this operation, is composed by two stages. In the first table we can see how the

performance are increased by the reorganization of the code by the compiler when the instruction are independent. We can see that

the functional unit has more than one add unit

PIPELINE 1 2 3 4 5 6
r=y4+z |-06|-0.2]0.2]10.0|27.4 | 32.2
cycles 0 0 0 1| 27| 3.2

SEQUENTIAL 1 2 3 4 5 6

r=y+z 48.8 1 96.6 | 145 | 194.4 | 241.8 | 291
cycles 49| 9.7 146 | 19.6 | 24.4 | 29.3

Table 4:.5: HAL Station 300 Double floating point addition. This case is very curious, increasing the size of the

body loop we decrease the overall execution, i.e. negative time, this is counterintuitive. But the idea is that the scheduler as more

instructions, more parallelism to exploit and this can affect performance.

PIPELINE 1 2 3 4 5 6
x+=yx*xz |-04]0.0]0.2]10.0]| 274 | 32.6
cycles 0 0 0 1| 27| 3.2

SEQUENTIAL 1 2 3 4 5 6
T+ =y*x2z 49.0 | 97 | 145 | 194 | 242 | 291
cycles 4.9 19.7]14.6 | 19.6 | 24.4 | 29.3

Table 4:.6: HAL station 300 Double floating point addition and multiplication. In the second table we can see that
every five cycles it is started an operation, that is, the floating point unit, for this operation, is composed by five stages. In the
first table we can see how the performance are increased by the reorganization of the code by the compiler when the instruction are

independent.

Chapter 4.

Micro-benchmarking RISC Architectures

PIPELINE 1 2 3 4 5 6
r=y+z | 6.8]16.2|25.9 | 38.8 | 45.2 | 54.6
cycles
SEQUENTIAL 1 2 3 4 5 6
r=y+z 12.6 | 28.9 | 32.4 | 38.5 | 48.0 | 57.7
cycles
Table 4.7: SPAR,C Station 5 integer addition
PIPELINE 1 2 3 4 5 6
r=y+z | 72.6 | 119.2 | 174.7 | 247.2 | 295.4 | 362.0
cycles
SEQUENTIAL 1 2 3 4 5 6
r=y+z 54.8 | 115.9 | 185.9 | 237.2 | 308.0 | 361.3
cycles
Table 4.8: SPARC station 5 double addition
PIPELINE 1 2 3 4 5 6
x+=yx*xz | 142.6 | 307.8 | 463.6 | 617.0 | 772.0 | 925.6
cycles
SEQUENTIAL 1 2 3 4 5 6
x+=y*z 200.5 | 385.3 | 607.8 | 780.2 | 975.4 | 1178.8
cycles

Table 4:.9: SPARC Station 5 double addition and multiplication

46 Chapter 4. Micro-benchmarking RISC Architectures

PIPELINE 1 2 3 4 5 6

r=y+z | 58|60 11.8 | 11.9 | 17.8 | 18.0
cycles 1 1 2 2 3 3

SEQUENTIAL 1 2 3 4 5 6

r=y+z 6.0 | 12.0 | 17.8 | 23.9 | 29.8 | 36.1
cycles 1 2 3 4 5 6

Table 4:.10: SPARC ULTRA Integer addition. In the second table we can see that every cycle it is started an

operation. In the first table we can see how the performance are increased by the reorganization of the code by the compiler when

the instruction are independent. We can see that the functional unit has more than one integer add unit

PIPELINE 1 2 3 4 5 6

r=y4+z |-02|-0.2|5.7|11.8 | 17.5 | 23.6
cycles 0 0 1 2 3 4

SEQUENTIAL 1 2 3 4 5 6

r=y+z 18.1135.9 | 53.7 | 73.0 | 90.4 | 107.4
cycles 3 6 9 12 15 18

Table 4:.11: SPARC ULTRA Double floating point addition. In the second table we can see that every three cycles

it is started an operation. In the first table we can see how the performance are increased by the reorganization of the code by the

compiler when the instruction are independent.

PIPELINE 1 2 3 4 5 6

x+=yx*xz [-0.1]0.2] 124 | 23.9] 29.9 | 36.0
cycles 0 0 2 4 5 6

SEQUENTIAL 1 2 3 4 5 6

T+ =yx*z 35.8 | 71.8 | 107.6 | 144.2 | 181.0 | 215.7
cycles 6 12 18 24 | 32.3 | 38.59

Table 4.12: SPARC ULTRA Double floating point addition and multiplication. In the second table we can see that

every six cycles it is started an operation. In the first table we can see how the performance are increased by the reorganization of

the code by the compiler when the instruction are independent.

Chapter 4. Micro-benchmarking RISC Architectures

47

PIPELINE 1 2 3 4 5 6
r=y+z |296.0]59]|12.0| 13.8 | 24.0
cycles 1 2119 41 4.6 8
SEQUENTIAL 1 2 3 4 5 6
rT=y+z 29 (5191|114 | 146 | 16.4
cycles 1| 1.7 3| 3.8]4.85]|5.47
Table 4.13: DELL Dimension integer addition
PIPELINE 1 2 3 4 5 6
r=y+z | 11.2 | 43.55 | 54.0 | 60.0 | 90.85 | 94.37
cycles 3.73 | 14.52 18 20 | 30.28 | 31.46
SEQUENTIAL 1 2 3 4 5 6
rT=y+z 30.14 | 50.62 | 75.41 | 90.68 | 127.5 148
cycles 10 | 16.79 | 254 | 30.2 | 42.5| 49.33
Table 4.14: DELL Dimension Double floating point addition
PIPELINE 1 2 3 4 5 6
x+=yx*xz | 162 | 50.5|73.6|73.9|101.9 | 413.6
cycles 5.4 1 16.83 | 24.5 | 24.2 | 33.97 | 137.8
SEQUENTIAL 1 2 3 4 5 6
T+ =y*z 42.16 | 83.17 | 110.96 | 129.63 | 178.66 206
cycles 14.05 | 27.72 | 36.99 43.2 | 59.55 | 68.67

Table 4:.15: DELL Dilnension Double floating point addition and multiplication.

48

Chapter 4. Micro-benchmarking RISC Architectures

PIPELINE

r=y+z |3.3]6.71

6.6

13.5 | 15.4

26.9

cycles

4.6

SEQUENTIAL

1 2

3 4

5

rT=y+z

3.2 5.7

10.0 | 12.6

16.1

18.3

cycles

1|17

31 3.7

4.8

5.4

Table 4.16: DELL Poweredge integer addition

PIPELINE 1

r=y+z | 13.75

54.3

64.2 | 71.2

105.0

108

cycles 4.13

16.31

19.28 35

36

SEQUENTIAL

2

3 4

5

6

T=1y+z 33.6

54.1

81.3 | 97.8

138.3

162

cycles 10

16.25

24.4 | 32.6

41.54

48.65

Table 4.17: DELL Poweredge:

double floating point addition.

PIPELINE 1

x+=yx*xz | 15.7

65.1 | 80.87

82.02 | 110.3

470.7

cycles 4.71

19.5

24.2

24.6 | 33.12

141.3

SEQUENTIAL 1

2

4

5

T+ =yx*z 46.85

89.82

120.3

142.17

196.1

226.55

cycles 14.7

26.97

36

42.69

58.89

68

Table 4:.18: DELL POWel‘edge: double floating point addition and multiplication.

Chapter 4. Micro-benchmarking RISC Architectures 49

4.2 Memory Hierarchy, Latency

Current platforms have more than one level of cache, and therefore different access laten-
cies. We want to design a general test which is able to measure access time on different
levels of memory hierarchy. We distinguish reads and writes, because these operations are
implemented differently and sometimes this difference is remarkable.

The idea of tests is to measure a memory access indirectly by two distinct measures
of the same operation, with and without access to memory. The operations have data
dependency so there should be no optimizations. In the following sections we describe
briefly the tests to measure the access time for a three level cache architecture. We
can see these tests as an interesting tool to understand what is the memory hierarchy
architecture. Indeed, it is possible to devise a try and error approach that automatically
understands the memory hierarchy and measure its performance.

Cache parameters:

SPARC station 1: it has 64K bytes direct mapped unified cache, line size of 16 bytes,
the write policy is Write-through. This architecture can be considered an old-style
memory architecture but it offer an interesting test-bed since code and data share
the same cache. This architecture is harder to handle because we cannot know in

advance the size of the cache dedicated to pure data.

SPARC station 5: it has a 8K bytes direct mapped data cache, a 16K bytes direct
mapped instruction cache and line size of 16 bytes, the write policy is write-through.
The architecture is good test-bed because has two distinct and small caches, so we

can see independently the misses due to instructions and data.

SPARC Ultra: It has a two level cache. It has on-chip a 16K bytes instruction cache,
2-way associative with line size of 32 bytes. It has on-chip a 16K bytes direct mapped
data cache with line size of 32 bytes. The write policy is write-through. It has an
external cache of 512K-1M bytes, this is a direct mapped cache unified for data and

code, its line size is 32 bytes and the write policy is write-back.

SGI: R5000 It has a two level cache. It has on-chip a 32K bytes 2-way associative
instruction cache, with line size of 32 bytes. It has on-chip a 32K bytes 2-way

associative data cache with line size of 32 bytes. The write policy is write-through.

50 Chapter 4. Micro-benchmarking RISC Architectures

It has an external cache of 512K bytes, this is a direct mapped cache unified for data

and code, its line size is 32 bytes and write policy is write-back.

DELL: DELL DIMENSION XPS D333 & PowerEdge 4200 , Sirius & Heze: They

have Pentium II processors at 333Mhz and at 300Mhz respectively, but the structure
of the memory hierarchy is similar. There are two level of caches. The first level is
composed by a 16K bytes data cache and 16K bytes instruction cache. The cache
line is 32 bytes. The second level is a 512K bytes unified cache. They have different
main memory. These two platforms are interesting because we can investigate how
the last level of the memory hierarchy, the main memory, affects the performance.
This communications are by far more expensive than other communications among
different levels of the memory hierarchy. They magnify the overall performance of

algorithms with a small number of accesses on the high level of the memory hierarchy

(Hard disk).

Fujitsu: Hal Station 300 it has only one level of cache. A 128K bytes 4-way set asso-
ciative data cache and a 128K bytes 4-way set associative instruction cache, a cache

line of 128 bytes and its write policy is write back.

4.2.1 First Level [,

This is usually an on-chip memory, the read time takes one clock cycle and it is pipelined.
A very simple test to measure read time and write time at the first level cache can be
designed very quickly. We take an array of size N and we read, or we write, a block of
the same size of the cache. We fill the cache in and we iterate operations known. The
accesses to the array block should have unitary stride. The test to measure write time
is similar. Note that writing on L; can require other operations on successive level of
memory hierarchy, this depends on the write policy used level by level. Since current
platforms are pipelined, accessing cache locations should require no time because is one

step in the pipe.

4.2.2 Level L, and Level L5

L; is usually an out-chip memory and reading takes at least three cycles. To measure

time access we must be sure that every time we perform an access we reach the cache

Chapter 4. Micro-benchmarking RISC Architectures 51

level desired, neither below nor above. First of all we read, or write, an array block of
same size of level cache L;. We can say that at level ¢ cache size is at most four time
bigger than cache size at level : — 1 and at least four time smaller than cache size at level
t 4+ 1. Suppose to read several times an array from element 0 to element k, such that the
elements read fill in perfectly Ly but L. Since L is smaller than Ly, we can always access
an element in Ly but not in Ly, because in L there are elements we have read and never
element that we will read before to move out from the cache. This is true if we do not
access elements with a unitary stride. The stride should be greater than cache line (to
avoid space locality) and small enough so that the number of elements read is bigger than
Ly capacity. Since the particular way we access elements in the array, we can generalize.
We can say that any element we access in L; is not present in any of L; with j < 4. To
avoid space locality due to the cache line or page size, access stride cannot be unitary but

at least equal to cache line, resp. Lo, or page size, resp. Ls.

4.2.3 Implementation

We describe only one test because the other ones are similar. The test is organized in
three phases. In the first part we measure the time spent to perform computations, in
the second part me measure computation and reads and in the third part we measure

computations and writes.

/** Computations */
START_CLOCK;
for (j=0; j<11; j++) {

for(i=0;i<12;i+=LINE) {
k+=LINE;
potential(k); // to avoid unwanted optimization
}
potential(k); // to avoid unwanted optimization
}
END_CLOCK;

work += duration;

/%% Fill cache %/
for(i=0;i<RangeOnL2;i++) {
Alil=i;

52 Chapter 4. Micro-benchmarking RISC Architectures

/** Computations + Reads */

START_CLOCK;

for (j=0; j<11; j++) {
for(i=0;i<12;i+=LINE) {
k+=A[1];
potential(k);
}
potential (k);
}
END_CLOCK;

timeRead+=duration;

/** Computations + Writes */

START_CLOCK;

/* Work */
for (j=0; j<11; j++) {
for(i=0;i<12;i+=LINE) {
Ali]l=i+j; /* if unrolled, pay attention independent operations */
potential(k);
}
potential (k);
}
END_CLOCK;

timeWrite+=duration;

We can see that we have chosen a stride quantified by LINFE. Stride depends on
what level we are testing. The LINE to test main memory is bigger than cache line and it
should be the page size. Result of tests should be considered carefully because they are not
intuitive and they depend on many factors. Table 4.19, ..., 4.21 show the experimental
results of SPARC machines. Executables are produced by gcc compiler. Access latency
from and into the first level cache is almost hidden into the stages of pipelined computation.
If we do not optimize the code, experimental results are completely different. Without
optimization it is possible that reads and writes can interrupt the pipe and therefore we
would measure not only access latencies but also the the number of stages in the pipe.

In general we can say that the first level cache can be accessed for free (at least a clock

Chapter 4. Micro-benchmarking RISC Architectures

53

Level Read Write
L1 0.58 ns 29.8 ns
Memory | 55.35 ns | 56.82 ns

Table 4:.19: SPARC 5: the access time is expressed in nano seconds.

Level Read Write
L1 0.52 ns 54.98 ns (5 cycles)
Memory | 37.6 ns (4 cycles) | 539.12 ns (53 cycles)

Table 4:.20: Hal Station 300 access time expressed in nanosecond and in parenthesis number of cycles.

Level Read Write
L1 -2.08 ns (-.3) -73.6 ns (-12)
L2 77.7ns (12 cycles) -52.1 ns (-9 cycles)

Memory | 593.4 ns (100 cycles) | 371.11 ns (61 cycles)

Table 4.21: SPARC ULTRA, two processors

cycle) but we paid for all the other accesses. Do not be worried about negative time. The
writing loop exploits independent operations and it can offer better pipeline scheduling
furthermore some caches can use a write buffer, and therefore hide write latency. This is
a weakness of the test that will be fixed in the future.

Even if we are testing same processors, i.e. Pentium II, with a different clock cycle,
Table 4.23 and 4.24 differ. We can see that there is no difference for the number of cycles
to access the first level cache, but they differ for access time on the second and third
level of memory. The second level cache is off-chip and it is possible they differ for their
write policies and other features. The main memory is shared by two processors in DELL
Poweredge and therefore it is understandable why the access to the main memory is slower

respect to the other platform.

Chapter 4. Micro-benchmarking RISC Architectures

Level Read Write
L1 5.32 ns (1 cycles) 28.94 ns (4.5 cycles)
L2 262.96 ns (47 cycles) | 371.63 ns (66.8 cycles)

Memory | 625.71 ns (112 cycles) | 665.78 ns (119 cycles)

Table 4.22: SGI, R5000

Level Read Write
L1 3.36 ns (1 cycles) -9.25 ns (-3 cycles)
L2 24.3 ns (8 cycles) 4.10 ns (1 cycles)

Memory | 136.32 ns (45.4 cycles) | 207.20 ns (69 cycles)

Table 4.23: DELL dimension (Microsoft compiler) Pentium II.

Level Read Write
L1 3.75 ns (1 cycles) -10.24 ns (-3 cycles)
L2 68.9 ns (22 cycles) 69.23 ns (22 cycles)

Memory | 224.79 ns (74 cycles) | 544.67 ns (181 cycles)

Table 4.24: DELL Poweredge (Microsoft compiler) Pentium Il processors.

Chapter 5

Fractal Matrix-Matrix Multiplication

5.1 Introduction

Matrix multiplication is a very well known application studied by many researchers along
these years. As a recall a briefly description of the application follows. Let us indicate by
capital letters matrixes (A, B... and without loss of generality we can say that A, B €
R"*") and by subscribed lower case the elements (a;;, b;;... in a row-column notation).
Any element ¢;; in matrix C' obtained by moltiplication, ' = AB, is the result of the
following summation c;; = Zz;é a;br;.

There have been proposed different algorithms to compute matrix multiplication. The
most common is the ijk-loop algorithm which follows the definition of matrix multipli-
cation and it has complexity O(n?). There are blocked algorithms with also complexity
O(n®) with a better data locality (i.e. [23]) and different size of blocks. There is Strassen’s
algorithm with complexity O(n'°¢27) ([59]) and Winograd’s variant which performs less
additions, either one is still a blocked algorithm requiring extra space for temporary ma-
trixes. The best known algorithm is due to Coppersmith and Winograd with complexity
O(n?37) ([20]), but in practice it is not used by any library. We are particularly interested
on the blocked algorithm with time complexity O(n3) because our goal is to study data
locality and compiler-technique to exploit it, and this algorithm offer a good and simple
example.

Matrix multiplication is more than a case study or a toy example as the number of

papers available on the subject, directly and indirectly related, suggests. Matrix multi-

plication can be proven as basic operation in several applications, i.e. linear algebra, and

56 Chapter 5. Fractal Matrix-Matrix Multiplication

optimal performance can be achieved by a tuned matrix multiplication routine ([43], [44]).
To achieve portable performance there are several approaches so that peak performance can
be achieved for different platforms and for different algorithms ([64], [13], [24], [27], [28]).
Researchers have studied the impact on performance of several issues: data layout, data
locality, latency hiding, register allocation, instruction scheduling and instruction paral-
lelism. These are fundamental issues to achieve performance. In this paper we address all

of them at once by a general approach and from source code.

Let us give an overlook on the most common optimizations performed on matrix mul-
tiply code. A general technique that today’s compilers and algorithms try to exploit so
that temporal locality is maximized is loop tiling ([45], [54], [66], [49], [67]). Loops are
tiled and it is increased time locality, therefore data in caches can be reused reducing the
so called capacity misses. But tile sizes are machine dependent parameters, based not
only on the cache sizes but also on any technique to reduce self interference, for example

copying elements of matrix in contiguous memory space ([33], [27]).

Vendor libraries intensively use the available information of platforms so that the
parameters to determine tile sizes, scheduling instruction and other optimizations are

information which can be inferred easily.

Automatically tuned packages ([64], [13]) measure these parameters by interactive
tests, and then they produce machine tuned code. Automatically tuned packages work
very well and in general they achieve better performance than the vendor libraries. They
have the advantage that if we want to install the package on another machine this is

possible, achieving maximum performance, but spending time for a new installation.

Another approach, completely different, is called auto-blocking. The tile sizes are not
determined by any a priori information but they are exploited by a recursive decompo-
sition of the problem. This approach can be proven asymptotically optimal ([32]). We
find these applications appealing, and in literature are called cache-oblivious algorithms.
Recursive-based algorithms are the most common example of cache-oblivious algorithms
and they do not actually use standard layouts. Non standard layout are applied because
space locality is maximized with respect to the way the problem is decomposed so that
data locality are maximized at any sub-problem decomposition. This non standard lay-
outs are called recursive layouts and they may exploit different features ([18], [17], [61],
[30]). We have chosen to deal with a variant of the Z-Morton layout ([17]) that we called

Chapter 5. Fractal Matrix-Matrix Multiplication 57

fractal layout (note that it is not the bit interleaved layout [32] because the definition is
valid only for power of two matrixes) because it fits naturally the naive blocked matrix
multiply algorithm and it permits to exploit some peculiarities of the computation. We
have considered the problem of format conversion from and to the most common layout
formats, i.e. row-major format which is by default in C' and column-major format which is
by default in Fortran. The conversion time is negligible for big enough matrixes ([18]) and
until the device where the matrixes are stored is fast enough that the time to access the
entire matrix is negligible with respect to the time spent in the matrix multiplication (i.e.

if the matrixes are stored on a hard disk, the conversion time is not negligible anymore).

During our investigation and performance evaluation of our implementations, we found
that an optimal cache utilization is not enough for performance purpose, a good register
utilization must be achieved. The register file is the first level of memory and performance
is based on register allocation. A small number of loads and stores reduces the traffic
from/to the cache and latency hiding of loads and stores avoid to stall pipelined CPUs ([27],
[64]). Currently, the practical way tiling is combined with other optimizations is function
of the level of memory hierarchy which the code is written for, i.e. tiling for the first level
of cache may be different from the tiling at register level where other optimizations are
performed as loop unrolling, software pipelining, peeling and scalar replacements ([49]).
But for recursive algorithms no compiler is smart enough to perform unfolding of last calls
(leaves) and performs optimizations on the code. We investigated this problem and the
impact of compiler optimizations onto unfolded leaves. We present an automatic technique
to unfold and perform scalar replacement for recursive matrix multiplication algorithms.
In fact, if the code may need any tuning so that to achieve an efficient implementation,
then at register level we need better code. We developed parametric code generators that
automatically write unfolded leaves of different sizes so that it is becoming easy tuning

code for a different architecture.

In spite of all the bibliography devoted to matrix multiplication, there is no available
results to optimize the index computation, that is, the computation of the indexes to access
matrix elements, specially for recursive algorithm. Indeed, recursive algorithms are often
based on power of two matrixes (with padding, overlapping, or peeling) where the index
computation is very simplified. But in general, aside the major computation involving

floating point instructions, there is the index computation involving integers necessary to

58 Chapter 5. Fractal Matrix-Matrix Multiplication

load and store elements of the matrixes. We devised an approach to prune the calling
tree of a recursive algorithm, saving index computations and open an interesting way to
remove the recursion at once, for such a purpose we introduce the concept of type DAG.
We discovered that in matrix-multiplication-like applications it is very common to perform
the same computation over and over on different data, and it can be useful store index
computation results on a small temporary space. Of course, this interferes with the data
space but simulations give us insights so that we can claim that it does not affect the

overall computation.

We are interested to implement a cache-oblivious tunable package, where performance
is the first goal. We compare this approach w.r.t. automatically-tuned machine dependent
approach ([64]) that very often outperform vendors applications. We can see that we can
achieve comparable performance on different architectures just adapting the computation

on the leaves of the recursion algorithm.

Note that in this paper will be marginally cited numerical stability. Stability and
accuracy are important features but for machine without extended precision accumulator
and with register file, the order of the computation should not affect the worst case error

estimation (Lemma 2.4.1 [34] or Lemma 3.4 [38]).

5.2 2F x 2 Matrix Multiplication

This case study is a simplification of the matrix multiplication problem where most of the
current algorithms have no optimal performance due to the high number of data conflicts
in cache. In this Section we explain the fractal layout of data, the blocking algorithm and

its data locality property.

5.2.1 Fractal Layout and Blocked Algorithm.

Let n be a power of two (2¥ = n). We consider two dimensional matrixes n x n. We
indicate an element of matrix A by the usual notation a;;. The indexes ¢ and j indicate
respectively the row and the column of A in which the element is located. The matrix A

can be seen as the composition of four sub matrixes Ag, A1, A9 and As.

° AOZ{aijWithOS’i,j<%—1}.

Chapter 5. Fractal Matrix-Matrix Multiplication 59

o Ay ={a;; with0<i< % —-Tland §<j<n-—1}

|3

o Ay ={a;; with 0 <j <% —1and

|3

<i<n—1}.
° Ag:{aij With%ﬁj,i<n—1}.

The layout of the matrix A, the way it is stored in the memory, can be recursively defined
as follows. Lay out of A is the linear sequence of the lay out of Ag, then the lay out of
Ay, then the lay out of A; and eventually the lay out of As. See Figure 5.1. We apply the

A =

A A A A

00 01 02 03

SRR R

L 1 1 1]

Figure 5.1: The way a matrix is split and its recursive lay out definition.

blocked matrix multiplication algorithm with O(n®) operations. Let A and B be twon xn

matrixes. Let C' be the matrix which is the result of the multiplication of the matrixes A

and B, thatis, C' = A x B.

fractal(4,B,C) {

if (size(A)==size(B)==1) /* scalar */
C+=AB;
else {
S = {(A0,B0,C0), (A1,B2,C0), (A0,B1,C1),
(A1,B3,C1),(A2,B0,C2), (A3,B2,C2),
(A2,B1,C3), (A3,B3,C3)}

for each (A’,B’,C’) in S
fractal(A’,B’,C%);

60 Chapter 5. Fractal Matrix-Matrix Multiplication

The algorithm defines a tree, see Figure 5.2, the call tree. The tree has logn levels. In

C=AB

<n,n,n>

C-AB C-AB C-AB C-AB. CAB CAB CAB CAB
000 0 12 101 1 13 2 20 232 3 21 3 33
222> <N2N2N2> <V2N2N2> <N2N2M2> <N2N2N2> <2N2n2> <n2n2n2> <n2n2n2>

\ B ! B 10 30 11 32
00 10 01 12
<V4,/A,N/3> <A, WA N4> <n/4,n/4,n/4> <n/4,n/4,n/4>

Figure 5.2: The call tree of the blocked matrix multiplication.

Figure 5.2 the matrix A;; is the sub matrix (A;); and it can be identified in the lay out by
its first element. The relation between the first element and the indexes 7 and 7 is expressed

by the formula i% + jZ—;. The size of the matrix A;; is Z—;. The denominator (4'=2) is
a power of four and its exponent is function of the number of indexes, i.e. two indexes ¢
and j. The fractal scheme generate a class of fractal algorithms, is correspondence with
specific ordering of execution of the recursive call. A fractal algorithm is a visit of the call

tree. We focus our attention on two particular algorithms.

Definition 5.1 We call C AB-fractal the algorithm obtained from the fractal scheme when
the recursive calls are executed in the following order: (Ao, By, Co), (A1, Bz, Cy), (A1, B3, C1),
(AO7 B17 Cl); (A27 B17 CS); (A37 B37 03); (A37 B27 CQ); (A27 B07 CQ)

Definition 5.2 We call ABC-fractal the algorithm obtained from the fractal scheme when
the recursive calls are executed in the following order: (Ao, By, Co), (Ao, B1,C1), (A2, B1,C3),
(A27 BOa CQ); (A37 B27 02); (A37 B37 03); (Ah B37 Cl); (Ala B?a CO) .

These ordering of recursive calls can be seen as Hamiltonian cycles in a three dimensional

binary cube, Figure 5.3.

Chapter 5. Fractal Matrix-Matrix Multiplication 61

_____ CAB-fractal
S ABC-fracta

Figure 5.3: C'AB-fractal and ABC-fractal as Hamiltonian cycles in a binary cube a node
(2,7, k) stays for (A;, B;, Ck).

5.2.2 Misses of Fractal Algorithm

n3

Proposition 5.1 The fractal matriz multiplication has Q(S) = ©(J5) accesses over the

location S, where 2° = S and matriz size is n.

Proof: we split the proof in two parts, in the first part we show a lower bound and in the

second part we show an upper bound to the number of accesses over the location S.

The algorithm has an intrinsic access complexity. Whatever it is the way we visit the
recursion tree at a certain level in the tree, the size of the matrixes are small enough that
they fit the cache and their matrix multiplication can be done without any miss. Let k?
be the size of a sub-matrix and let us consider a sub-matrix multiplication C,+ = A, * B;.

Whether S is the size of the cache then 3k = S and therefore k& = | gj Even if k is

always a power of two (i.e. k= 2%0), here, for sake of explanation, we consider \/g as an

opportune integer. We have chosen a sub-multiplication and it identifies a sub-tree with

k3 operations and there are 2—2 sub-trees. In any sub-tree there is no misses except the
read misses to fill in the cache with appropriate data. Let m be a coefficient 0 < m < 3
of locality among consecutive leaves (w.r.t. the visit policy). It identifies the number of
common sub-matrixes to two consecutive sub-multiplications. We must read (3 — m)k?

elements going from a leaf to another one. We identify the length of the cache line by the

"because the size of caches is power of two

62 Chapter 5. Fractal Matrix-Matrix Multiplication

integer [. In fact, the number of reads outside the cache will be affected by the length
of the cache line, Q(5) > %Z—ij When we substitute the value of k, we obtain that
Q(S) > S_Tm\/gnS (i.e. the miss ratio is ?’_Tm\/g = Q(%)) A general proof of the
inequality can be found also in [39].

To estimate an upper bound we suppose that the cache is a direct mapped cache and we
give an estimation to the conflict misses, this is sufficient since there is no self interference.
Take eight consecutive sub-multiplications with k® operations each, as above. To visualize
how they interfere we consider the pre-order visit of the recursive tree. Cy+ = AyBy,
Cot = A1 Bz, Ci1+ = AoB1, Ci+ = A1Bs, Cot+ = A3Bo, Cot+ = A3By, Cs+ = AgBy,
Cs+ = A3Bs;. We know that C;, A; and By, (almost perfectly) fit the cache. Without loss
of generality suppose that Co4+ = AgBy has no interference, that is Cy is in the first &2
cache slots, Ag is in the second k? cache slots and By is in the last k2 cache slots. Since
the matrixes are stored sequentially we can note that in Cy+ = A Bj there should be no

interference, but in C14+ = Ap By, matrix C interfere with matrix Ag. In Figure 5.4 we

RISIRIS
-
B Pa

1
2
3

4 ‘ COClCZC3 DBDBIBZBJ D ADAIAZAS

1
-l Fuf
2 B

o
N
[T

Ay (B [””””””” ”””””””
4, | Al

Padding

| Pl

5
6
7

]

ikz ‘

B R

Figure 5.4: From left to right: in the first picture we can observe the layout in the cache
of the sub-matrixes involved in the computation, in the second the layout in memory with
a padding between consecutive matrixes and in the third how matrix C; and matrix Ag

can interfere in the same slot.

can see the pattern of interference among matrixes, when S is 3%. An alignment due to
a padding of % elements permits to achieve such pattern. We indicate the interference in

these eight multiplications as I(.S). In Figure 5.4 we can see in more detail as the two sub-

Chapter 5. Fractal Matrix-Matrix Multiplication 63

matrixes C7 and Ag share the same set of locations in the cache. We indicate as IB(g) the
conflict misses related to such lay out. The sub-multiplications affected by conflict misses
are C1g = AgoBag, C11 = Ag1Bas, C19 = ApaBsyg and C13 = Ag3Bas. The number of misses
is expressed by the following equation: I5(2) = 475(5%;) and I5(1) <= 3. This equation
has simple solution IB(g) = 3% = 3k%. So if we indicate by i the number of sub-matrix
pairs that share the same cache slots, the number of conflict misses is I(S5) < %ﬁk?
which, in turns, can be expressed as I(S) = %niﬁ (i.e. the miss ratio is O(%)) In

Figure 5.4, ¢ is seven but if we transpose B, ¢ becomes 6. a
If we want to get an quantitative idea of)(S) we can compute a simple case, for a
data cache of 16KBytes, direct mapped, 32 byte line size and an element of the matrix

is 8 bytes. If we add the interference misses and the capacity misses we obtain Q(S) =

O((3 + %5)y/555) ~ 0.12. Experiments with the Shade simulator show that we can

achieve a @(S) ranging between 0.061 and 0.104, respectively with and without padding,

which satisfies our estimation.

5.3 Square Matrix Multiplication

We generalize the approach applied for power of two matrixes to square matrixes and

square matrix multiplication.

5.3.1 Square Matrixes, Fractal Layout.

We identify a square matrix of size k simply by k£ X k. An integer k identifies a unique

sequence ko, ki, ... kiogr Where kg = [%L k; = [ki;'\, ..y kiogr = 1. We indicate, without
any further specification, the first element of the sequence based on integer k as kg. A
square matrix k X k, A, can be split in four sub matrixes Ag, Ay, A3 and As. Matrixes A;

k

k K +r r=mod(k,2)
° ° k=2k +r
K A, A, A, A, Squaremarixes

A . A) Either square or Near Square

Figure 5.5: Splitting matrix A k x k

64 Chapter 5. Fractal Matrix-Matrix Multiplication

and A, are near square since the number of row and the number of columns may differ by
one, i.e. kis odd then A; is a ko x (ko + 1) matrix and Az is a (ko + 1) X ko matrix. We
will show that a fractal decomposition of a near square matrix offers a set of near square

matrixes.

Proposition 5.2 Let A be a k X h matriz with h = k + 1, then Ay, Ay, Ay and A3 are

near square matriz.

Proof: the proof is done by complete enumeration of the possible cases. k = 2kqg +

mod(k,2) and h = 2hg + mod(h,2). If k is even hg = ko. If k is odd hg = ko + 1.

k is even, hg = kg kis odd, hg = ko + 1
h, h,+1 h, h,
k
) A, A, K, A, A,
kO A A k +1 A A
2 3 0 2 3

O
The proof of the other case £+ 1 x k is similar. We are going to investigate if it is possible
determine a sub set of simple near square matrixes so that every square matrix can be

tiled with. Let 7 be a set of matrixes {2 x 2,2 x 3,3 x 2,3 x 3,4 x 3,3 x 4}.

Proposition 5.3 Fvery square matriz and near square matriz A can be tiled with matrizes

mn T.

Proof: easy, by induction on k£ and enumeration of possible cases. a

Fractal Layout for multidimensional Arrays

Definition 5.3 A fractal layout of a k-dimensional array A € R!%0*!d1--1dk—1 with max; Id;—

min; ld; <1, is the decomposition of A in 2k linear arrays so that

then 0 < j; < ['4] -1

AZ':A k . o :{a‘w."_|V0§l§k—1if’i1:0
D ommg im2F ! oIk else [%-‘ < i <ld -1

m=0

with 1, either 1 or 0 for 0 < m < k.

Chapter 5. Fractal Matrix-Matrix Multiplication 65

10y« ooy P2y Ph_1 size of A; Start point of A;
0,...,0,0 | [y, [Me2qridey 0
0,...,0,1 | [le].. [==2] |t oy, [l lea
0, 1,0 | T 2 T9]). [id,

1., 1,1 I R P B

2 2 2 2

Table 5.1: How to determine the stating point and size of for the first level in the fractal

decomposition of a k-dimensional array.

We can see that for £ = 2 we obtain the fractal layout for matrixes. In general the start
point of a fractal sub-matrix A; (0 < 7 < 2% — 1) can be computed in O(2*~'k) steps.
In several applications it is required accessing single element in matrixes, i.e. a;;. For a
matrix stored either by row major of by column major the identification of an element a; ;
is done by a simple computation, i.e. 1*/d+j where /d is the leader dimension of the matrix.
For a multidimensional array the computation is slightly more complex, but the number
of operations to compute the location required is linear respect the number of dimensions.
For example a;, ;... is a[ZfZO i Hf:j-H ld;]. In practice, on fractal matrixes we should
perform a variation of a bitonic search and the number of steps is O(28 1k log, (max; [d;)).
If we consider that usually the dimensions k of the array is fixed and if for 0 < j <k -1
we have [d; = N, then array size is N* and the access time is O(log,(N)). Note that this
simplification works only if the number of dimensions is a constant and small enough w.r.t.
N (Similar searching problems can be found in other applications and in the following of

this thesis, Sparse Matrixes).

5.3.2 From Call Tree to Type DAG

A recursive tiling of a near square matrix is indicated with 7, this set of tiles infers also
a set of basic multiplications, that is, a set of kernels that any matrix multiplication uses.
With M(7) we indicated the set of possible basic matrix multiplications based on the
set 7. For example for 7 = {2 x 2,2 x 3,3 x 2,3 x 3,4 x 3,3 x 4} the basic matrix
multiplications M(7) is {< 2,2,2 >,< 2,3,2 >,< 3,2,2 >, < 2,3,3 >,< 3,2,3 >, <
3,3,2>,<3,3,3>,<3,4,3>,<4,3,3>,<3,3,4>,<3,4,4>,<4,3,4>,<4,4,3>}.

The reason there is no basic computation as < 2,3,4 > is because one of the matrix

66 Chapter 5. Fractal Matrix-Matrix Multiplication

involved in the computation should not be a near square matrix, i.e. 2 X 4 does not belong
to 7. If we look at the fractal algorithms, the set basic computations M(7) indicate when

we can stop the recursion and we can prune the call tree.

Definition 5.4 Y (k) = {< r,s,t >:r,s,t € {k,k—1}} then My 4(T) UL, Y (k). We call
My 4(T) kernel dictionary of interval [2,4].

We can see that for any k£ and j so that j > 2k, My ;(T) is a good kernel dictionary,
that is, any square matrix multiplication involves routines from this set. For performace
purpose the value of £ and j may vary, and the lay out of the tiles may vary as well. We
noticed that a general good kernel dictionary is My g(7) where each tile is fractally tiled
up to the single element. This choice has the advantage that layout and kernel dictionary
can be decoupled. But other sets can be used as well, and for example a very interesting
one is Myg32(7), where each tile is laid out in a row-major. This is appealing because
we can reuse software from other libraries, which are very optimized for this particular
format. The disadvantage of this choice is that the layout of matrixes is function of the
computation that matrixes are involved with. An example will explain this exception.
Cosider the problem < 33,32,32 > that is C'is 33 x 32, A is 33 x 32 and B is 32 x 32. If
we use the kernel dictionary Mg 32(7), we can see that matrix B must be decomposed
further because A and C' have to, as they are they do not belong to 7.

We can force a comparison with related works in literature where loop tiling and loop
unrolling are applied to ijk-loop algorithms. The recursive tiling can be seen as the
equivalent of tiling and kernel dictionary, that is, the unfolding of recursive algorithms,
can be seen as loop unrolling.

By construction the types of the call tree leaves are limited, they are a constant number.
Also the computation indicated by sub trees in the call tree are very similar to each other
and most of them represent the same computation on different data. We introduce the

definition of type dag which extracts from the call tree the sub tree without repetition.

Definition 5.5 given a fractal algorithm A, an input problem of sizes < M, N, P > and
the call tree T' = (V, E), the type dag D = (U C V, ' C F) is obtained from T applying

the two following rule:

e cvery v; in V. which solves a problem of size < m,n,p > is merged in only one u in

U of type < m,n,p >, only one tree is maintained rooted at u.

Chapter 5. Fractal Matrix-Matrix Multiplication 67

e links among merged v;s and their parents are maintained, unless their parents will

be merged.

The size of the type dag D for square matrix multiplication grows logarithmically with

the matrix sizes, therefore it is becoming more appealing for efficient implementation.

Proposition 5.4 In the call tree of a square matrixz multiplication of sizes < n,n,n >,

the type of each call tree node at distance 0 < d < [logn| from the root belongs to Y (ng).

Proof: by induction on the distance from the root d. For d = 0 Y (ng) = Y(n) the
statement holds. For the closure property of the fractal decomposition of square matrixes
(sub matrixes of near square matrixes are near quare matrixes), all matrixes blocks at
level d + 1 have dimensions |(nq — 1)/2] and [ng/2], but |(ng — 1)/2] = [nq/2] — 1. We

have that all types at level d 4+ 1 belong to Y ([ng4/2]) and therefore to Y (ng41). O
In practice the size of the type dag is asymptotically bounded by its height and therefore
by O(logn). The worst case scenario is when for every ¢, n; is odd, because every element
in Y (n;41) is in D and therefore |U| = Z!:gn]_l |Y ()| = 8[log n]. To reduce further the
call tree, and therefore the type DAG, we can prune the call tree enlarging the set 7. A
C'-code definition of type DAG follows?

typedef void (*LEAF) (element *, element *, element *);

typedef struct type_dag_node_structure NS;

struct type_dag_node_structure {

NS #p0,*pl,*p2,*p3,*pd,*p5,*p6,*p7;; /* Sub-problem links */
LEAF leaf; /* link to one element in the kernel dictionary */

int p,n,m,order; /* sizes and type of the problem C+=AB */

int 11,12,13; /* Cl1, C2, C3 start points w.r.t. C*/
int j1,j2,33; /* Al, A2, A3 start points w.r.t. A%/
int k1,k2,k3; /* B1, B2, B3 start points w.r.t. B*/

};

In Figure 5.6 we can see an example of type dag for a problem of size < 17,17,17 >.
The construction of a type DAG can be logically decomposed in two steps. Supppose that
the smallest leaf has size < k,k,k >, we can build up a call tree using space O((%)?).

A leaf in the call tree is determined by a field, a function pointer, which specifies the
leaf computation. Then we visit the pruned call tree and we construct the type DAG.

2the notation for indexes i, j; and k; may be misleading, indeed, they are offsets, but this is a notation

inherited from our first implementation, since it is not harmful we have not changed.

68 Chapter 5. Fractal Matrix-Matrix Multiplication

<17,17,17>

222> <212 <221> <112><121> <211> <122> <111> Level 4

Figure 5.6: A < 17,17,17 > Call Tree reduced to a < 17,17,17 > type DAG.

We end up with a type DAG of size O(log). In fact, the current implementation binds
these two steps together, so we decrease the work space (O(logn)) and the execution time
(O(log?n), we use a linear list as auxiliary data structure of size at most of O(logn) and

we perform O(logn) accesses). A matrix multiplication is the visit of a type DAG, and
an example follows:

void computeABC(NS *tree, olement *c, element *a, element *b) {
if (tree->leaf)
(x(tree->leaf)) (c,a,b);

else {
computeABC(tree->p0,c,a,b); /% CO += A0BO */
computeABC(tree->p1,c+ tree—>il,a,b+tree->ki); /* C1 += A0B1 */

computeABC(tree—>p2,

o

+ tree->i3,attree—>j2,b+tree->k1); /¥ C3 += A2B1 */
computeABC(tree—>p3,

o

+ tree->i2,attree—>j2,b); /¥ C2 += A2B0 */
computeABC(tree—>p4,

a

+ tree->i2,attree—>j3,b+tree->k2); /¥ C2 += A3B2 */
computeABC(tree—>p5,

a

+ tree->i3,attree—>j3,b+tree->k3); /¥ C3 += A3B3 */
computeABC(tree—>pé,
computeABC(tree->p7,c,a+ttree—>ji,b+tree->k2); /* CO += A1B2 */

a

+ tree->il,a+ttree—>jl,b+tree->k3); /¥ C1 += A1B3 */

5.3.3 Scalar Replacement of Array Element

Unfolding a recursive algorithm gives a chance to a compiler to perform optimizations,
basically removing the recursion. The tail calls of recursive algorithms can be unfolded
so that computations of the leaves can be written as a sequence of instructions, then
the code is fed into an optimizing compilers. We explain how the fractal algorithms can
be unfolded and we present three different approaches that can be applied. The first is

based on the conjunction of two fractal algorithms, the second is based on the on-chip

Chapter 5. Fractal Matrix-Matrix Multiplication 69

matrix multiply in the ATLAS package and the third one is based on a generalization
of cache tiling. Even if each approach is implemented in C-code, we can perform some
optimizations at source level as scalar replacement, software pipelining, unrolling. These
optimizations reduce the work of compilers, but they have still a lot to do. Indeed, scalar
replacement suggests only an efficient register allocation, but the compiler codifies the
register allocation and scheduling of instructions. The compiler can affects in several ways
the performance of final applications and it is not easy to predict. Automatic packages try
to solve this problem using timing tests to chose the champion over a set of algorithms.
This approach overcome the problem choosing the fastest executable, no matter it is the
best algorithm. This is not our point of view. We have a set of procedures decided in
advance, the leaves of the type DAG. We need good executables from good algorithms.
We need a good compiler. To facilitate this tedious, but necessary, job the genertators
of code generates also an estimation of the performance of the single procedure, counting
the number of loads and stores in the procedure itself. If we inspect the assembly code
produced by any compiler we can check if there is any spilling and therefore, iterate with

different optimizations or different compilers.

We propose different unfolding techniques but none of them is always the best. Many
factors must be considered: the size of the problem, the number of scalar variables, the
instruction set, the number of pipeline stages. We can see as a mixed approach must be

followed so that peak performance can be achieved.

Fractal Heuristic for Register Allocation

The fractal approach to unfold the computation of the leaves is appealing because it is
the approach applied at higher level in the memory hierarchy, and it permits to decouple
lay-out from the computation in a very elegant way. With the notations T C'AB-fractal
and | C AB-fractal we indicate the following algorithms.

70 Chapter 5. Fractal Matrix-Matrix Multiplication

Algorithm: 1 C AB-fractal Algorithm: | C AB-fractal
if £(]A|,|B|) < R, then gen(A,B,C,FORWARD). | if f(|A|,|B|) < R, then gen(A,B,C,BACKWARD).
else { else {

1 Co Ag Bo-fractal
} Co Ay Ba-fractal
1 C1 Ay Bs-fractal
} C1 Ao By-fractal
1 C5 Az By -fractal
} Cs Az Bs-fractal
1 C3 As Bz-fractal
} €3 Az Bo-fractal

1 Cy Az Bo-fractal
1 C2 As Ba-fractal
1 C5 As Bs-fractal
1 C5 Az By -fractal
1 Cy Ao By -fractal
1 C1 A1 Bs-fractal
1 Cy A1 Ba-fractal
1 Co Ag Bo-fractal

A similar algorithm can be found in [30] but for data locality at cache level. We use the
same idea but for data locality at register level. The advantage of this decomposition might
be explained intuitively. Two consecutive leaves, i.e. v and u, have a common matrix, if
we have chosen an instruction scheduling which manipulates only a part of the common
matrix at any time, at the end of leaf v some values are in registers. Leaf u can avoid to
load again the common values if it performs its computation so that it can exactly access
the last part of the common matrix exploiting temporal re-use. Otherwise even if the two
leaves are accessing the same matrix it may be that are accessing different parts of it. The
order of the computation of the two recursive algorithms permits to exploit such locality
between any two consecutive leaves. Another difference from previous work is that, for
performance purpose, we do not load equally sized sub matrixes, leaves are unbalanced,
that is, a different number of scalar variables are used to replace different elements in
different matrixes. Register file is not a cache and we can force a more opportune replace
policy. Let (A, B,C') be a leaf which can be computed at register level. We can graphically
describe the C'A B-fractal as in Figure 5.8 and ABC-fractal algorithm as in Figure 5.7.

In the pictures we can see an high level description of the computation, where only the
liveness of the variables are alighted. Suppose to have R scalar variables (registers) and
we want to write the code which computes the multiplication, i.e. in Figure 5.7, applying

scalar replacement. It follows a pseudo-implementation of a code generator. Note that

matrix C' has been replaced by % scalar variables, A has been read in four steps in %

scalar variables and B has been read in two steps in % scalar variables:

Chapter 5.

Fractal Matrix-Matrix Multiplication

71

€0 += A0BO
Cl1+=A0BL
C3+=A2B1
C2+=A280
C2+=A3B2

C3+=A3B3
Cl+=A1B3

PO —
A2
51 (I

CO+=A1B2
BO

C3+= A2B1
C2+=A2B0
C2+=A3B2
C3+=A3B3
C1+=A1B3

A2

- I
CO+=A1B2 BL

BO

 E— A3
AL

I B3

B2

Time

Time

Figure 5.7: ABC-fractal algorithm in forward (left picture) and backward order (right picture).From

the top to the bottom: the layout of the matrixes marked with different level of gray, the computation and

the liveness of matrix elements during the computation.

gen(A,B,C,order)

if (order==FORWARD)

If it not loaded in the previous problem, Load C_0, C_1, C_2, C_3.

If it not loaded in the previous problem, Load A_0.
If it not loaded in the previous problem, Load B_O, B_1.
Compute C_0+=A_0B_O.

Compute C_1+=A_OB_1.

Dis-allocate A_O and Load A_2.

Compute C_3+=A_2B_1.

Compute C_2+=A_2B_0.

Dis-allocate A_2 and Load A_3.

Dis-allocate B_1 and B_O, Load B_2, B_3.

Compute C_2+=A_3B_2.

Compute C_3+=A_3B_3.

Dis-allocate A_3 and Load A_1.

Compute C_1+=A_1B_3.

Compute C_0+=A_1B_2.

If it will not be reuse in the next problem Write C_0, C_1, C_2, C_3,

Dis-allocate C_0, C_1, C_2, C_3.

-

If it will not be reuse in the next problem Dis-allocate A_1.

else

If it not loaded in the previous problem, Load C_0, C_1, C_2, C_3.

If it not loaded in the previous problem, Load A_1

If it not loaded in the previous problem, Load B_2, B_3.
Compute C_0+=A_1B_2.

Compute C_1+=A_1B_3.

Dis-allocate A_1 and Load A_3.

Compute C_3+=A_3B_3.

Compute C_2+=A_3B_2.

Dis-allocate A_3 and Load A_2.

Dis-allocate B_2 and B_3, Load B_O, B_1.

f it will not be reuse in the next problem Dis-allocate B_2, B_3.

72 Chapter 5. Fractal Matrix-Matrix Multiplication

co
A0 AL BO B1 i
——— - SREEEE TR ‘ B1 80 AL A0 c1
i) I i | T JT==-] IEEEEE T]
) | |
|) ! i | | ! | | i |
i 1 i i | i i ! i i !
e += R e | - _— i w
) [e de e
: l : ! IR | : | :
e A I o
{ 1 l i | | | !] 1
T |EOD000| | e 0 | feooooo I T |) |]
c2 A2 A3 B2 B3 3 B3 B2 A3 A2 c3 c2
CO += A0BO |
C0+=A1B2 | 0 += AOBO
Cl+=A1B3 1 C0+= A1B2
Cl+=A0B1 3 Cl+=A1B3
C3+=A2B1 | Cl+=A0B1
o) E— S : C3e=AzBL
S — C24=A3B2 | C3+=A383 | E——)
Cc2+=A280 ! Cor=asm2 o
AL — | coemamo
A ——— : — AL
o | Ao
e
E—
c2 <
1 c2
—
A3] A3
A2 A2
Y — 3 —
B3 [' 1 B3
B2 [] B2
BO[1 BO
Time Time

Figure 5.8: We can see the C AB-fractal algorithm in forward (left picture) and backward order (right
picture). From the top to the bottom: the layout of the matrixes marked with different level of gray, the

computation and the liveness of matrix elements during the computation.

Compute C_2+=A_2B_0.

Compute C_3+=A_2B_1.

Dis-allocate A_2 and Load A_O.

Compute C_1+=A_OB_1.

Compute C_0+=A_0B_0.

If it will not be reuse in the next problem Write C_0, C_1, C_2, C_3,
Dis-allocate C_O, C_1, C_2, C_3.

If it will not be reused in the next problem Dis-allocate B_O, B_1

If it will not be reused in the next problem Dis-allocate A_0.

In general the order of the computation does respect an order that it is not related to
the size of the problems we compute. For example the sub-problem Cs+ = A3B3 may be
computed before sub-problem Cy+ = A3B;, the former may be smaller than the latter
(i.e. (Ag, Bo,Cp) fits the number of scalar variables, then every problem does®.). The
latter sub-problem may require to spill scalar variables (as registers) and therefore it is

necessary to define a policy. As we can see the code generator explicity allocates and

*W.l.o.g. consider two problems < mi,ni,pi > and < mi41,nit1,pi41 > so that pim; + [105] +

pi [%] < Rand piy1mits1+ [%] [%] +pit1 [n’2+1 1 > R where R is the number of scalar variables. Note
that only one parameter differs between two subproblems, because they have a common matrix, i.e. C, and
therefore n changes by at most one. Any sub-problem of < m;41,ni41,pi+1 > 1s characterized by < m =

[%],n = [%],p = [p’%] > and therefore uses pm+[Z1[5]14+p[%] < pimi+[B[2]4+mi[5] < R.

Chapter 5. Fractal Matrix-Matrix Multiplication 73

dis-allocates scalar variables to elements of the matrixes involved. The policy to up-date
the scalar replacement is the last loaded policy, that is, the scalar variable loaded for last
it is eligible to be used for another assignment, loosing the previous link between variable
and matrix element. Indeed, the check at the beginning and at the end of the routine
can be solved since the code generation is performed on leaf for which the size problem is
known. This access pattern permits to decrease self interference misses, maximizing the
cache-line effect and, for certain architecture it is possible to perform multiple loads and
stores in a single instruction, exploiting spatial locality at register file.

We implemented the following two approaches.

o ABC-fractal algorithm is applied at leaves level, that is at gen(A,B,C,order) (see
Figure 5.7) where the whole matrix C' is stored in scalar variables; the leaves are
called by C'AB-fractal order, so C' utilization is maximized, reducing number of loads

and, more important, writes.

e C'AB-fractal is implemented at leaves level (B is stored completely in scalar variables,

Figure 5.8) and the leaves are organized as BAC-fractal.

Any fractal algorithm is not unique, it can be implemented differently in function of the
number of scalar variables and therefore registers. If we use a fixed implementation with
R scalar variables (i.e. gen(A,B,C,order) may require R = 28 scalar variables) and, for
example, a problem can be solved with R 4+ 1, then we decompose the problem and we
will re-use only one fourth of the available registers. We cannot change the decomposition
factor, but we can decide how many scalar variables are required at the leaves in a more
flexible way. We implemented three different leaf algorithms to solve a problem of size
< m,n,p >. They may use a different number of scalar variables, and they are all

variations of gen(A,B,C,order) using the following number of scalar variables:
I. R=mp+nl[5]+p[5], ie R=32.

2. R=mp+ [5][5] +p[5],ie. R=28.

|

3. R= 51131+ 5121+ [21[5], ie. R=12.

Of course, we could introduce more cases, but for practical purpose we have chosen only

these three cases. This permits a smoother decomposition of the problem with the idea

74 Chapter 5. Fractal Matrix-Matrix Multiplication

32 scalar vars | C'AB-fractal | BAC-fractal | Tiling
<4,4,4> 1 1 1
<5,5,5> 1.22 1.07 0.80
<6,6,6> 1.00 0.87 0.79
<7,7,7> 0.79 0.96 0.93
< 8,8,8> 0.70 0.84 0.74
<9,9,9> 1.20 0.97 0.66

< 10,10,10 > 1.12 1.00 0.76

< 11,11,11 > 1.02 0.90 0.80

<12,12,12 > 0.94 0.83 0.73

< 13,13,13 > 0.81 0.98 0.76

< 14,14,14 > 0.75 0.93 1.16

< 15,15,15 > 0.70 0.87 1.15

< 16,16,16 > 0.66 0.82 1.14

<32,32,32> 0.66 0.82 N/A

Table 5.2: Theoretical performance: ratio of loads and stores over the number of basic

operations ¢+ = a * b.

that the values in scalar variables will be reused across sub-problem, even if the local

problem might not be optimally solved.

This approach is automated and we can investigate the solution space and achieve an
estimation of performance by counting the number of loads and stores with respect of
the number of basic operations ¢+ = a x b. This measure offers a partial, but indicative,
estimation of performance. We show in the following Table 5.2 a comparison among three
different algorithms for register allocation. With Tiling we indicate an approach based on
the most common tiling technique used on caches but with an exhaustive search (See page

77). Table 5.2 represents a architecture with a 32 registers file.

This technique is an elegant extension of the fractal approach to the register file and, in
fact, it is the implementation of the same idea at every level of the memory hierarchy. This
approach is a general approach to data locality. The major disadvantage is the explosion

in size of the code. For small problems and for big enough instruction cache the technique

Chapter 5. Fractal Matrix-Matrix Multiplication 75

offers good performance but code explosion is a characteristic that must be considered

very carefully.

ATLAS Register Allocation

An interesting alternative to the fractal approach for loop code generation is found in
the ATLAS [64] package. The register allocation does not follow a divide and conquer
technique but it follows an approach based on a three-loops algorithm: the basic routine
is ATL_dNBmm() and we studied the implementation for Ultra Sparc 2 with 32 double

floating point registers.

Algorith
let C; ;) be a 4 x 4 matrix, let A) be a 4 X 2 matrix and let Bfk i) be a 4 x 2
matrix and they are sub-matrixes respectively of C, A and B! (Ng x Np matrixes)

for i=0 to NB/4
for j=0 to NB/4 {

load C(i,j);

load A(i,0);

load B(0,j);

for k=1 to NB-1 step 2 {
C(i,j) += A(i,k)*B(k,j);
load A(i,k);
load B(k,j);

}

C(i,j) += A(i,k)*B(k,j);

Store C(i,j);

The number of accesses to the memory are M, 8Np + 16 + 16)%%. If

n-chip = (
we are computing the matrix multiplication < N, N, N > and N is a multiple of Ng, the

ratio memory accesses over number of basic operations is:

N
- (E)SMon—chip _ l—l— 2
- 17\73 o 2 LNB
For this architecture Ng = 44 and therefore Ry ~ 0.55% a

*We did not count performed accesses to copy the sub-matrixes so that the matrixes fit the second level

of cache.

76 Chapter 5. Fractal Matrix-Matrix Multiplication

The advantages are spelled out, the code is simple, it is small in size, the number of loads
and stores are half of the number of the basic instructions. We generalize the approach
so that the number of available registers is a parameter, and also the size of the leaf is a

parameter as well. If we generalize the approach, we require O(r? + r) registers. For a

— | [
i . l i 1 Step
: n
+=["7 * i l 2 Stq:)
[TTT]
j 77777777 { | 3 Step
[TTT]
4 Step

<8,8,8> Problem Registers 32

Figure 5.9: Register allocation for power of two register files and general near square

matrix multiplication

problem of size < K, K, K > the ratiois R = % + % A trivial generalization was devised
for near square matrix multiplication (Figure 5.9). We developed a code generator which
given the problem sizes < M, N, P > and the number of registers, generates the necessary
C code to solve the problem using this approach. This implies a change of strategy from
the general fractal approach to evaluate the leaves in the recursion tree. It also implies a
different lay out of the data. Indeed, the computations on the leaves involve sub-matrixes
stored in row-major (column-major). To decouple layout and computation we stop the

recursion when the size of the problem is between K and 2K and the fractal decomposition

Chapter 5. Fractal Matrix-Matrix Multiplication 17

of the matrix is stopped between L and 2L with 2 = K®. This is a good example for
further study, because this three loop routine can be achieved from the 7jk-loop by the
application of code optimizations such as tiling, loop-unrolling, scalar replacement and
software pipeline. This routine is a very good example for two basic performance issues:
minimization of traffic from/to the cache and latency hiding. The last issues is really
interesting, indeed, we can see how the loads performed in one iteration are used only at

the successive one.

Parametric Tiling

Tiling for register file is a subject rarely discussed and indeed, there is always a not very
detailed description. But tiling for caches it is always well explained. In this Section we
apply the tiling technique commonly published for caches and we apply to register file.
We will see how the problem can be formalized and how the solution comes naturally from

the definition of the problem. Unfortunately, we introduce new notations.

Definition 5.6 we indicate with Po(M, N, P) a matriz-matriz multiplication < M, N, P >
so that matriz A is loaded at register files by ki > 0 row(s) at once, then the number of
accesses to load and write registers is fo(k1) = 2PM + M N + [%LNP — ([%W — 1)kqks.

Po(M, N, P) reads and writes C once, it reads A once and it reads B % times.

N P
k2 k2 k2
- - k -
kl 1 k3 - . 7 :A
! ! D
kl - . M k1 ‘ 3 B
kl ! " - kl T Kk i - \l
k -- --f- k ' 3|y - I
1 ' 1 v
I(2 kz kz
C += A * B

Figure 5.10: A parametric tiling of matrixes C, A and B, the parameters are k1, ks and k3. In
this picture is depicted out the solution when matrix A is split by rows, a similar tiling techniques

can be applied when B is split by columns. The arrows indicate the computation order.

5The current implementation leaves the lay-out of the leaves in row-major order, only for power of two
leaves this implementation is correct. This can be seen as a flaw but our goal was to prove that register

allocation is key for performance

78 Chapter 5. Fractal Matrix-Matrix Multiplication

Definition 5.7 we indicate with Py a matriz-matriz multiplication < M, N, P > so that
matriz B is loaded at register files by ky > 0 column(s) at once, then the number of accesses

to load and write registers is f1(k2) =2PM + PN + [%LNM - ([%} — 1)kiks.

P1(M, N, P) reads and writes C' once, it reads B once and it reads A]% times. Any
architecture has its own characteristic parameters such as number of registers, R, number
of stages of the functional point unit (FU), Z, and instructions set. We assume the single
multiply-add instruction, i.e. madd, is available.

Suppose we have k; * ky independent operations, the throughput of a FU for &y * ko
independent operations can be summarized as follows

then o(ky, ko) = £28k2 4 1
Definition 5.8 if Z < kk, olkr, ko) = <5

else o(k1,k2) = 1.

If problem < M, N, P > is decomposed so that all the floating point operations are
gathered in groups of kiks independent operations the following definition determines

the number of cycles taken to compute the M N P flops.
Definition 5.9 f2 (kh kg) = To(kl, kQ)M]VP

Our goal is to find a scalar replacement so that we can solve the following problem.
F= mini:[m] ming, k, ks fi(k1, ko, k3) + fo(k1, k2)
k1, ko, k3 are positive integers.

kiko + k1N + koks < R. or

kiky + koN + kiks <R
In Figure 5.10 we can see that kiko is the block size in C', k1N is the slice of A and

koks is the block size of B.

Consider again fi(k1, ko) as in Figure 5.11: f5() should be considered as the contribu-
tion of four parts, fa(k1, k2) = Soig fai(k1, k2)

[} fgo(kl, k?) = T(kh kg) (M — Mmodkl)(P -]DIIlOd]CQ)ZV7
° f21(k17 k2) = T(kh Pmodkg)(M — Mmodkl)(Pmodkg)N,
° fgg(kh k2) = 7'(]\4n’10dkl7 kg)(MmOdkl)(P - Pmodkg)N,

o fi3(k1,k2) = 1(Mmodk,, Pmodk;)(Mmodk,) (Pmodky) N

Chapter 5. Fractal Matrix-Matrix Multiplication 79

: f 21
20 I
K :
1] —
K :
1 :
K 3
1 :
w/—\
f 2 f 23

Figure 5.11: Matrix C tiling with (kq, k2) tile and its effect on the computation.

Suppose that P = M = N =8, Z = 4 and R = 32 and to understand the range of ky
let us assign to k; = k3 = 1, we can see that k1 < 3 (from kiko + k1N + koks < R —
ky 4+ 8k + 1 < 32).

e k1 = 1. There is minimum and it can be achieved by the triple (k1 = 1,ky =4, ks =
5) and its value is Fop = 19 % 8 % 8.

e k1 = 2. There is minimum by the triple (k1 = 2,k2 = 2,k3 = 5) and its value is
Fo=15% 8 x 8.

e k1 = 3. There is minimum by the triple (k4 = 3,k = 2,k3 = 1) and its value is
Fo=(11+4[5]) «8 8.

Let us interpreter the solution suggested by the triple (k1 = 3, k2 = 2, k3 = 1). Matrix

A is split in three horizontal parts: Ag, A1 and A;. Ap and A; are 3 X 8 matrixes and
Ag is a 2 X 8 matrix. Matrix B is read three times and it is split by two column item
and each item is split row by row. For each block of C' there are twelve madds and
six different destinations. The ratio of memory accesses over number of computations is
Alk) BHSS/?J = 6/8 = 0.75. For the same size of the problem < 8 8,8 > we know

falki,k2) —
that this is not an optimal solution (Table 5.2), because this approach is not able to exploit

reuse in subproblems but when the problem is small enough it works fine.

5.3.4 Unfolding: notations and considerations

Unfolding of recursive algorithm is a common problem /technique a programmer has to deal

with when performance of a recursive algorithm is wanted. Unfolding does not imply to

80 Chapter 5. Fractal Matrix-Matrix Multiplication

remove completely the recursion, but it may involve only a sub-computation of a recursive
algorithms. A recursive matrix multiplication algorithm is our case study: we present a

formal description of our work and a possible generalization to similar problems.

A common miss understanding is that recursive algorithms are slower than non recur-
sive ones, because at any recursive call it is popped/pushed data in the stack, i.e. formal

parameters are allocated in the stack.

e Compilers are becoming smart enough that if it is possible, formal parameters are
allocated in registers, especially if these parameters are constant, and therefore avoid-

ing any stack allocation.

e The stack utilization can be very useful for performance purpose, because it may

avoid re-computation.

e The height of the call tree in a recursive algorithms can be customized reducing the

common overhead due to the calling convention.

A common pitfall when recursive algorithms are optimized is to remove the recursion
completely and reducing the work space, trying to avoid the emulation of the stack. For
example, consider a recursive algorithm A, it may be we can rewrite algorithm A removing
the recursion without emulating the stack and therefore reducing the working space of the
routine but without writing another algorithm, we identify such algorithm with W(A). We
wrote several algorithms A; for blocked matrix multiply and we removed systematically the
recursion, W(A;). These algorithms are interesting because we can reduce the work space
to only a few registers. Consider Agn the fractal algorithm for power of two matrixes, we
developed W(Ajgn). W(Agn) has an extraordinary regularity and it has no need of stack
at all, to perform the computation the routine needs only four integer registers and three
of them are for index computation. W(Azn) requires bit-wise-operations that usually
are expensive operations in a RISC machine, but nonetheless W(Aj3») is slightly faster
than Asn. The same approach can be applied to the fractal algorithm for square matrix
multiply, A,. W(A,) requires 6 integer registers, 4 registers are for index computation,
the other two are used to emulate the code stack, that is, as reminder which sub problem
has been computed and which has not. Surprisingly, W(A,) is slower than A,,. Indeed,

the non recursive algorithm has to recompute values that the recursive one has only

Chapter 5. Fractal Matrix-Matrix Multiplication 81

to read from the stack. In this application re-evaluation is more time expensive than
load. Quantitatively we can explain this case with an example extracted from the fractal
algorithm: suppose we have to compute three indexes ¢, j and k, an up-date of any index
takes, in average, three instructions, a total of 9 instructions. On a SPARC there are
two ALUs and therefore the nine instructions can be scheduled so that they can take no
less than 5 cycles. On a SPARC multiple loads are allowed and caches and memory are
pipelined, for common application the worst case scenario the stack can be stored in the
second level of cache, which has latency of 3 cycles. Therefore a latency of 5 cycles is
required to load the three indexes from the second level of cache. But current compilers
schedule load instructions so that latency is partially hidden and, even so, best scenario
is a latency of 1 cycle for each load. For the same computation, index computation, the
two approaches can offer different performance and, in fact, for SPARC architecture we

discovered that it is faster read than recompute.

Leaves Unfolding

We indicate as X' the input set for an algorithm. Given X" with |X| = k, the call tree of
A(X) is fixed, therefore the computations and the order of the computations of A(X) are
known. Given X', unfolding A(X') is writing the sequence of instructions of A on X’. Then,
compilers can perform the common optimizations on the unfolded code. We can substitute
every call to A(X) s.t. |X| = k with a call to an unfolded and optimized routine. We
call leaves unfolding the technique to choose a set of leaves, where the size of the problem
is known, and substitute the recursive call with an unfolded and optimized routine. The
advantage is twofold: we can reduce the height of the recursion and we can easily apply
optimizations, i.e. register allocation.

Leaves unfolding for any recursive algorithm A can be performed by two distinct steps.

1. We need a set of inputs, or subproblems, M = {X;} so that every decomposition of
X by A reaches a element in M (we called kernel dictionary).

2. For each element in M, we unfold and optimize the code but we need to define a

order of computation, based on a sort of optimality.

This approach is feasible only if the size of the kernel dictionary, M, is constant and small

(i.e. for blocked matrix multiplication we can claim that the |M| is a small constant.

82 Chapter 5. Fractal Matrix-Matrix Multiplication

In other words, the set M should be independent from the size of the problem. For a
divide and conquer algorithm, which by definition, decomposes the problem in smaller
subproblems, the way to split the problem is in-coded in the algorithm itself and therefore
fixed. The definition of the algorithm can give the required information about the size of
M and therefore its feasibility. It is not clear how to determine this set yet.

The call tree of a recursive algorithm can be seen as a Convex Decomposition Tree,
CDT, (any computation without re-computation of the node determines a set which is
convex). Actually the implementation of a CDT is the result of a proper decomposition of
the computation so that a sort of optimality, number of inputs vs size of the computation,
is achieved. In this particular case we start already with a CDT based on the definition
of the algorithm and what we can do is to rewrite the order of the computation. We
devised an heuristic technique that we called fractal scalar replacement. This technique
is a rewriting technique, which tunes the calling order in the recursive algorithms and
rewrite the particular case, or final case. Let us write the matrix multiply algorithm with

a fancier, and more obscure, notation:

Algorithm ,
F(X,1,w,ord)

if (B(X, R) = true) then P.(X, R,{, w,ord));

else {

F(L(X, mg0,0ra)), L WX, Tg(0,0ra) > Tg(1,0ra)), B(0, ord));

F(La(X, mg(1,0ra)), £(X, Tg(0,0ra) s Tg(1,0ra)) WX, Tg(1,0r) s Tg(2,0ra)), h(1, 0rd));
F(L:(X, mg2,0ra)) L{X, Tg(1,0rd) s Tg(2,0rd))s WX, Tg(2,0rd) s Tg(3,0ra))s (2, 0rd));
F(L:(X, mg3,0ra)), L{X, Tg(2,0rd) s Tg(z,ord))s WX, Ty ora)s Tg(a,0ra))s B(3, ord));
F(L:(X, mg(a,0ra)) L, Tg(3,0rd) s Tg(a,0rd))s WX, Tg(a,0rd)s Tg(s,0ra))s (4, ord));
F(L.(X, 7g5,0ra))y L(X, Tg(a,0ra)s Tg(s,0ra)), WX, Ty(5,0ra) , Tg(6,0ra)), R(5, 0rd));
F(L:(X, mg6,0ra)) L, Tg(5,0rd) s Tg(e,ord))s WX, Tye,0ra)s Tg(7,0ra)), B(6, 0rd));
F(L:(X, Tg(r.ora)), LIX, Tg(6,0rd) s Tg(7,0ra))» w, h(7, ord));

}

where

e m={i::€][0,7]} is a set of integers which describes the order of the decomposition of the
recursive algorithm (as it is specified, let us consider the sequence 0, 1,2, 3,4, 5,6, 7 associated
with the algorithm Co+ = Ay By, Co+ = A1 B2, C14+ = AgB1, C1+ = A1 Bs, Ca+ = A3 By,
Cay+ = A3Bj, C3+ = A3 By, Cs+ = A3Bs) therefore with m; = ¢.

® g :m X p— mrepresents a parametric permutation.

Chapter 5. Fractal Matrix-Matrix Multiplication 83

L,: X xm — X is the Z-Morton decomposition of the subproblem with input X for the

m-th case.

o L: X xmxm— X is the common data between two subproblems, data may be not loaded

twice.

e W: X x7mxm— X is the common data between two subproblems, data may be not written

twice.

e h:m X p— pidentifies the order of the recursive calls at the same level,p = {0, 1}.

B : X x R — {true,false} this is the test to halt the recursion and apply a particular case.

o P (X, R,le X, we X, ord € p) case when recursion stops.

R is the number of registers.

[)

A possible approach is to generate all possible solutions and then choose, even if the
approach is exponential, we are working with a fized and small problem. Instead, we
have chosen the following bottom-up policy: we devised by hand for very small size of the
problem different algorithms (i.e. we developed different solutions for problem of size up
to < 4,4,4 >). We indicate them with P!. We choose one at time, P, in F and we infer
g() and A(), simplifying further the structure of the functions. A quantitative measure of
optimality must be given so that the order of the recursive calls and the implementation
of P. can be guided. Consider a node u as in Figure 5.12 in the call tree, if we define f(u)

root
®.

pi pi pi pi pipipipi UANUAN AN AN AN AN AN X
(AR P P A AR A

Figure 5.12: Excerpt from a call tree

84 Chapter 5. Fractal Matrix-Matrix Multiplication

as |1 4+ iz [L(X, Ty(i—1,0mdys Ty(iora)) | + 0] + g IW(X Ty i 0rd) To(izr,oray) |- [offers
a measure of the loads and stores we may avoid exploiting locality at node w. In f, as
it is defined, there is no indication how the choice of P! affects the overall computation,
but in practice it does. Indeed, how we implement P! determine the number of memoty
accesses for sub-problem and determine quantitatively the number of matrix elements
re-used among sub-problems.

We devised two algorithms, P! and P?. P! allocates more space to matrix C' and
schedules instructions following the C'AB-fractal approach. P? allocates more space to
matrix B and schedules instructions following the BAC-fractal approach. For both we
have found

h(z,0) = h(z,1) if z is even, h(z,*) =0
else h(z,x) =1

h() is a very simple function which describes when a sub problem should follow a
forward or backward order to call subproblems. Indeed, the function g() has the fol-
lowing property: g(z,1) = ¢(7 — z,0). So if we use P! for leaves computation then
9([0,1,2,3,4,5,6,7],0) = [0, 1,3,2,6,7,5,4] otherwise if we use P2 then ¢([0, 1,2,3,4,5,6,7],0) =
[0,4,6,2,3,7,5,1]. This heuristic is based on the assumption that if P! is optimal for all

the leaves, a proper reordering of the computations offers a optimal solution.

Optimality

In this section we claim that a divide and conquer technique for register allocation is not
optimal. We show that the lower bound of memory accesses is larger than the upper
bound of memory accesses obtained from the technique proposed in ATLAS package, by

a constant factor.

Lemma 5.1 In any fractal decomposition there are at most four consecutive sub problems

that have in common the same sub matriz.

Proof: by contradiction. Suppose there are five, or more, consecutive subproblems, i.e.
< k,k,k > (v, v1, v2, v3, v4). There should be three consecutive problems of double size,
ie. < 2k,2k,2k > (ug, w1 and ug) and therefore two consecutive problems, i.e. of size
< 4k, 4k, 4k > (o and t1). But if we look at the computation as a tree, then four sub
problems should be at the border of the trees associated with two < 2k, 2k, 2k > problems,

Chapter 5. Fractal Matrix-Matrix Multiplication 85

indeed, they should be consecutive. This makes not feasible any schedule so that five sub

consecutive problems can share the same matrix, as Figure 5.13 shows. a

V. Vv VV V. V V_V
6 01 2 3 5

Figure 5.13: Example of possible schedule for five sub problems of equal size.

Lemma 5.2 Let ug, uy, uy and us be four consecutive sub problems with a common
matriz, and let zo be the problems that precede u; problems (w.l.o.g. zo, ug, ui, uz, us)
then xo has in common with ug a sub matriz which can be common only to the previous

sub problem of xg.

Proof: if there is other two sub problems yy and y; so that yg, y1, and x are consecutive
sub problems with common sub matrix, by construction and from the proof of Lemma

5.1, they have to belong to the same problem and same tree, and it is not possible. O

The same consideration can be applied to the first sub problem that follows a sequence
of consecutive sub problems. Maximum advantage of this data locality can be achieved if
the common matrix is ', that is, the data that must be read and written. Of course, the
effective number of elements exchanged between two consecutive sub problems depends

on the number of registers where these elements are stored.

Lemma 5.3 Four consecutive sub problems of size < k, k,k >, the minimum number of

memory accesses is Tk?.

Proof: Let us call the four sub problems ug, u1, us and us, they share matrix C. It may

be that ug have common element from previous computation. ug has to read at least two

86 Chapter 5. Fractal Matrix-Matrix Multiplication

operands, one of them is C'. uy and wuy have to read two operands as well and uz has to
read two operand and write C, then we need (2+2+ 2+ 3)k2 memory accesses. O

A problem of size < k, k, k > can be solved with 4k? memory accesses with a minimum
number of registers as R = k?+k-+1. This is possible only loading in registers the elements
of one matrix, with the approximation that & ~ v/R. But consecutive sub problems try to
have in common not the same matrix requiring to move elements in registers and therefore
increasing the number of memory accesses for the single problem, up to 5k% — k, for single
problem. Unfortunately using R = k? 4 k + 1, the minimum number of accesses for each
sub problem is O(3k?%) which gives a total number of memory accesses of %, substituting
k < |V/R| we can find that the ratio of memory accesses over the number of operation is

Ratiog >

L\/_J

Theorem 5.1 A fractal solution of a problem < n,n,n > with any subproblem of size
< k,k, k> solved optimally by itself with 4k* memory accesses, requires at least 192 + k2

Memory accesses.

Proof: Any problem of size < k, k, k > must read at least all three operands and write the
partial result, therefore it needs 4k? memory accesses (no less), independently from the
number of registers. Suppose for sake of explanation that problem < n,n,n > is evenly
divisible in subproblem of size < k, k, k >, and we can see the solution of < n,n,n > as a
sequence of < k, k, k >. From Lemma 5.1, 5.2 and 5.3 we can write the following equation

2k? 4+ 3153k% 4 k% = 1220 4 g2, O

for the number of memory accesses: 58k3

We proposed an approach which can exploit locality for matrix C' so that R = (1 +

1/2 4+ v)k* where v < 1/2. We do not consider the side effect on the number of ac-

cesses for a single sub problem. Q(R) = —22—n3 + |(L%J)J and therefore

81/ 1522)

. We can see that this bound is tighter than the previous one

RatiOf tal 2 — A
P = s/)

(Ratiogy). For the common case when there are 32 registers, and n — 0o Ratiop, 1,1

is 0.59 (the implementation achieves only a 0.66). In the ATLAS package we can find
that Ratiopapy Aq = L\/H-—R 1J . For R =32 and n — oo Ratioppy,Ag is 0.5, and this
is not a lower bound but an upper bound. Since the functions we have found so far are
complex functions, it is better to be not confident of the impression and, we figure out the

behavior for cases taken from real architectures and problems. In the following we will

Chapter 5. Fractal Matrix-Matrix Multiplication 87

Ratio
N
1)

T
|
*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ratio

Figure 5.14: On the left the ratio when the number of registers is 8 and on the right when is 16. With
+ is depicted Ratiofractah with X RatiOATLAS and with dashed line Ration

15 13

14l B 12| B

13| B 11 B

12| B 1k B

1 B ook B

o8l B

Ratio
e
T
L
Ratio

oof x B 07F B
o8l « B oef " B

07 T 4 L 4

- - S,
0.6 — —Ferrerim A oaf e

os 03

Figure 5.15: On the left the ratio when the number of registers is 32 and on the right when is 64.
With + is depicted Ratiofractah with x RatiOATLAS and with dashed line Ration

show the Ratio when the number of registers is fixed (Figure 5.14 and 5.15) and when the
problem is fixed and we can vary the number of registers (Figure 5.16 and 5.17). With
plus (4) we indicate the Ratiog. 1,1, With x-mark (x) we indicate the Ratiop1r Ag and
with dashed line Ratiop: If we want to summarize the results, we can say that when the
problem is big enough the approach proposed in the ATLAS package is the best, and this
is true whatever is the fractal order we choose. If we consider problems with sizes within
<4,4,4> and < 8,8,8 >, the fractal approach is optimal and in particular we discovered
that it may be we can obtain performance improvement as suggested by the diagrams of

Ratiog, but it is not optimal in general.

5.4 Experimental Results

When we collected the experimental results for our matrix multiplication on different ar-

chitectures and we compared them with the experimental results obtained by the ATLAS

88 Chapter 5. Fractal Matrix-Matrix Multiplication

Figure 5.16: On the left the ratio when the problem has size < 8,8,8 > and on the right when is
< 16,16,16 >. With + is depicted Ratiog.,.t,1, With X Ratioppy,Ag and with dashed line Ration

R - - - -
\
Stk SR — — =
e R AT

o 10 20 30 a0 50 60 70 o 10 20 30 a0 50 60 70
Registers Registers

Figure 5.17: On the left the ratio when the problem has size < 32, 32,32 > and on the right when is
< 44,44, 44 >. With + is depicted Ratiof.,t,1, With x Ratiop1,Ag and with dashed line Ratiom. The
size < 44, 44,44 > has been chosen because is the basic case in ATLAS for SPARC ULTRA architectures.

([64]) package, we have found how much register allocation plays a basic role. In Fig-
ure 5.18 we tested the performance when the leaves are implemented using the fractal
approach. The sizes of the leaves are among < 8,8,8 > and < 4,4,4 >. The peak perfor-
mance are good for R5000 [P32 180MHz, comparing with ATLAS, but we cannot achieve
comparable performance on SPARC architectures. So we tested the performance when
the sizes of the leaves are among < 32,32,32 > and < 16, 16,16 > and we implemented
the scalar replacement suggested by ATLAS, Figure 5.19 and 5.20. Each test measure the

execution time of a single iteration of matrix multiplication.

As we can see the performances in Figure 5.19 and 5.20 are now comparable, they
differ for 75 (theoretically there should be at least a ratio 1.05 due to a different number
of loads and stores) for small matrixes. When matrixes are large enough we can see as
the fractal approach takes advantage of its space locality, specially when disk is involved

or very high level of the memory is accessed for very large number of times.

Chapter 5. Fractal Matrix-Matrix Multiplication 89

260 T
* e >
a0 x * Ultra2 Adaptive £3 - B
i
; Ultra2 Rodan * /
220 - sk o E3 -
* 7
7
200 |- e e —
S *
* /
~ / Tk
@ r8or * * 7
o
= \/
=
= 160 * _
/ Ultra2—167
140 - —
;> a SGI R5K—32 - 7
~ 7 \ Va
~7 \
-7 / -7 ’ N g
120 |- - P N 7 N - —
7 \ - T - = NS
- \ - - . -
100 N -
a0 i i i i i i i
300 400 500 600 700 800 900 1000 1100

Figure 5.18: Performance evaluation on four platforms: SGI R5000 P32, Ultra 2-170,
Ultra 2-250 (Rodan-Adaptive), when fractal approach is used at every level

Ratio Fractal over Atlas
o o o B
N R
T

o
N
T

0
200 300 400 500 600 size 700 800 900 1000 1100 200 300 400 500 600 700 800 900 1000 1100

e
N
T

Ratio Fractal over Atlas

1]
0.8
0.6
0.4
0.2
0

1500 5000 6000 0

Size 3000

Figure 5.19: Ratio fractal over ATLAS when we change strategy: On the left for Ultra
2-170 on the right for Ultra 2-250

5.4.1 Cache Simulation

In the following tables there is an excerpt from simulation results by Shade for a real case

memory hierarchy:

e On chip cache (L1) composed of an instruction cache (I1) and a data cache (D1), I1
is a 2-way associative cache of size 16K bytes with a line of 32 bytes, D1 is direct
mapped, write through, no allocation cache of size 16K bytes with a line of 32 bytes,

a least recently used replacement policy is applied.

e Off chip cache (L2), a unified cache (U2) direct mapped, write through (no a real

90 Chapter 5. Fractal Matrix-Matrix Multiplication

ver Atlas

Ratio Fractal o

200 300 400 500 600 700 800 900 1000 1100
e

over Atlas
-

Ratio Fractal
o
kS

1024 1500 2000
Size

Figure 5.20: Ratio fractal over ATLAS when we change strategy for Ultra 5-10

case, indeed) of size 1M bytes with a line of 32bytes (64 Bytes is the most common

case).

Every number is normalized to the number of basic operations, i.e. n3, so that the results
are more concise. The tables are laid out so that we can compare the simulated cache
behavior of our fractal algorithm and the algorithm in ATLAS DGEMM. As we can see,
the data cache behavior for the two algorithms is practically the same. The instruction
cache behavior is different and the fractal approach, due to the code explosion of the
leaves, is penalized. From the cache point of view, the two approaches have the same miss

ratio, but different execution time.

500 x 500 || Ins | Ins.Mis. | Data | Data Mis. | Read | Read Mis. | Write | Write mis
Fractal 4.13 0.05 1.17 0.06 0.87 0.05 0.30 0.01
ATLAS 3.85 | 1.58e-5 | 0.73 0.06 0.64 0.04 0.08 0.01

Table 5.3: L1: Instruction cache is 16 KB, line 32 B, 2-way Iru and data cache 16 KB,line

32 B, direct write through, any number is a normalized value to

500 x 500 Ins Ins.Mis. Data | Data Mis. | Read | Read Mis. | Write | Write mis
Fractal 4.73e-2 | 7.30e-4 | 3.43e-1 1.31e-2 0.05 6.59¢-3 0.30 6.54e-3
ATLAS 1.58e-5 | 1.48e-5 | 1.26e-1 1.86e-2 0.05 9.69e-3 0.08 8.93e-3

Table 5.4: 1.2: unified 1IMB, line 32 B, direct write through

Chapter 5. Fractal Matrix-Matrix Multiplication

91

The case < 500,500,500 > and case < 1000, 1000, 1000 > are investigated to show

how much the code explosion of the code for the leaves affects the instruction cache and

the overall memory traffic. The case < 1024, 1024,1024 > is reported. The DGEMM in

ATLAS package reduces cache conflicts performing a block copy of the matrixes it has

to deal with. The fractal algorithm uses a particular padding of the matrixes (statically

allocated) function of the cache size (if S is the cache size, there are introduced \/g

elements) so that the three matrixes have a starting point of addresses not aligned; of

course, if the matrixes are dynamically allocated no padding is required because we cannot

make any assumption on the location of any matrix.

1000 x 1000 || Ins | Ins.Mis. | Data | Data Mis. | Read | Read Mis. | Write | Write mis.
Fractal 3.61 | 4.73e-2 | 1.08 5.65e-2 8.09e-1 4.85e-2 2.69¢e-1 8.02¢-3
ATLAS 3.35 | 1.97e-6 | 0.64 5.11e-2 5.85e-1 3.98e-2 5.51e-2 1.13e-2

Table 5.5: L1: Instruction cache is 16 KB, line 32 B, 2-way Iru and data cache 16 KB,line

32 B, direct write through, any number is a normalized value to

1000 x 1000 Ins Ins.Mis. | Data | Data Mis. | Read | Read Mis. | Write | Write mis.
Fractal 4.73e-2 | 8.84e-4 | 3.18e-1 9.93e-3 4.85e-2 5.95e-3 2.69e-1 3.68e-3
ATLAS 1.97e-6 | 1.94e-6 | 9.49e-2 1.53e-2 | 3.98e-2 1.04e-2 5.5le-2 4.82e-3

Table 5.6: L.2: unified 1MB, line 32 B, direct write through

1024 x 1024 || Ins | Ins.Mis. | Data | Data Mis. | Read | Read Mis. | Write | Write mis.
Fractal 3.60 | 1.83e-6 | 1.08 5.10e-2 | 7.92e-1 4.36e-2 2.90e-1 7.36e-3
ATLAS 3.33 | 2.0le-6 | 0.63 8.27e-2 | 5.81e-1 7.17e-2 5.47e-2 1.10e-2

Table 5.7: L1: Instruction cache is 16 KB, line 32 B, 2-way Iru and data cache 16 KB,line
32 B, direct write through, any number is a normalized value to

1024 x 1024 Ins Ins.Mis. | Data | Data Mis. | Read | Read Mis. | Write | Write mis.
Fractal 1.83e-6 | 1.70e-6 | 3.34e-1 1.23e-2 | 4.36e-2 9.01e-3 2.90e-1 3.33e-3
ATLAS 1.70e-6 | 1.84e-6 | 1.26e-1 1.42e-2 | 7.17e-2 9.24e-3 5.47e-2 4.92¢-3

Table 5.8: [.2: unified 1MB, line 32 B, direct write through

92 Chapter 5. Fractal Matrix-Matrix Multiplication

A more complete experimental results set may offer more details but the general case
does not differ too much from the cases shown. Indeed, an estimation of factor v it can

be obtained. 7 summarizes the miss ratio for a ideal cache of S elements size and line /

(in Q(S) = 7?7\%5), indeed, 1 <y < 4.

5.5 Multiple Load and Store in a Single Cycle

Spatial locality can be exploited at register level by some architecture in a very particular
and intriguing way. Loads and stores can involve contiguous registers and contiguous
locations, for example registers reg, and reg,4+; with = even and two contiguous memory
locations M[y] and M[y 4+ 1] with y an opportune address. If the original code require
to load M[y] to reg, and M[y + 1] to reg,4+1, it might be that the code can be modified
so that instead of two loads only one is performed: Load(reg,,reg.+1, M[y], My + 1])
spending the same number of cycles as a single load.

Typical constrains to apply this multiple load (and store) are the following:
e The registers should be consecutive.
e The number of registers involved should be a power of two (k=1,2,4..).

e The first register has number divisible by the number of register involved (reg,, ...reg,+r

with zmodk == 0).

e The starting memory address we start loading in should be divisible (aligned) by the

number of elements we want to read from (address(M[y])mod(k«byte-per-element)).

No every architecture is able to play this trick and furthermore no every scientific applica-
tion exploits such space locality. It is required to divide the register file in contiguous set
of registers, in general this is not possible but A BC-fractal approach exploits maximally
this register file partition-ability. In the following we will compare three implementations
for < 1024, 1024,1024 > so that matrixes have single precision (float) elements on an UL-
TRA 5: the algorithm available in the ATLAS package, the ABC-fractal algorithm with
leaves implemented with single load/store and with double load/store. We compare the
three algorithms in three different ways: time complexity, cache behavior and number of

instructions. The execution time for the three implementations is depicted in Table 5.9.

Chapter 5. Fractal Matrix-Matrix Multiplication 93

ATLAS
4.71s (455MFLOPS or 1.46 cycles per madd)
Fractal with double load/store
6.88s (312MFLOPS or 2.13 ¢/madd)

Fractal
10.15s (211IMFLOPS or 3.15 ¢/madd)

Peak Performance

3.22s (666 MFLOPS or 1c/madd)

Table 5.9: Performance comparison on Ultra 5

The caches utilization can be summarized in Table 5.10 and 5.11 where every number
is normalized with respect to the total number of basic instructions (1024%). We can see
that even if the fractal approach is oblivious about the memory hierarchy it can achieve

about the same number of misses. = We complete the performance evaluation showing

Algorithm Instructions | Ins. Misses | Data | Data Misses
ATLAS 3.12 0 5.69e-1 5.40e-2
Frac. double 1/s 2.71 0 3.92e-1 4.37e-2
Frac. single 1/s 3.32 0 1.00e-0 5.81e-2
Table 5.10: ULTRA 5 11 = 16KB, 2-way, 32Bytes line, D1 = 16KB, direct, 32Bytes line
Algorithm Instructions | Ins. Misses | Data | Data Misses
ATLAS 0 0 7.71e-2 8.65e-3
Frac. single 1/s 0 0 2.94e-1 1.55e-2
Frac. double 1/s 0 0 9.74e-2 1.30e-2

Table 5.11: ULTRA 5 U2 = 512KB, direct, 32Bytes line

how many operations are performed (see Table 5.12, 5.13 and 5.14). We can see that
reducing the number of loads and stores we do not affected negatively the cache miss
behavior, we reduced the misses at the first level of cache and we reduced the number
of communications with the caches. The performance is getting closer to the algorithm
performance available in ATLAS package. From this comparison we can see a quantitative
measure of the improvement obtained by a better memory access policy, we improved by
thirty per cent. This approach fits particularly well our algorithm and the particular size
of the problem. Matrixes are power of two and if a matrix is aligned then every sub matrix

in the fractal decomposition has starting element aligned and therefore it is eligible for a

multiple load and store. In general this is not the case, it is easy to find a counterexample

94 Chapter 5. Fractal Matrix-Matrix Multiplication

opcode Hexec %exec | #annulled
fadds 1074790400 | 32.1903% 0
fmuls 1073741824 | 32.1589% 0
1df 564167560 | 16.8970% 153089
add 156530628 | 4.6881% 6782
mulscc 103811880 | 3.1092% 9437378
subcc 76257389 | 2.2839% 1319
bpne,pt 65885919 | 1.9733% 0
sethi 34621536 | 1.0369% 16
stf 27296269 | 0.8175% 288
or 24703036 | 0.7399% 2466
jmpl 12600884 | 0.3774% 0
call 12598839 | 0.3773% 0
lduw 9505669 | 0.2847% 4626
be,a 9456598 | 0.2832% 0

Table 5.12: SGEMM from ATLAS package solving < 1024, 1024, 1024 >

in matrix A = 6 X 6, indeed address of the start element of A; is A4+9, which is not aligned
(whatever is k > 0). To overcome this problem we can introduce dummy elements so that
to force alignment of the starting element of any submatrix. The number of dummies is
function of how many time we need to decompose fractally the matrix in sub-matrixes and
the number of consecutive elements (K) we would like to load/store. We indicate with
D(N) the number of dummies elements we introduce in a matrix N x N. D(N) can be

specified as follows:
=1)
D(N) <3(K —1)>_ 4" +4'D(N;)
J=0
where N; = [N;_1/2] and Ny = N and where D(n) = K —n for n < K. We can see
that D(N) < (K — D[(X)? — 1] + (&)%(K — n). In practice we decompose the matrix
with coarser granularity based on the size of the leaves we want to compute and we do

not pad inside those sub-matrixes at all. If we say that L is the size of the leaves in the

computation of the matrix multiplication, D(N) < K]X—j where 4 < L < 8. But in every

case the number of dummies introduced is O(N?).

Chapter 5. Fractal Matrix-Matrix Multiplication 95

opcode Hexec %exec | #annulled
fadds 1073741824 | 30.1979% 0
fmuls 1073741824 | 30.1979% 0
1df 766509075 | 21.5573% 0
stf 279969795 | 7.8739% 0
mulscc | 103811880 | 2.9196% 9437378
sethi 34612775 | 0.9734% 14
or 32841198 | 0.9236% 2424
lduw 19688054 | 0.5537% 154257
jmpl 19182721 | 0.5395% 0
add 16972516 | 0.4773% 1026
call 14989573 | 0.4216% 0
be,a 9456571 | 0.2660% 0
andncc 9438049 | 0.2654% 0
sll 8555718 | 0.2406% 1951
subcc 7459716 | 0.2098% 2098471

Table 5.13: ABC-fractal with single load/store solving < 1024, 1024, 1024 >

5.6 Dense Matrix Multiply Applications

We introduce in this section two basic applications where matrix multiplication might be

basic operation: Block LU factorization and Multiple Right Hand sides [34].

5.6.1 Multiple Right Hand sides

Definition 5.10 Multiple right hand side problem is to determine the unknown X € K***
into the system LX = B where L €¢ ™" is lower triangular and B € R™*?,

Let us decompose the system as depicted as in Figure 5.6.1 and suppose all sub matrixes
are square matrixes (quq). We solve the system L1 X7 = B; determining X; and then
we remove the first column of L. Then we can solve L93X9 = By — L3; X and we can

keep on in a similar fashion and eventually we can solve Xy.

Algorith
rightSide(L, X B)

96

Chapter 5. Fractal Matrix-Matrix Multiplication

opcode F#Hexec %exec | #annulled
fadds 1073741824 | 37.0349% 0
fmuls 1073741824 | 37.0349% 0
lddf 321912856 | 11.1032% 0
mulscc | 103811880 | 3.5806% 9437378
stdf 67108884 | 2.3147% 0
sethi 34612775 | 1.1938% 14
or 32841200 | 1.1327% 2424
lduw 19688054 | 0.6791% 154256
jmpl 19182721 | 0.6616% 0
call 14989573 | 0.5170% 0
add 14875359 | 0.5131% 1025
be,a 9456569 | 0.3262% 0

Table 5.14: ABC-fractal with double load/store solving < 1024, 1024, 1024 >

n 1 1 L_O 0 X B-L X
»»»»»»» 2
Lol OF | %, B L L o | X B-L X,
ST : : — 5 [#> zw® 3| 331
LNlL N2 L NN XN BN hebne ™ b Xy Bilnits

Figure 5.21: L X = B block decomposition and columns elimination

for j=1:N

Solve LjjXj=Bj
for i=j+1:N

Bi += LijXj;

)

Of course, the choice of the size ¢ x ¢ is machine dependent. We apply a recursive algorithm

which decomposes at any level the problem by four to near square matrixes. It follows a

description of the algorithm in a pseudo language:

(] ey 1

Chapter 5. Fractal Matrix-Matrix Multiplication 97

/*B=LX; X->B %/

if (IB| !'=1) then
RSL(BO,LO); /* BO
RSL(B1,L0); /* B1
submult (B3,L2,B1); /* B3 -= L2 X1 %/

LO X0; X0 -> BO */

LO X1; X1 -> Bl %/

submult (B2,L2,B0); /* B2 -= L2 X0 */

RSL(B2,L3); /* B2 = L3 X2; X2 -> B2 */

RSL(B3,L3); /* B3 = L3 X3; X3 -> B3 */
else

B /= L;

[)

Aside of any line there is a comment that indicates the matrix computation each call
performs. If we look at the matrix computations performed we can see easily that the
type dag used to pre-compute indexes for matrix multiplication, it can be used here as

well, as Figure 5.22 describes concisely. For performance purpose it is better to stop

,,,,,,,,,,,,,,,,,, B3=L3X3

: - B3=L2X1

. - B2=L3X2

~._ T B2=L2X0

Vo * B1=0X3

L “B1l=LOX1 ;

BO=0X2

BO=LOX0 7

b

Figure 5.22: Recursive decomposition of RSL and first level of the type DAG associated
with the matrix multiplication B = LX

recursion when the size of the problem is bigger than one. In fact, we stop the recursion
when the number of rows in B is between four and eight. The computation is a explicit
forward substitution, with some optimizations as loop-unrolling, scalar replacement and

parallelism at instruction level.

5.6.2 LU-factorization without Pivoting

Definition 5.11 A € R™*" has LU factorization if there are a lower triangular matriz L

and an upper triangular matriz U so that A = LU.

98 Chapter 5. Fractal Matrix-Matrix Multiplication

A blocked algorithm for LU-decomposition can be described as follows. Matrix A can
be decomposed as Ag, Ay, Ay and As where Ag € R, A, e R A, ¢ K" and

As € K777 and therefore A can be decomposed as in Figure 5.23. We can factorize

Figure 5.23: LU = A block decomposition

Ag = LoUy. Then we can solve two multiple right hand side triangular systems: LolU; = A
for Uy and LoUy = Ay for Ly. We compute B = A3 — LoU; and we repeat the procedure
on B.

FactorizeLU(A)
/*x A = LU %/
if (1a1>1) {
FactorizeLU(AOQ); /% A0 = LOUO *x/
RSL(A1,40); /* A1 = LOU1 */
RSU(A2,A1); /* A2 = L2U0 */
submult (A3,A2,A1); /% A3 -= L2U1x%/
Factorize(A3); /% A3 = L3U3 %/
}
else {
L=1;
U=A;
}

)

Matrix multiplicaion is dominant operation on either application. This can justify a
preliminary assumption so that square matrixes should be stored using the fractal lay-
out, boosting the performance of matrix multiplies and slightly slow-down (i.e. N is the
size of matrixes involved, the slow-down factor should be O(log, N)) operations requiring

single matrix element access (i.e. pivoting and backward/forward substitutions).

Chapter 5. Fractal Matrix-Matrix Multiplication 99

Experimental Results

We compare performances for LU factorization against LU factorization with partial piv-
oting available on Sun Performance Library (in ATLAS it is not implemented directly
any LU factorization but the optimized matrix multiplication can be used in blocked al-
gorithms). We show either cache behaviors (Table 5.15 ... 5.18) and execution time ratios

(Figure 5.24) for Ultra 5.

14

o
©
T
I

Ratio Fractal LU over dgefa
o
o
T
Il

I
»
T
|

0.2 q

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Size
Figure 5.24: Performance evaluation on Ultra 5-10 (Lola), when fractal approach is used

at every level

Note in Table 5.17 how the data miss ratio is really high for both algorithms. The
reason can be found in the size of the matrix, power of two, and since both algorithms
are blocked algorithms they perform operations on sub matrixes of the matrix, that may
be power of two as well increasing cross interference among data. Unfortunately, the only
way to reduce cross interference is padding the matrix introducing dummy elements: even
if this technique can be applied it is not as for matrix multiplication, the padding should
be embedded in the matrix layout (for matrix multiplication we could just allocate more
space for the matrix elements and then shift the first element of the matrix, keeping the

matrixes contiguously laid-out).

When we unfold the leaves of the recursive algorithms, we write in sequence the in-

100

Chapter 5. Fractal Matrix-Matrix Multiplication

LU 700 x 700 || Ins | Ins.Mis. Data | Data Mis. | Read | Read Mis. | Write | Write Mis.
LU-fractal 3.80 | 2.66e-2 | 6.58e-1 2.72e-2 5.48e-1 2.29e-2 1.10e-1 3.81e-3
dgefa 2.83 | 3.31e-5 | 6.18e-1 2.70e-2 5.55e-1 2.70e-1 6.29¢e-2 3.55e-3

Table 5.15: L1: Instruction cache is 16 KB, line 32 B, 2-way Iru and data cache 16

KB,line 32 B, direct write through, any number is a normalized value to %7003

LU 700 x 700 Ins Ins.Mis. | Data | Data Mis. | Read | Read Mis. | Write | Write Mis.
LU-fractal 2.67e-2 | 2.45e-4 | 1.33e-1 | 5.88e-3 | 2.34e-2 3.33e-3 1.10e-1 2.54e-3
dgefa 3.31e-5 | 2.23e-5 | 8.99e-2 | 7.46e-3 | 2.70e-2 5.17e-3 6.29e-2 2.29e-3
Table 5.16: [.2: unified 512 KB, line 32 B, direct write through
LU 1024 x 1024 || Ins | Ins.Mis. | Data | Data Mis. | Read | Read Mis. | Write | Write Mis.
LU-fractal 2.98 | 3.53e-4 | 4.88e-1 | 5.76e-2 | 4.05e-1 3.52e-2 | 8.26e-2 2.24e-2
dgefa 2.47 | 1.23e-5 | 5.51e-1 | 7.52e-2 | 5.03e-1 5.26e-2 | 4.77e-2 2.26e-2
Table 5.17: L1: Instruction cache is 16 KB, line 32 B, 2-way Iru and data cache 16 KB,
line 32 B, direct write through, any number is a normalized value to %7003
LU 1024 x 1024 Ins Ins.Mis. | Data | Data Mis. | Read | Read Mis. | Write | Write Mis.
LU-fractal 3.53e-4 | 2.11e-5 | 1.18e-1 1.23e-2 | 3.52e-2 7.71e-3 8.26e-2 4.56e-3
dgefa 1.23e-5 | 7.56e-6 | 1.00e-1 | 9.88e-3 | 5.26e-2 8.28e-3 | 4.77e-2 1.60e-3

Table 5.18: [.2: unified 512 KB, line 32 B, direct write through

structions that the compiler will optimize. The bigger is the size of the leaf to unfold the

bigger is the sequence of instructions. The instruction cache misses may increase. In Table

5.15 we can find such a situation where all procedures in Y (8) for the matrix multiplication

are called. The number of instructions and the number of instruction cache misses for the

fractal algorithm is by far larger than its adversary. The large size of the code is a problem

that we have not attempted to solve yet for two reasons: 1) it is difficult because we want

to perform scalar replacement and register allocation, 2) we may find solution forcing a

register allocation, i.e. gcc permits to suggest a register allocation, and decompose the

sequence of instruction by calls to functions with predefined register allocation, but this

is not standard and it is based on a particular compiler which is not in general the best

compiler.

Chapter 5. Fractal Matrix-Matrix Multiplication 101

5.7 Sparse Matrix

We want to introduce a data structure so that we can apply a fractal algorithm for matrix
multiplication to sparse matrix. The main idea is to use a so called quad tree [29], shortly
Q-tree, to accesses matrix elements. This section offers a preliminary introduction to the

concepts and possible implementation of Q-trees.

Definition 5.12 The quad tree is a tree. Every internal node has four children and every

leaf can store either an element or a sub-matriz.

,,,,,,,,,,,

T N AN 7N

10| 1 0123456789 1011 12 13 14 15

Figure 5.25: Quad Tree and Fractal Matrix Decomposition.

It is intuitive how the Q-tree can help to access matrix elements and therefore elements of
matrix fractally stored. For square matrix the decomposition in four sub-matrixes, which,
in turn, are divided recursively, is intuitive and easy to see. But Q-trees can be used also
for non square matrixes, and the decomposition might be more irregular. In Figure 5.25
the leaves of the structure contain only one element. But we can increase the number of
element stored in each leaf such as the size of the Q-tree can be considered negligible with
respect to the matrix size.

There are different implementations for Q-trees. We consider the case when Q-tree is
embedded in the matrix and when it is separated from the matrix associated with. Let us
consider when Q-tree and matrix are separated structures. In Figure 5.26 we can see an
example of the data structure organization. Indeed, there are two arrays. One is used for
the Q-tree and the other is for the matrix. Formally, we can define the data structure as

follows.

e An internal node of the Q-tree is composed by four pointers to four sub-matrixes.

e A leaf is a pair: a number of matrix elements pointed and a pointer to the matrix

(or an offset value).

102 Chapter 5. Fractal Matrix-Matrix Multiplication

Figure 5.26: Quad tree and matrix are stored in different space storage.

This data structure arises naturally, it is intuitive and it decouples Q-tree from the matrix
associated with. From a Software Fngineering point of view, this permits to maintain
different types for the two structures. The matrix element type can be a short, integer,
floating point with single and double precision or complex, but usually we access the ele-
ment of an array by integer indexing. This offers better maintenance, visualization of the
solution and, if the matrix is not sparse, we can remove the Q-tree and access the matrix
directly. We can see only one disadvantage, data interference. The access to the different
storage spaces increases the interference among accesses to elements of same matrix.

Let us consider when the Q-tree is embedded in the matrix associated with, see Figure

5.27.
e An internal node has four pointers to internal nodes of the tree.

o A leaf is a k£ + 1-tuple: an integer number where we store the number of matrix
elements accessed from a leaf (k) and a sequence of k matrix elements stored as

fractal matriz (or whatever else way).

We can see that we can avoid self interference because the access of matrix element and
tree nodes is consecutive. Intuitively we can see that we can obtain some benefits to reduce
cross interference among data using the technique proposed for matrix multiplication with

dense matrixes. This layout has some disadvantages. It is dedicated, if the matrix is not

Chapter 5. Fractal Matrix-Matrix Multiplication 103

ad

b

C

b d
e.—

f

4

gOhOi lﬁ
O 1 —_
flag |=—

n

1

2

3

Oliasasersl 2

6

7

8

Figure 5.27: Q-tree and matrix are stored in the same space storage.

sparse we double the matrix size, the data stored have different information, and therefore
different types but they share the same storage space. So visiting this structure should be

done more carefully, doing opportune casts and data conversions.

Our purpose is to combine performance and portability, therefore we cannot drop a
priori any of the data structures proposed. We need to have some experimental feed-backs

to understand quantitatively how performance is affected by our choices.

We have not defined yet what we mean for sparse matrix.

2

Definition 5.13 We say that a square matriz of sizes n* is a sparse matrix if it has at

2
most °— non zero elements, where k > 4.

In this case the overall space to store the matrix should be not greater than n?.

There is a little problem. When we multiply two sparse matrixes the result might be
dense. Indeed, the multiplication of two dense matrixes can give as result a sparse matrix,

and the multiplication of two sparse matrixes can give as result a dense matrix.

104 Chapter 5. Fractal Matrix-Matrix Multiplication

5.7.1 Fractal Approach based on Q-tree

The data structures proposed previously can be solved in a single data structure. A node

of a Q-Tree is 6-tuple. A C' definition follows.

#tdefine Leaf Elementx*

typedef struct tnode *PQT;

typedef struct tnode { /* Root Matrix A */

PQT xO0; /* Root of Matrix AO */
PQT x1; /* Root of Matrix A1l */
PQT x2; /* Root of Matrix A2 */
PQT x3; /* Root of Matrix A3 */
PQT father; /* Predecessor in the tree */

LeafDatum submatrix; /* If A is leaf, this is a submatrix */

} QuadTree;

It can be used on top of fractal matrixes as a separated structure when the matrix is
already stored, attaching on sub-matriz attribute a pointer to a fractal sub-matrix. It
can be used during the construction of a fractal matrix allocating dynamically space to
the sub-matriz attribute. In the same application we can use differently the structure.
Take a matrix-matrix multiplication C' = A * B and suppose A and B are already in
a fractal layout form but C' is empty. We can avoid to duplicate the matrixes A and
B simply attaching the right pointers to the leaves of Q-trees, obtained dynamically. C'
can be a sparse matrix and if it does not affect the performance, we can build matrix
C' dynamically. The lay out affects the miss ratio, since a Q-tree as auxiliary structure
which is separated from the matrix introduces a new source for self interference (and cross
interference) among data.

Suppose we have a fractal matrix A and we want to create dynamically its Q-tree.
Suppose the matrix is a general matrix, A € R™*P we can always see the matrix as a
matrix @ € R2°*2" with n an opportune integer and introducing an opportune number of
zero. () has a natural fractal layout, where A is embedded, and on this matrix we can build
up a Q-tree. The zero in A and the zero introduced so far in) can be hidden, especially if

they are gathered in blocks. A pure random distribution of zero offers a natural but worse

Chapter 5. Fractal Matrix-Matrix Multiplication 105

A
A
0 A A
2 3
A
1
Aoo Aoz A22 30 A32
1]1]o/o]ololag]o0
[1]1]g]of0)g] o]0
o[of[T1}6]0ld]0
olollLlAlloto6]o]0
o[o}6]o|TT o]0
ofolofofz][1][o}o
T[1)o|o|o]o|T]T]
11 of0]ofo]ls]4]

Figure 5.28: From a fractal matrix we build up a Q-Tree.

scenario, in practice it does not permit any pruning of the Q-tree, and therefore we may
increase the space used to store the matrix. In Figure 5.28 we can see a quad tree so that
every leaf can point/store a consecutive sub-matrix 2 x 2. We can see that sub-matrix A,
is not stored, since it is a zero matrix. A very important issue is that the contents of the
leaves, the sub-matrix, can be different from a simple vector of elements. We can change
strategy at leaf level, i.e. use a compressed vector. Of course, if we change structure at
leaf level we should change the matrix-matrix multiplication algorithm on leaves. Indeed
for 2F x 2% dense matrixes, it is natural to apply our fractal algorithm. But if there are
other techniques that use registers and/or memory space in a more efficient way, we can
always change approach.

The fractal-ABC matrix-matrix multiplication follows and we use an explicit recursive

algorithm.

int FHH_AB_lity_QT_Recursive (PQT cb, PQT ab, PQT bb) {
int r = 0;
int i;

static int 1=0;

if (isFullLeaf(ab) 2& isFullLeaf(bb)) {
/* He have reached two leaves that contains two no empty
submatrixes, we can multiply
*/
makeLeaf(cb); /# we prepare the space %/

leafComputation(cb->submatrix ,ab->submatrix,bb->submatrix);

106

Chapter 5. Fractal Matrix-Matrix Multiplication

/* if the result is not a zero matrix */
for(i=0; i<LEAFSIZE; i++) {
if (% (cb->submatrix+i))
return 1;
}
/* otherwise free the space allocated */
free (cb->submatrix) ;
cb—>submatrix=0;
return O0;

else if (!isLeaf(ab) && 'isLeaf(bb)) {

o

/% we have reached two internal nodes
*/

/* we prepare the sub-Quad-Tree */
makeTree (¢cb—>x0,¢b) ;
makeTree (cb—>x1,¢b);
makeTree (¢cb—>x2,¢b) ;
makeTree (cb—>x3,¢b) ;
r |= FHH_AB_lity_QT_Recursive (¢b->x0, ab->x0,
r |= FHH_AB_lity_QT_Recursive (¢b->x1, ab->x0,
r |= FHH_AB_lity_QT_Recursive (¢b->x3, ab->x2,
r |= FHH_AB_lity_QT_Recursive (¢b->x2, ab->x2,
r |= FHH_AB_lity_QT_Recursive (¢b->x2, ab->x3,
r |= FHH_AB_lity_QT_Recursive (¢b->x0, ab->x1,
r |= FHH_AB_lity_QT_Recursive (¢b->x1, ab->x1,
r |= FHH_AB_lity_QT_Recursive (¢b->x3, ab->x3,
/% we prune the tree */
if ((r&1)==0) {

free (cb->x0) ;

cb->x0=0;
}
if ((r&2)==0) {

free (cb->x1);

cb->x1=0;
}
if ((re4)==0) {

free (cb->x2);

cb->x2=0;
}
if ((r&8)==0) {

free (cb->x3);

cb->x3=0;

}
return (r)7?1:0;
}

/% other cases 7 we have done nothing but
if the current Q-tree of C is not empty
we should not prune this one
*/

return (cb!=0);

bb->x0) ;

bb->x1)<<1;
bb->x1)<<3;
bb->x0)<<2;
bb->x2)<<2;
bb->x2);

bb->x3)<<1;
bb->x3)<<3;

)

The fractal-CAB algorithm revised permits a more local construction of C'. Indeed, we

can use the heap as a stack.

Chapter 5. Fractal Matrix-Matrix Multiplication 107

int FHH_C_lity_QT_Recursive(PQT cb, PQT ab, PQT bb) {
short r;

short 1i;

if (isFullLeaf(ab) && isFullLeaf(bb)) {
makeLeaf (cb) ;

leafComputation(cb->submatrix ,ab->submatrix,bb->submatrix);

for(i=0; i<LEAFSIZE; i++) {

if (*(cb->submatrix+i))
return 1;

}

free (cb->submatrix) ;

cb—>submatrix=0;

return O;

o

olse if (!isLeaf(ab) && !isLeaf(bb)) {

/x €O x/

makeTree (cb—>x0,¢b) ;

r =FHH_C_lity_QT_Recursive(cb->x0, ab->x0, bb->x0);

r |=FHH_C_lity_QT_Recursive(cb->x0, ab->x1, bb->x2);
if ('r) { free(cb->x0); ¢b->x0=0; 1}

/* C1 */

makeTree (cb—>x1,¢b);

r =FHH_C_lity_QT_Recursive(cb->x1, ab->x1, bb->x3);

r |=FHH_C_lity_QT_Recursive(cb->x1, ab->x0, bb->x1);
if ('r) { free(cb->x1); ¢b->x1=0; }

/% C2 */

makeTree (cb—>x2,cb);

r =FHH_C_lity_QT_Recursive(cb->x2, ab->x3, bb->x2);

r |=FHH_C_lity_QT_Recursive(cb->x2, ab->x2, bb->x0);
if (r==0) { free(cb->x2); ¢b->x2=0; }

/* C3 */

makeTree (cb—>x3,¢b);

r =FHH_C_lity_QT_Recursive(cb->x3, ab->x2, bb->x1);

r |=FHH_C_lity_QT_Recursive(cb->x3, ab->x3, bb->x3);
if (r==0) { free(cb->x3); ¢b->x3=0; }

return (r'!'=0)71:0;

}

return (cb)71:0;

We ask to allocate memory, and release memory, as in a stack. This approach is sufficient
to store the matrix C' in a fractal way even if it is not dense matrix. Any advantage
obtained from the fractal-CAB algorithm can be exploited only if the matrix C' is used
in further matrix-matrix multiplication as operand. Note that if we do C = A x B and
C+ = D F, we cannot assure that matrix C' is stored in any fractal way, because we are

adding elements dynamically.
Tacitly, our algorithm compute multiplication on matrix @ € R2"*2", the lay out of

non zero elements in the matrixes specifies what is the genre, rectangular, square etc. This

solution is very flexible but it might be not optimal.

108 Chapter 5. Fractal Matrix-Matrix Multiplication

We used the recursive algorithm but it can be developed a non recursive one, indeed,
we can see why in the structure is still present the pointer father to the precedence node

in the tree.

5.7.2 Sparse Matrix Multiplication, Related Works

The basic concept of sparse matrix is that zero elements may not be stored or, at least, it is
minimized the storing space for zero elements. Multiplication of sparse matrix must take
advantage from this data structure to avoid useless multiplications, i.e. multiplication
by zero. In literature there are a lot of data structures dedicated to different layouts
and therefore there are different kernels routines devised for particular data structures.
Therefore it is very common to find a set of routines gathered in libraries. We have
found up to three different approaches: data structure oriented, kernel oriented and linear
algebra application oriented, and shortly we explain these three points. These distinctions

are not always clear and they are subjective.

Data Structure Oriented: SPARSKIT is an example, [57]. They offer sparse matrix
multiplication and they propose an algorithm based on only one basic structure,
and a collection of format change routines. The purpose of the module is offer
a flexible environment to perform matrix multiplication on sparse matrixes. The
developer must be aware about sparse matrix formats and apply the opportune
transformations. The format of the matrixes depends on the problem domain but
the solution, the algorithm, is independent. The efficiency and performance in this

environment is clearly based on the algorithm, more than the data structure.

Kernel Oriented: Sparse BLAS is an example, [55], [15]. They propose a complete
set of routines that perform sparse matrix-matrix multiplication for different data
structures and layouts. In other words, they offer different kernels, algorithms, based
on specific layout and structures. The developer has to produce the data structure
and use their routines. The basic operation is C+ = AB where A is sparse and
C and B are stored as dense matrixes. In particular the number of single/double
precision multiplications is proportional to the non zero elements of both matrixes.
It is clear that more it is detailed the information about contents of the sparse matrix

better performance can be achieved.

Chapter 5. Fractal Matrix-Matrix Multiplication 109

Application Oriented: basic operations are used for Linear Algebraic problems, most
of the times basic operation is not matrix-matrix multiplication but matrix-vector
multiplication. The implementation of the basic operations can be different but

usually they respect the interface and the semantic of the 3-BLAS library.

If we want to summarize our technique, we have proposed a general data structure and
a general algorithm. It is similar to SPARSKIT but we do not produce a complete set
of change format routines. In practice we have chosen a different structure and, conse-
quentially, a different algorithm. But we compare our technique with Sparse BLAS for
the following reasons. Sparse BLAS is becoming a de facto standard for sparse matrix
computations therefore it is clearly evaluable obtaining a quantitative comparison. We
can understand how much a generalization of data structure and algorithm, as the frac-
tal layout proposes, looses in performance. We already know the performance of Q-tree
implementation of the fractal algorithm for dense matrixes and we have understood that
this approach has good performance, and if it is comparable with Sparse BLAS we can
say that our approach offer a general approach for general matrix-matrix multiplication.

The main problem is to decide a test bed such that we can compare performances.
In other words we must devise a set of matrixes on which we measure the execution
time of matrix multiplication. Suppose we have a random generator of number N (T}, T%)
that generates integer numbers between [T, T,] with uniform distribution, any number
generated has probability ﬁ to happen. This generator is used to select not only

the data of the matrix but also its shape (i.e. rectangular matrix) and its sparseness.

e Generally sparse: any element of the matrix is generated by N(=Ty,T}).

e Blocked Sparse: the two sizes of tiles are chosen randomly, /1 X [3, and every element

in a tile has the same value taken from N (=Ty,T}).

e Diagonal Sparse: the number of diagonals above and below the principal diagonal is

chosen randomly and every element in the diagonal is chosen from N (=11, T}).

We fix the maximum size of the matrix (i.e. 512 x 512) and for each type of matrix we
generate 1000 sparse matrixes (500 of size P x N and 500 N x M). These sets are used as
performance test. We can achieve in this way an average value determined as follows. At

the 2-th iteration we perform a matrix multiplication A;B; with A; a matrix F; x V; and B;

110 Chapter 5. Fractal Matrix-Matrix Multiplication

a matrix N; X M;. We measure the time of each multiplication 7;. The maximum number
of operations can be estimated as N, = 2252? P;N;M; and the total time is T = 2252% T;.

A simple and average estimation of the performance can be expressed by the ratio %

For our implementation the data structure is fixed but to utilize Sparse BLAS we use
different data structures for different types of matrixes. We will use the CSR (Compressed
Sparse Row) point entry form and BSR (Block Compressed Sparse Row). The CSR data
structure, compressed sparse row, is composed by four arrays and it manages single entry
point of the matrix, non zero elements. The basic idea is that the matrix is a row-major
ordered matrix where only no zero elements are stored. There are different implementation

of this data structure and we present the data structure proposed by Sparse BLAS.

A
1 2 3 4 5
1. 0 2 3 0
210 0 4 5 0
31 6 7: 8: 9 0
41 0:10 0: 11 0
5112 13 0 0 14
I I 1| |
I I I I [I I [I ‘
[[[[[[[[[[[]
INDX = 1 3 4 3 412342 41 25
VAL = 1 2 3 4 5 6 7 8 9 10 11 12 13 14
[‘
PNTRB = 1 4 6 10 12
PNTRE = 4 6 10 12 15

Figure 5.29: Example of CSR structure on a real case.

e VAL is the element array, the non zero elements are stored by row. We store in
V AL non zero elements of the first row, followed by non zero elements of the second

row and, eventually, non zero elements of the last row.

Chapter 5. Fractal Matrix-Matrix Multiplication 111

e /INDX is an integer array with the same number of elements of VAL, indeed,

IN DX[7] indicates in what column in A the element V AL[¢] is located.

e PNTRBis an integers array of size equal to the number of rowsin A, and PNT RB[i]—
PNTRBJ[1] 4 1 indicates the index in VAL where row 7 starts. A row is empty if
PNTRBJi] = PNTRB[i+ 1].

e PNTRFEis an integers array of size equal to the number of row in A, and PNT RE[i]—
PNTRBJ1] indicates the index in VAL where row ¢ ends. The last element in

PNTRE indicates the number of non zero elements in matrix A plus one.

(I noted that in general PNT RFE is used but this array is redundant, same information is
available in PNTRB).

The BSR data structure, constant block compressed sparse row, is composed by four
arrays. We tile the matrix A by constant sizes tile, the matrix should be a multiple of
the basic tile and we store only blocks in which there are non zero elements. The block is
considered a basic element and we can see this data structure as a generalization of CSR,
where instead of an entry point there is a sub-matrix.

The idea used is very similar to the fractal layout. Every sub-matrix or block is stored
in column-major order, that is, every block is laid out consecutively. The layout of blocks
is in a row-major order. In Figure 5.30, matrix A is tiled with 2 x 2 tiles. If we consider
each block as an single entry we can see matrix 4 as a 3 X 3 matrix A. This Matrix is
stored in a compressed sparse row way, in the first row there is the first entry and the
third entry that should be stored consecutively. We can see that we are storing matrix A
in a such a way that accessing row blocked can be done by access a vector by constant
stride and consecutively. Let ne be the number of non zero blocks in A and let p; and [

be the blocked rows of A and the size of the square tiles.

e VAL is an integer of length ne [+ /. It contains the elements of sparse matrix A, at
(i — 1){? starts the i-th non zero blocks in VAL of the sparse matrix A, the blocks

are stored in a row-major order..

e BINDX is an integer array of length mne, the number of non zero blocks in A.
BINDX]Ji] is the column in the blocked matrix A where the i-th block in VAL is

located.

112 Chapter 5. Fractal Matrix-Matrix Multiplication

18:19|0: 0|0 :0

2. 21| 0. 0|00

BPNTRE=

4 4 4 4 4

VAL = |123456789101112131415161718192031

Figure 5.30: Example of BSR structure on a real case.

e BPTNRB is an integer array of length equal to the number of rows in matrix A,
i.e. in Figure 5.30 this is three. Differently from the CSR case, BPT N RB[i] —
BPTNRBJ[1] + 1 is the location in BINDX of the first block in the i-th blocked
row. In practice, BINDX[BPTNRB[i] — BPTN RB[1] + 1] identifies the column
of the first non zero block on i-th row in sparse matrix A. If BPTNRB[i| =
BPTN RBJi + 1] then the i-th row is empty.

e BPTNRF is an integer array as BPT N RB but identifies the last block.

These structures are enough general so that we can devise two simple routines produc-

ing the data structure easily from dense matrixes.

Chapter 6

Consideration

Data locality at every level of memory hierarchy is a difficult to achieve and important
issue for scientific applications. In this work we investigate such an issue exploiting the
concept of data locality and giving particular importance to performance evaluation. Data
locality of an algorithm expressed by a DAG can be quantitatively represented by its
Accesse Complexity and, for DAGs, we presented an approach to schedule operations so

that data locality can be exploited through the concept of Convex Decomposition Tree.

We investigated the current trend to use micro tests (microbenchmarking) to measure
performance of single feature of complex architectures. This technique can be useful when
it is required to produce fine tuned code and it is required more information about the host
architecture for a dedicated application. We discovered it is hard to define a unique set
of micro tests that works for a set of architectures, not only because the difference among
architectures but also because different among compilers. But we could achieve insights

about the most common techniques to obtain performance in the current architectures.

Square matrix matrix multiplication is our case study where we try to exploit data
locality at every level of the memory hierarchy, but reducing to minimum the number of
optimization based on the particular architecture. We have shown that we can achieve
comparable perfomance with vendors and machine tuned packages and the memory hierar-
chy is optimally utilized. We discovered that a recursive-based algorithm has its waekness
on the most important level of memory hierarchy: the register file. Other issues of ma-
trix multiplication are exposed: space locality at register level is a side effect that can be
exploited in some architectures. Applications of matrix multiplication have been investi-

gated, from LU decomposition to sparse matrix multiplication. Our studies end suggesting

114 Chapter 6. Consideration

that for performance purpose there is no magic word to solve locality optimally and other

characteristics must be considered such as latency hiding, and code explosion.

References

(1]

(2]

[10]

[11]

[12]

[13]

[14]

A.Azevedo, J.Hummel, D.Kolson and A.Nicolau Annotating the Java Bytecodes in Support of Opti-

mization technical report.

A. Aggarwal, B. Alpern, A.K. Chandra and M. Snir A model for Hierarchical Memory. Proc. of 19th
Annual ACM Symposium on the Theory of Computing, New York, 1987,305-314.

A. Aggarwal, A.K. Chandra and M. Snir Communication Complexity of PRAMs. Theoretical Com-
puter Science 71(1990) 3-28.

A. Aggarwal, A.K. Chandra and M. Snir Hierarchical Memory with Block Transfer. 1987 IEEE.

A.V.Aho, J.D.Ullman and R.Sethi Compilers: Principles, Tecniques and Tools. Addison-Wesley
Pub.Co0.1985

K.Arnold and J.Gosling The Java Programming Language. Addison-Wesley Pub.Co. 1996

U.Banerjee, R.Eigenmann, A.Nicolau and D.Padua Automatic Programm Parallelization. Proceedings

of the IEEE vol 81, n.2 Feb. 1993.

A.Beguelin, J.Dongarra, A.Geist, W.Jiang, R.Mancheck and v.Sunderam PVM: Parallel Virtual Ma-
chine The MIT Press, Cambridge, Massachusetts, L.ondon, England.

M. de Berg, M. van Kreveld, M.Overmars and O. Schwarzkopf Computational Geometry: Algorithms
and Applications, Springer-Verlag 1997

G.Bilardi and F.Preparata Horizon of Parallel Computation. Jurnal of Parallel and Distributed Com-
puting 27, 172-182 (1995).

G.Bilardi, K.T.Herley, A.Pietracaprina, G.Pucci, P.Spirakis BSP vs LogP Proc. of 8h Ann.ACM
Symposium on Parallel Algorithms and Architectures (SPAA’96), June 1996, pages. 25-32.

G.Bilardi and F.Preparata Processor-Time Trade offs under Bounded-Speed Message Propagation.
manuscript, Feb 1995. manuscript, Feb 1995.

J.Bilmes, Krste Asanovic, C.Chin and J.Demmel Optimizing Matriz Multiply using PHiPAC: a Port-
ble, High-Performance, Ansi C Coding Methodology, International Conference on Supercomputing,
July 1997.

G.E.Blelloch, C.E.Leiserson, B.M.Maggs, C.G.Plaxton, S.J.Smith and M.Zagha A comparison of Sort-

ing Algorithms for the Connection MAchine CM-2 Proc. of 3rd ACM Symposium on on Parallel
Algorithms and Architectures (SPAA’93), pages. 3-16.

116 References

[15] S.Carney, M.A.Heroux, G.Li, R.Pozo, K.A.Remington and K.Wu A revised Proposal for Sparse BLAS
Toolkit

[16] S.Carr and K.Kennedy Compiler Blockability of numerical algorithms Proceedings of Supercomputing
Nov 1992, pg.114-124.

[17] S.Chatterjee, V.V.Jain, A.R.Lebeck and S.Mundhra Nonlinear Array Layouts for Hierarchical Mem-

ory Systems Proc. of ACM international Conference on Supercomputing, Rhodes,Greece, June 1999

[18] S.Chatterjee, A.R.Lebeck, P.K.Patnala and M.Thottethodi Recursive Array Layout and Fast Parallel
Matriz Multiplication Proc. 11-th ACM SIGPLAN, June 1999.

[19] K.D.Cooper, M.W.Hall, R.T.Hood, K.Kennedy, K.S.McKinley, J.M.Mellor-Grummey, L..Torczon and
S.K.Warren The Parascope Parallel Programming Environment Proceedings of the IEEE vol 81, n.2
Feb. 1993.

[20] D.Coppersmith and S.Winograd Matriz Multiplication via Arithmetic Progression In Poceedings of
9th annual ACM Symposium on Theory of Computing pag.1-6, 1987.

[21] The Common Object Request Broker: Architecture and Specification OMG document revision 2.00.
[22] M.Cordioli, M.Gusella e M.Muner Active Message Passing. manuscript in italian.

[23] T.H.Cormen, C.E.Leiserson and R.L.Rivest Introduction to Algorithms MIT press, Cambridge, Mas-
sachusetts London, England

[24] M.J.Dayde and 1.S.Duff A Blocked Implementtion of Level 3 BLAS for RISC Processors TR_PA_96_06,
available on line http://www.cerfacs.fr/algor/reports/TR_PA_96_06.ps.gz Apr. 6 1996

[25] P.D’Alberto and A.Montresor BSP on PVM. manuscript

[26] J.Dongarra, A.Lumsdaine, X.Niu, R.Pozo and K.Remington A Sparse Matriz Library in C++ for
High Performance Architectures

[27] N.Eiron, M.Rodeh and I.Steinwarts Matriz Multiplication: a Case Study of Algorithm Engineering
Proceedings WAFE’98, Saarbrucken, Germany, Aug.20-22, 1998

[28] Engineering and Scientific Subroutine Library http://www.rs6000. ibm. com/resource/aix_resource/sp_books/essl/

[29] P.Flajolet, G.Gonnet, C.Puech and J.M.Robson The Analysis of Multidimentional Searching in Quad-
Tree. Proceeding of the second Annual ACM-SIAM symposium on Discrete Algorithms, San Francisco,
1991, pag.100-109.

[30] J.D.Frens and D.S.Wise Auto-blocking Matriz-Multiplication or Tracking BLAS3 Performance from
Source Code Proc. 1997 ACM Symp. on Principles and Practice of Parallel Programming, SIGPLAN
Not. 32, 7 (July 1997), 206-216.

[31] M.Frigo and S.G.Johnson The Fastest Fourier Transform in the West MIT-LCS-TR-728 Mas-
sachusetts Institute of technology, Sep. 11 1997.

[32] M.Frigo, C.E.Leiserson, H.Prokop and S.Ramachandran Cache-Oblivious Algorithms submitted for
publication http://supertech.lcs.mit.edu/cilk/paper/FrigoLePr99.ps.gz

References 117

33]

[36]

[43]

[44]

[45]

[46]

[47]

[48]

E.D.Granston, W.Jalby and O.Teman, To copy or not to copy: a compile-time technique for assesing
when data copying should be used to eliminate cache conflicts, Proceedings of Supercomputing Nov
1993, pg.410-419.

G.H.Golub and C.F.van Loan Matriz Computations Johns Hopkins editor 3-rd edition

M.Goudreau, K.Lang, S.Rao, T.Suel and T.Tsantilas. Toward Efficiency and Portability: Program-
ming with the BSP Model Proc. of 8h Ann.ACM Symposium on Parallel Algorithms and Architectures
(SPAA’96), June 1996, pages 1-12.

C.A.Hsieh, M.T.Conte, T.L.Johnson, J.C.Gyllenhaal and W.WHwu Optimizing NET compilers for
Improved Java Performance. Computer Innovative technology for computer professionals vol.30, n.6
June 1997

J.L.Hennesy and D.A.Patterson Computer Architecture a Quantitative Approach. Morgan Kaufman
1996.

N.J.Higham Accuracy and Stability of Numerical Algorithm ed. SIAM 1996
Hong Jia-Wei and T.H.Kung /0 complexzity : The Red-Blue pebble game. Proc.of the 13th Ann. ACM
Symposium on Theory of Computing Oct.1981,326-333.

R.Iyer, N.M.Amato, L..Rauchwerger and L..Bhuyan Comparing the Memory System Performance of the
HP V-class and SGI Origin 2000 Multiprocessors using Microbenchmarks and Scientific Applications
1CS’99 Rhodes, Greece.

J.Jaja An introduction to Parallel Algorithms. Addison-Wesley Pub.Co. 1992

B.H.H.Juurlink and H.A.G.Wijshoff A quantitative Comparison of Parallel Computation Models Proc.
of 8th Ann.ACM Symposium on Parallel Algorithms and Architectures (SPAA’96), June 1996, pages
13-24.

B.Kagstrom, P.Ling and C.Van Loan Algorithm 784: GEMM-Based Level 3 BLAS: Portability and
Optimization Issues ACM transactions on Mathematical Software, Vol24, No.3, Sept.1998, pages
303-316

B.Kagstrom, P.Ling and C.Van Loan GEMM-Based Level 8 BLAS: High-Performance Model Imple-
mentations and Performance Evaluation BenchmarK ACM transactions on Mathematical Software,

Vol24, No.3, Sept.1998, pages 268-302.

M.Lam, E.Rothberg and M.Wolfe The cache performance and optimizations of blocked algorithms,
Proceedings of the fourth international conference on architectural support for programming languages

and operating system, Apr.1991,pg. 63-74.

D.Lea Concurrent Programming in Java: Design Principles and Patterns. Addison-Wesley Pub.Co.
1996

F.Thomson Leighton Introduction to Parallel Algorithms and Architectures: Arrays. Trees. Hypercubes.
Morgab Kaufmann, San Mateo, CA, 1992.

M.Leppinen, P.Pulkkinen and A.Rantiainen Java and CORBA-based Network Management Computer

Innovative technology for computer professionals vol.30, n.6 June 1997

118 References

[49] S.S.Muchnick Advanced Compiler Design Implementation Morgan Kaufman

[50] J.P.Munson and P.Dewan Sync: A Java Framework for Mobile Collaborative Applications. Computer

Innovative technology for computer professionals vol.30, n.6 June 1997

[51] R. Orfali and D.Harkey Client/Server Programming with Java and CORBA Jhon Wiley and Sons
1997

[52] P.K.Pancake Multithreaded Languages for Scientific and Tecnical Computing. Proceedings of the IEEE
vol 81, n.2 Feb. 1993.

[53] P.R.Panda, N.D.Dutt and A.Nicolau Memory Organization for Improved Cache Performance in Em-
bedded Processors. International Symposium on System Syntesis (ISSS’97) La Jolla, November 1996.

[54] P.R.Panda, H.Nakamura, N.D.Dutt and A.Nicolau Improving Cache Performance Through Tiling
and Data Alignment. Solving Irregularly Structured Problems in PArallel Lecture Notes in Computer
Science, Springer-Verlag 1997.

[55] R.Pozo, K.A.Remington SparselLib++ v.1.5 Sparse matrix Class Library Reference Guide
[56] A.L.Rosenberg and I.H.Sudborough Bandwith and Pebbling. Computing 31, 115-139 (1983).
[57] Y.Saad SPARSKIT: a basic toolkit for sparse matriz computations.

[58] John E.Savage Space-Time tradeoff in Memory Hierarchies. Tecnical report Oct 19, 1993.

[59] V.Strassen Gaussian Elimination is not optimal Numerische Mathematik 14(3):354-356, 1969.

[60] S.Toledo Locality of Reference in LU Decomposition with Partial Pivoting SITAM J.Matrix Anal. Appl.
Vol.18, No. 4, pp.1065-1081, Oct.1997

[61] M.Thottethodi, S.Chatterjee and A.R.Lebeck Tuning Strassen’s Matriz Multiplication for Memory
Efficiency Proc. SC98, Orlando,FL, nov.1998 (http://www.supercomp.org/sc98).

[62] L.G.Valiant A Bridging Model for Parallel Computation Communications of the ACM, 33(8):103-
111,August 1990.

[63] A.Waheed and D.T.Rover A siructured Approach to Instrumentation System Development and Eval-

uation.

[64] R.C.Whaley and J.J.Dongarra Automaticlly Tuned Linear Algebra Software
http://www.netlib.org/atlas/index.html

[65] D.S.Wise Undulani-Block Elimination and Integer- Preserving Matriz Inversion Technical Report 418

Computer Science Department Indiana University August 1995
[66] M.Wolfe More iteration space tiling, Proceedings of Supercomputing, Nov.1989, pg. 655-665.
[67] M.Wolfe High Performance Compilers for Parallel Computing. Addison-Wesley Pub.Co.1995

[68] H.P.Zima and B.M.Chapman Compiling for Distributed-Memory Systems Proceedings of the IEEE
vol 81, n.2 Feb. 1993.

