
Chapter 1

EBNF: A Notation to
Describe Syntax

Precise language is not the problem. Clear language is the problem.
Richard Feynman

Chapter Objectives
� Learn the four control forms in EBNF
� Learn to read and understand EBNF descriptions
� Learn to prove a symbol is legal according to an EBNF description
� Learn to determine if EBNF descriptions are equivalent
� Learn to write EBNF descriptions from specifications and exemplars
� Learn the difference between syntax and semantics
� Learn the correspondence between EBNF rules and syntax charts
� Learn to understand the meaning of and use recursive EBNF rules

1.1 Introduction

EBNF is a notation for formally describing syntax: how to write the linguistic We will use EBNF to describe the
syntax of Pythonfeatures in a language. We will study EBNF in this chapter and then use it

throughout the rest of this book to describe Python’s syntax formally. But
there is a more compelling reason to begin our study of programming with
EBNF: it is a microcosm of programming itself.

First, the control forms in EBNF rules are strongly similar to the the basic Writing EBNF descriptions is
similar to writing programscontrol structures in Python: sequence; decision, repetition, and recursion;

also similar is the ability to name descriptions and reuse these names to build
more complex structures. There is also a strong similarity between the process
of writing descriptions in EBNF and writing programs in Python: we must
synthesize a candidate solution and then analyze it —to determine whether it
is correct and simple. Finally, studying EBNF introduces a level of formality
that we will employ throughout our study of programming and Python.

1.2 Language and Syntax

In the middle 1950s, computer scientists began to design high–level program- John Backus helped developed
the FORTRAN and ALGOL lan-
guages
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ming languages and build their compilers. The first two major successes were
FORTRAN (FORmula TRANslator), developed by the IBM corporation in the
United States, and ALGOL (ALGOrithmic Language), sponsored by a consor-
tium of North American and European countries. John Backus led the effort to
develop FORTRAN. He then became a member of the ALGOL design commit-
tee, where he studied the problem of describing the syntax of these programming
languages simply and precisely.

Backus invented a notation (based on the work of logician Emil Post) that was Backus developed a notation to
describe syntax; Peter Naur then
popularized its use: they are the
B and N in EBNF

simple, precise, and powerful enough to describe the syntax of any program-
ming language. Using this notation, a programmer or compiler can determine
whether a program is syntactically correct: whether it adheres to the grammar
and punctuation rules of the programming language. Peter Naur, as editor
of the ALGOL report, popularized this notation by using it to describe the
complete syntax of ALGOL. In their honor, this notation is called Backus–
Naur Form (BNF). This book uses Extended Backus–Naur Form (EBNF) to
describe Python syntax, because using it results in more compact descriptions.

In a parallel development, the linguist Noam Chomsky began work on a harder At the same time, linguist Noam
Chomsky developed notations to
describe the syntax of natural
languages

problem: describing the syntactic structure of natural languages, such as En-
glish. He developed four different notations that describe languages of increas-
ing complexity; they are numbered type 3 (least powerful) up through 0 (most
powerful) in the Chomsky hierarchy. The power of Chomsky’s type 2 notation
is equivalent to EBNF. The languages in Chomsky’s hierarchy, along with the
machines that recognize them, are studied in computer science, mathematics,
and linguistics under the topics of formal language and automata theory.

1.3 EBNF Rules and Descriptions

An EBNF description is an unordered list of EBNF rules. Each EBNF rule EBNF descriptions comprises a
list of EBNF rules of the form:
LHS ⇐ RHS

has three parts: a left–hand side (LHS), a right-hand side (RHS), and the ⇐
character separating these two sides; read this symbol as “is defined as”. The
LHS is one italicized word (possibly with underscores) written in lower–case; it
names the EBNF rule. The RHS supplies a description of this name. It can
include names, characters (standing for themselves), and combinations of the
four control forms explained in Table 1.1.

Table 1.1: Control Forms of Right–Hand Sides

Sequence Items appear left–to–right; their order in important.

Choice Alternative items are separated by a | (stroke); one item is
chosen from this list of alternatives; their order is unimportant.

Option The optional item is enclosed between [ and ] (square–brackets);
the item can be either included or discarded.

Repetition The repeatable item is enclosed between { and } (curly–braces);
the item can be repeated zero or more times; yes, we can chose
to repeat items zero times, a fact beginners often forget.

EBNF rules can include these six characters with special meanings: ⇐, |, [, ], Special characters standing for
themselves in EBNF rules appear
in boxes

{, and }. If we want to put any of these special characters standing for themself
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in a RHS, we put it in a box: so | means alternative but | means the stroke

character. Any other non-italicized characters that appear in a RHS stand for
themselves.

1.3.1 An EBNF Description of Integers

The following EBNF rules describe how to write simple integers.1 Their RHS An EBNF description: integer
illustrates every control form available in EBNF.

EBNF Description: integer

digit ⇐ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
integer ⇐ [+|-]digit{digit}

We can paraphrase the meanings of these rules in English. What do these EBNF rules
mean? We can paraphrase their
meaning in English

� A digit is defined as one of the ten alternative characters 0 through 9.

� An integer is defined as a sequence of three items: an optional sign (if it
is included, it must be one of the alternatives + or -), followed by any
digit, followed by a repetition of zero or more digits, where each digit is
independently chosen from the list of alternatives in the digit rule.

The RHS of integer combines all the control forms in EBNF: sequence, option,
choice, and repetition. We will see longer, more complicated EBNF descriptions,
but their rules always use just these four control forms.

To make EBNF descriptions easier to read and understand, we align their We adopt a few simple conven-
tions for typesetting EBNF rules
and descriptions

rule names, the ⇐, and their rule definitions. Sometimes we put extra spaces
in a RHS, to make it easier to read; such spaces do not change the meaning of
the rule. We can write the special character t to require a space in an EBNF
rule. Although the rules in EBNF descriptions are unordered, we will adopt the
convention writing them in in order of increasing complexity: the RHS of later
rules often refer to the names of earlier ones, as does integer. The last EBNF
rule names the main syntactic structure being described: in this case integer.

1.4 Proving Symbols Match EBNF Rules

Now that we know how to read an EBNF description, we must learn how to A language lawyer can prove
whether a symbol is legal or il-
legal according to an EBNF de-
scription

interpret its meaning like a language lawyer: given an EBNF description and
a symbol —any sequence of characters— we must prove the symbol is legal or
prove it is illegal, according to the description. Computers perform expertly as
language lawyers, even on the most complicated descriptions.

To prove that a symbol is legal according to some EBNF rule, we must match We perform the proof by match-
ing the characters in a symbol
against the items of an EBNF
rule

all its characters with all the items in the EBNF rule, according to that rule’s
description. If there is an exact match —we exhaust the characters in the
symbol at the same time when exhaust the rule’s description— we classify
the symbol as legal according to that EBNF description and say it matches;
otherwise we classify the symbol as illegal and say it doesn’t match.

1The EBNF descriptions in this chapter are for illustration purposes only: they do not
describe any of Python’s actual language features. Subsequent chapters use EBNF to describe
Python.
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1.4.1 Verbal Proofs (in English)

To prove in English that the symbol 7 matches the integer EBNF rule, we must Proving in English that 7 is a le-
gal integerstart with the optional sign: the first of three items in the sequence RHS of the

integer rule. In this case we discard the option, because it does not match the
only character in the symbol. Next in the sequence, the symbol must match a
character that is a digit; in this case, we choose the 7 alternative from the RHS
of the digit rule, which matches the only character in the symbol. Finally, we
must repeat digit zero or more times; in this case we use zero repetitions.

Every character in the symbol 7 has been matched against every item of the Success: 7 is an integer
integer EBNF rule, according to its control forms: we have exhausted each.
Therefore, we have proven that 7 is a legal integer according to its EBNF
description.

We use a similar argument to prove in English that the symbol +142 matches Proving +142 is a legal integer
the integer EBNF rule. Again we must start with the optional sign: the first
of the three items in the sequence RHS of the integer rule. In this case we
include this option and then choose the + alternative inside the option: we have
now matched the first character in the symbol with the first item of integer’s
sequence. Next in the sequence, the symbol must have a character that we can
recognize as a digit; in this case we choose the 1 alternative from the RHS of
the digit rule, which matches the second character in the symbol. Finally, we
must repeat digit zero or more times; in this case we use two repetitions: for
the first repetition we choose digit to be the 4 alternative, and for the second
repetition we choose digit to be the 2 alternative. Recall that each time we
encounter a digit, we are free to choose any of its alternatives.

Again, every character in the symbol +142 has been matched against every Success: +142 is an integer
item of the integer EBNF rule, according to its control forms: we have exhausted
each. Therefore, we have proven that +142 is also a legal integer.

We can easily prove that 1,024 is an illegal integer by observing that the Some short proofs that the sym-
bols 1,024 A15 and 15- are not
legal integers

comma appearing in this symbol does not appear in either EBNF rule; therefore,
the match is guaranteed to fail: the match fails after discarding the sign option
and matching the first digit. Likewise for the letter A in the symbol A15. Finally,
we can prove that 15- is an illegal integer —not because it contains an illegal
character, but because its structure is incorrect: in this symbol - follows the
last digit, but the sequence in the RHS side of the integer rule requires that the
sign precede the first digit: the match fails after discarding the sign option and
matching two digits, at which point the symbol still contains the character -

while all the items of the integer EBNF rule have been matched. So according
to our rules for proofs, none of these symbols is a legal integer.2 When matching
symbols as a language lawyer, we cannot appeal to intuition: we must rely solely
on the EBNF description that we are matching.

2All three symbols are legal integers under some interpretation: the first uses a comma
to separate the thousands digit from the hundreds, the second is a valid number written in
hexadecimal (base 16), and the third is a negative number —sometimes written this way by
accountants to emphasize, at the end, whether a value is a debit or credit. But according to
the integer EBNF rule, none is legal.
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1.4.2 Tabular Proofs

A tabular proof is a more formal demonstration that a symbol matches an A tabular proof starts with the
EBNF rule to match, and even-
tually generates from it all the
characters in the symbol

EBNF description. The first line in a tabular proof is always the name of
the EBNF rule that specifies the syntactic structure we are trying to match
the symbol against: in this example, integer. The last line is the symbol we
are matching. Each line is derived from the previous according to one of the
following rules.

1. Replace a name (LHS) by its definition (RHS)
2. Choose an alternative
3. Determine whether to include or discard an option
4. Determine the number of times to repeat

Combining rules 1 and 2 (1&2) simplifies our proofs by allowing us, in a single
step, to replace a left–hand side by one of the alternatives in its right–hand
side. The left side of Figure 1.1 shows a tabular proof that +142 is an integer.

1.4.3 Derivation Trees

We illustrate a tabular proof more graphically by writing it as a derivation tree. A derivation tree illustrates a
tabular proof graphically, with
the EBNF rule name at the top
(its root) and the symbol’s char-
acters at the bottom (its leaves)

The downward branches in such a tree illustrate the rules that allow us to go
from one line to the next in a tabular proof. Although a derivation tree displays
the same information as a tabular proof, it omits certain irrelevant details: the
ordering of some decisions in the proof (e.g., which digit is replaced first). The
EBNF rule appears at the root and the matching symbol appears in the leaves
of a derivation tree, at the bottom when its characters are read left to right.
The right side of Figure 1.1 shows a derivation tree for the tabular proof on the
left, proving +142 is an integer.

Figure 1.1: A Tabular Proof and its Derivation Tree showing +142 is an integer

Status Reason (rule #)
integer Given
[+|-]digit{digit} Replace integer by it RHS (1)
[+]digit{digit} Choose + alternative (2)
+digit{digit} Include option (3)
+1{digit} Replace the first digit by 1 alternative (1&2)
+1digit digit Use two repetitions (rule 4)
+14digit Replace the first digit by 4 alternative (1&2)
+142 Replace the first digit by 2 alternative (1&2)

Section Review Exercises

1. Classify each of the following symbols as a legal or illegal integer. Note
that part o. specifies a symbol containing no characters.

a. +42 e. -1492 i. 2B m. 0 q. +-7
b. + f. 187 j. 187.0 n. forty-two r. 1 543

c. -0 g. drei k. $15 o. s. 1+1
d. VII h. 25¢ l. 1000 p. 555-1212 t. 0007

Answer: Only a, c, e, f, l, m, and t are legal.



CHAPTER 1. EBNF: A NOTATION TO DESCRIBE SYNTAX 6

2. a. Write a tabular proof that -1024 is a legal integer. b. Draw a derivation
tree showing 12 is a legal integer.

Answer: Note how the discarded [+|-] option is drawn in the derivation
tree (without any choice among discarded alternatives).

Status Reason (rule #)
integer Given
[+|-]digit{digit} Replace integer by it RHS (1)
[-]digit{digit} Choose - alternative (2)
-digit{digit} Include option (3)
-1{digit} Replace the first digit by 1 alternative (1&2)
-1digit digit digit Use three repetitions (4)
-10digit digit Replace the first digit by 0 alternative (1&2)
-102digit Replace the first digit by 2 alternative (1&2)
-1024 Replace digit by 4 alternative (1&2)

1.5 Equivalent EBNF Descriptions

The following EBNF description is equivalent3 to the one presented in the pre- When are two EBNF descriptions
equivalentvious section. Two EBNF descriptions are equivalent if they recognize exactly

the same legal and illegal symbols: for every possible symbol, both classify it
as legal or both classify it as illegal —they never classify symbols differently.

EBNF Description: integer (equivalent, in 3 rules)

sign ⇐ +|-
digit ⇐ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
integer ⇐ [sign]digit{digit}

This EBNF description is not identical to the first, because it defines an extra Extra names do not change the
meanings of EBNF descriptions;
nor do different names for the
rules

sign rule that is then used in the integer rule. But these two EBNF descrip-
tions are equivalent, because providing a named rule for [+|-] does not change
which symbols are legal. In fact, even if the names of all the rules are changed
uniformly, exactly the same symbols are recognized as legal.

EBNF Description: z (really integer with different rule names)

x ⇐ +|-
y ⇐ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
z ⇐ [x]y{y}

Any symbol recognized as an integer by the previous EBNF descriptions is A symbol is a legal integer ex-
actly when it is a legal zrecognized as a z in this description, and vice–versa. Just exchange the names

x, y, and z, for sign, digit, and integer in any tabular proof or derivation tree.

Complicated EBNF descriptions are easier to read and understand if their EBNF rules are easier to under-
stand if they are well–named,
but the names do not affect the
meanings of EBNF rules

rules are well–named, each name helping to communicate the meaning of its
rule’s definition. But to a language lawyer or compiler, names —good or bad—
cannot change the meaning of a rule or the classification of a symbol.

3 Equivalent means “are always the same within some context”. For example, dollar bills
are equivalent in their buying power. But a dollar bill has equivalent buying power to four
quarters only in some contexts: when trying to buy a 75¢ item in a vending machine that
requires exact change, the dollar bill does not have equivalent buying power to four quarters.
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1.5.1 Incorrect integer Descriptions

This section examines two EBNF descriptions that contain interesting errors. A simpler syntax for integer; but
one that is not equivalent to the
earlier equivalent descriptions

To start, we try to simplify the integer rule by removing the digit that precedes
the repetition, thinking we can always repeat one more time. The best descrip-
tion is the simplest one; so, if this new rule were equivalent to the previous one,
we have improved the description of integer.

EBNF Description: integer (simplified but not equivalent)

sign ⇐ +|-
digit ⇐ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
integer ⇐ [sign]{digit}

Every symbol that is a legal integer by the previous EBNF descriptions is also The rules are almost equivalent
legal in this one: add another repetition for the first digit. For example, we can
use this EBNF description to prove that +142 is an integer: include the sign
option, choose the + alternative; repeat digit three times, choosing 1, 4, and 2.

But there are two simple symbols that this description recognizes as legal, But they classify two special
one–character symbols differ-
ently

which the previous descriptions classify as illegal: the one–character symbols
+ and - (just signs, without any following digits). The previous integer rules
all require one digit followed by zero or more repetitions; but this integer rule
contains just the repetition, which may be taken zero times. To prove + is a
legal integer: include the sign option, choosing the + alternative; repeat digit
zero times The proof that - is legal is similar.

Also, the “empty symbol”, a corner–case that contains no characters, is rec- They also classify a corner case,
zero–character symbol, differ-
ently

ognized by this EBNF description as a legal integer: discard the sign option;
repeat digit zero times. Because of these three differences, this EBNF descrip-
tion of integer is not equivalent to the previous ones; so which one is correct?
Intuitively, an integer is required to contain at least one digit so I would judge
this integer rule to be incorrect. Note that equivalence is a formal property of
EBNF, but correctness requires human judgement.

Next we address, and fail to solve, the problem of describing how to write A failed EBNF description for de-
scribing numbers with correctly
embedded commas

numbers with embedded commas: e.g., 1,024 and other numbers where the
thousands, millions, billions, ... position is followed by a comma. We can easily
extend the digit rule to allow a comma as one of its alternatives: the comma
character is not one of EBNF’s special control forms, so it stands for itself.

EBNF Description: comma integer (attempt to allow embedded commas)

sign ⇐ +|-
comma digit ⇐ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ,
comma integer ⇐ [sign]comma digit{comma digit}

Using this description, we can prove that 1,024 is a legal comma integer: dis- Numbers with correctly embed-
ded commas are legal according
to this EBNF description; but so
are numbers with incorrectly em-
bedded commas

card the sign option; chose digit to be the 1 alternative; repeat comma digit
four times, choosing , first (a comma) then 0, 2, and 4. But, we can also prove
that 1,,3,4 and many other symbols with incorrectly embedded commas are
legal according to comma integer. So, we cannot treat a comma as if it were
just a digit; we need EBNF rules that are structurally more complicated to cor-
rectly classify exactly those symbols that have embedded commas in the correct
locations. See Exercise 6 for a formal statement of this problem (and a hint
towards the needed structure).
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Section Review Exercises

1. Are either of the following EBNF descriptions equivalent to the standard
ones for integer? Justify your answers.
sign ⇐ [+|-] sign ⇐ [+|-]
digit ⇐ 0|1|2|3|4|5|6|7|8|9 digit ⇐ 0|1|2|3|4|5|6|7|8|9
integer ⇐ sign digit{digit} integer ⇐ sign{digit}digit

Answer: Each is equivalent. Left: it is irrelevant whether the option
brackets appear around sign in the integer rule, or around + and - in
the sign rule; in either case there is a way to include or discard the sign.
Right: it is irrelevant whether the mandatory digit comes before or after
the repeated ones; in either case one digit is mandated and there is a way
to specify one or more digits.

2. Write an EBNF description for even integer that recognizes only even
integers: e.g., -6 and 34 are legal but 3 and -23 are not legal.

Answer:
sign ⇐ +|-
even digit ⇐ 0 | 2 | 4 | 6 | 8
digit ⇐ even digit | 1 | 3 | 5 | 7 | 9
even integer ⇐ [sign]{digit}even digit

3. Normalized integers have no extraneous leading zeros, and zero must be
unsigned. Write an EBNF description for normalized integer. Legal: 0,
-1, and 451. Illegal: -01, 007, +0, and -0.

Answer:
sign ⇐ +|-
non 0 digit ⇐ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
digit ⇐ 0 | non 0 digit
normalized integer ⇐ 0 | [sign]non 0 digit {digit}

1.6 Syntax versus Semantics

EBNF descriptions specify only syntax: the form in which something is written. Syntax = Form
Semantics = MeaningThey do not specify semantics: the meaning of what is written. The sentence,

“Colorless green ideas sleep furiously.” illustrates the difference between syntax
and semantics: it is syntactically correct, because the grammar and punctuation
are proper. But what does this sentence mean? How can ideas sleep? If ideas
can sleep, what does it mean for them to sleep furiously? Can ideas have
colors? Can ideas be both colorless and green? These questions all relate to
the semantics, or meaning, of the sentence. As another example the sentence,
”The Earth is the fourth planet from the Sun” has an obvious meaning, but its
meaning is contradicted by known astronomical facts.

Two semantic issues are important in programming languages: Can different symbols have the
same meaning? Can one symbol
have different meanings?� Can different symbols have the same meaning?

� Can one symbol have different meanings?

The first issue is easy to illustrate; the symbols we analyze is a name. Everyone Different symbols can have the
same meaning and one symbol
can have different meanings de-
pending on its context

has a nickname; so two names (two symbols) can refer to the same person. The
second issue is a bit more subtle; here the symbol we analyze is the phrase “next
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class” in a sentence. Suppose you take a course meeting Mondays, Wednesdays
and Fridays. If your instructor says on Monday, “The next class is canceled.”
you know not to come to class on Wednesday. Now suppose you take another
course meeting every weekday. If your instructor for that course says on Mon-
day, “The next class is canceled.” you know not to come to class on Tuesday.
Finally, if it were Friday, “The next class is canceled.” has the same meaning
in both courses: there is no class on Monday. So the meaning of a phrase (the
symbol) in a sentence may depend on its context (what course you hear it in).

1.6.1 Semantics of the integer EBNF rule

Now we examine the semantic issues related to our EBNF description for in- Positive values can omit the plus
sign; zero can have any signteger. In a mathematical context, the meaning of a number is its value. In

common usage, the symbols 1 and +1 both have the same value: an omitted
sign is considered equivalent to a plus sign. As a more special case, the symbols
0 and +0 and -0 all have the same value: the sign of zero is irrelevant.

Generally, the symbols 000193 and 193 both have the same meaning: leading Leading zeroes are ignored —
sometimeszeros do not effect a number’s value. But there are contexts where 000193 and

193 have different meanings. I once worked on a computer where each user was
assigned a six–digit account number; mine was 000193. When I logged in, the
computer expected me to identify myself with a six–digit account number; it
accepted 000193 but rejected 193.

A final example concerns how measurements are written: although 9.0 and Trailing zeroes can indicate a
measurement’s precision9.0000 have the same value, the former may indicate the quantity was measured

to only two significant digits; the latter to five.

1.6.2 Syntax and Semantics of the integer set EBNF rule

Let us now explore the syntax and semantics of sets of integers. Such sets The syntax of sets: matching
curly–braces, enclosing zero or
more integers that are separated
by commas

start and end with curly–braces, and contain zero or more integers separated
by commas. The empty set {}, a singleton set {1}, and a set containing the
three values {5,-2,11} are all examples of legal sets. Sets are illegal if they
omit either of the matching curly–braces or commas between integers; or have
adjacent commas {1,,2} or extra commas {1,2,3,} or other structural defects.

Given an EBNF description of integer, the following EBNF rules describe such The EBNF description for in-
teger set comprises two EBNF
rules

an integer set. Note that the open/close curly–braces in the integer list rule
means repetition; but the open/close curly–braces in boxes in the integer set
rule means the open/close curly–brace character, not a repetition.

EBNF Description: integer set

integer list ⇐ integer{,integer}
integer set ⇐ { [integer list] }

We can easily prove that the empty set is a legal integer set: discard the in- We can easily prove the empty
set and a singleton set are each
a legal integer set

teger list option between the curly–braces. For a singleton set, we include the
integer list option, but use zero repetitions after the first integer. Figure 1.2
shows a tabular proof and its derivation tree that {5,-2,11} is a legal inte-
ger set. We shorten this tabular proof and its derivation tree by using lemmas:
we take as a lemma (without proof) that 5, -2, and 11 are each an integer; we
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could fill in these details, but they would obscure the main result in the proof.

Figure 1.2: Proofs showing {5,-2,11} is an integer set

Status Reason (rule #)
integer set Given

{ [integer list] } Replace integer set by it RHS (1)

{ integer list } Include option (3)

{ integer{,integer} } Replace integer list by its RHS (1)

{ integer,integer,integer } Use two repetitions (4)

{ 5,integer,integer } Lemma: 5 is an integer

{ 5,-2,integer } Lemma: -2 is an integer

{ 5,-2,11 } Lemma: 11 is an integer

Before finishing our discussion of the syntax of integer set, let us re–examine The entity {separator entity}
control form idiom is common in
EBNF: e.g., integer {, integer}

the integer list EBNF rule. It illustrates a common EBNF idiom: some number
of values (here integer) separated from each other by some separator symbol
(here comma). Notice in that rule the number of integer values is always one
greater than the number of commas: there is one integer before the repetition;
and inside the repetition there is one integer following every comma. When we
study the syntax of Python, we will see many examples of this idiom.

Now we switch our focus to semantics and examine when two sets are equiv- Set semantics: whether a value is
duplicated and the order of val-
ues in a set is irrelevant

alent. The rules involve duplicate values and the order of values.

� Duplicate values are irrelevant and can be removed: e.g., {1,3,5,1,3,3,5}
is equivalent to {1,3,5}.

� The order of the values is irrelevant and can be rearranged: e.g., {1,3,5}
is equivalent to {1,5,3} and {3,1,5} and all other permutations of these
values.

By convention, we write sets in an ordered form, starting with the smallest We write sets in a canonical
form: values in ascending order
with no duplicates

value and ending with the largest, and we write each value once. Such a form is
called “canonical”. It is impossible for our EBNF description to enforce these
properties, which is why these rules are considered to be semantic, not syntactic.

The following EBNF rules are an equivalent description for writing integer set. An an equivalent integer set de-
scriptionHere, the option brackets are in the integer list rule, not the integer set rule.

EBNF Description: integer set (equivalent but more complex)

integer list ⇐ [integer{,integer}]
integer set ⇐ { integer list }

There are two stylistic reasons to prefer the original description. First, it Prefer the first EBNF description
of integer set, because it is sim-
pler

better balances the complexity between the EBNF rules: the repetition control
form is in one rule, and the option control form rule is in the other; here both
control forms are in the integer list rule. Second, the new description allows
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integer list to match the empty symbol, which contains no characters; this is a
bit awkward and can lead to problems if this EBNF rule is used in others.

In summary, EBNF descriptions specify syntax, not semantics. When we Syntax is easier to describe for-
mally than semanticsdescribe the syntax of a Python language feature in EBNF, we will describe its

semantics using a mixture of English definitions and illustrations. Computer
scientists are still developing formal notations that describe the semantics of
programming languages in clear and precise ways. In general, form is easier to
describe than meaning.

Section Review Exercises
1. Structured integers are unsigned and can contain embedded underscores

that separate groups of digits, indicating some important structure. We
can use structured integers to encode information in an easy to read form:
dates 7 4 2012, phone numbers 1 800 555 1212, and credit card numbers
3141 5926 5358 9793. Underscores are legal only between digits: not as
the first or last character in the symbol, and not adjacent to each other.

Write a single EBNF rule that describes structured integer, capturing ex-
actly these requirements. Hint: reuse the digit rule and employ a variant
of the idiom discussed above: a variant because there is no mandate that
underscores appear between digits.

Answer: structured integer ⇐ digit{[ ]digit}

2. Semantically, underscores do not affect the value of a structured integer:
e.g., 1 555 1212 has the same meaning as 15551212; when dialing either
number, we press keys for only the characters representing a digit.

a. Find two dates that have the same meaning, when each is written as
a different looking structured integer. b. Propose a new semantic require-
ment for writing dates that alleviates this problem.

Answer: a. The date December 5, 1987 is written as 12 5 1987; the date
January 25, 1987 is written as 1 25 1987. Both symbols have the same
meaning: the value 1251987. b. To alleviate this problem, always use two
digits to specify a day, adding a leading zero if necessary. We write the
first date as 12 05 1987 and the second as 1 25 1987. These structured
integers have different values.

1.7 Syntax Charts

A syntax chart is a graphical representation of an EBNF rule. Figure 1.3 Syntax charts are a graphical
representation of EBNF rulesillustrates how to translate each EBNF control form into its equivalent syntax

chart. In each case, we must follow the arrows from the beginning of the picture
to the end, staying on a path through all the characters in the symbol.

In a sequence, we must go through each item. In a choice, we must go We can translate each EBNF
control form to an equivalent
syntax chart and traverse it from
left to right

through one item/rung in the ladder of alternatives. In an option we must go
through either the top rung including the item, or the bottom rung discarding
it. Repetition is like option, but we can additionally repeat the item in the top
rung; this picture is the only one with a right–to–left arrow.

We can combine these control forms to translate the RHS of any EBNF rule We can compose the syntax
charts for an EBNF description
into one large chart with no
named EBNF rules

into its equivalent syntax chart. We can also compose related syntax charts into
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Figure 1.3: Syntax chart equivalents of EBNF rules

one big syntax chart that contains no named EBNF rules, by replacing each
named LHS with the syntax chart for its RHS. Figure 1.4 shows the syntax
chart equivalents of the digit and the original integer EBNF rules, and one
large composed syntax chart for integer —with no other named EBNF rules.

The syntax charts in Figure 1.5 illustrate the RHS of three interesting EBNF Syntax charts can help us disam-
biguate small EBNF rulesrules. The first shows a repetition of two alternatives, where any number of

intermixed As and Bs are legal: AAA, BB, or BABBA. A different choice can be
made for each repetition. The second shows two alternatives where a repetition
of As or a repetition of Bs are legal: AAA or BB, but not AB: once the choice is
made, only one of these characters can be repeated. Any symbol legal in this
rule is legal in the first, but not vice versa.

The last illustration shows how the sequence and choice control forms interact: We can use two EBNF rule to
factor a common tail in two al-
ternatives

the stroke separates the first alternative (the sequence AB) from the second
(just C). To describe the sequence of A followed by either B or C we must
write something different: either both alternatives fully or use a second rule to
“factor out” the alternatives. tail ⇐ B | C

simple ⇐ A B | A C simple ⇐ A tail

EBNF is a compact text–based notation; syntax charts present the same Which is better: EBNF or syntax
charts?information, but in a graphical form. Which is better? For beginners, syntax

charts are easier to use when proving whether symbols legal or illegal: we
just follow the arrows to see if we can get from the start to the end. For
more advanced students, EBNF descriptions are better: they are smaller and
eventually are easier to read and understand (and computers process text more
easily than pictures). Because beginning students become advanced ones, this
book uses EBNF rules —not syntax charts— to describe Python’s syntax.

Section Review Exercises

1. a. Translate each of the following right–hand sides into its syntax chart.
A{[ ]A} {A[B|C]} {A | B[C]}

b. Which symbols are legal according to the first RHS: A A, AA AAA, A,
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Figure 1.4: Syntax charts for digit and integer and a composed integer

A , A A? c. Which symbols are legal according to the second and third
RHS: ABAAC, ABC, BA, AA, ABBA.

Answer:

b. A A and AA AA. c. For the second, ABAAC, AA. For the third, ABC, BA, AA,

Figure 1.5: Syntax charts disambiguating Interesting EBNF Rules
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and ABBA.

1.8 Advanced EBNF: Recursion (optional)

This section examines two advanced concepts: recursive EBNF rules and using Recursion is a simple and power-
ful feature in EBNFthem to describe EBNF in EBNF. We will learn that recursion is more powerful

than repetition and that we must use recursive EBNF rules to specify the
structure of certain complicated symbols. In programming, recursion is a useful
technique for specifying and processing complex data structures.

Recursive EBNF descriptions can contain rules that are “directly recursive” Direct recursion is when the RHS
of an EBNF rule refers to the
name of its LHS

or “mutually” recursive: such rules use their names in a special way. A directly
recursive EBNF rule uses its own name in its definition: the RHS of the EBNF
rule refers to the name of its LHS. Let’s look at an example to see how we avoid
what looks like a circular definition. The following directly recursive EBNF
rule4 is very simple: it allows symbols containing any number of As, which we
can describe mathematically as An, where n ≥ 0 (meaning n As, where n is
greater than or equal to 0: zero As is the empty symbol).

EBNF Description: r (a sequence of As, defined recursively)

r ⇐ | Ar

The first alternative in r contains the empty symbol, which is a legal r: it is A directly recursive EBNF rule
requires a RHS with at least one
non–recursive alternative

a sequence of zero As. Directly recursive EBNF rules must include at least
one alternative that is not recursive, otherwise they are circular and describe
only infinite–length symbols. Often there is just one non–recursive alternative,
which is the empty symbol, and is written first in the EBNF rule.

The second alternative means that an A preceding anything that is a legal In a recursive EBNF rule, we
just substitute the LHS with
any alternative in the RHS —
something that might not or
might contain the name of its
LHS

r is also recognized as an r; likewise, if we have an r in a tabular proof, we
can replace it by an A followed by an r (or by the empty symbol, avoiding a
completely circular definition). So A is a legal r because it has an A preceding the
empty symbol (which is a legal r); likewise AA is also a legal r, because it has
an A preceding an A (which we just proved was a legal r), etc. Figure 1.6 shows
a tabular proof and its derivation tree, illustrating how AAA is a legal r. Finally,
if we required at least one A, this rule can be written more understandably as
r ⇐ A | Ar, with A (not empty) as the non–recursive alternative.

Figure 1.6: A Tabular Proof and its Derivation Tree showing AAA is an r

Status Reason (rule #)
r Given
Ar Replace r by the second alternative in its RHS (1&2)
AAr Replace r by the second alternative in its RHS (1&2)
AAAr Replace r by the second alternative in its RHS (1&2)
AAA Replace r by the first (empty) alternative in it RHS (1&2)

4An equivalent description is r ⇐ | rA, which is left–recursive instead of right–recursive.
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The recursive EBNF rule r is equivalent to the non–recursive EBNF rule Recursion is more powerful than
repetitionr⇐ {A}, which uses repetition instead. Recursion can always replace repetition,

but the converse is not true,5 because recursion is more powerful than repetition.
For example the following directly recursive EBNF description specifies that a
symbol is legal if it has the same number of Bs following As: AnBn, where n ≥ 0.

EBNF Description: eq

eq ⇐ | AeqB

This description cannot be written without recursion. The same symbols are eq ⇐{A}{B} is not equivalent;
there is no restriction on equal
numbers of As and Bs

all legal with the rule eq ⇐ {A}{B}, but by this rule does not (and cannot)
specify that only equal number of As and Bs in a symbol are legal.

We asserted above that repetition can always be replaced by recursion. We EBNF, with option and repeti-
tion, is no more powerful than
BNF, without these features:
no special meanings for square–
brackets and curly–braces; we
can rewrite EBNF rules into BNF
rules

can also replace any option control form by an equivalent choice control form
that also contains an empty symbol. Using both techniques, we can rewrite
our original integer description —or any other EBNF rules— using only the
recursion and choice control forms and the empty symbol. In fact, the original
definition of BNF had only recursion and choice; EBNF (developed by Niklaus
Wirth) added the option and repetition control forms. So, although EBNF has
more features and therefore is harder to learn, it has no more power than BNF,
but its descriptions are often smaller and easier to understand.

EBNF Description: integer (using BNF not EBNF)

sign ⇐ | + | -
digit ⇐ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
digits ⇐ | digit digits
integer ⇐ sign digit digits

Designers have to balance the complexity of learning and using a tool with the Is it better to have a more com-
plicated notation that is harder
to learn that leads to simpler de-
scriptions?

complexity building artifacts with the tool. This is a trade–off that we will
revisit often when discussing features in the Python programming language.

Even recursive EBNF rules are not powerful enough to describe all simple
Recursive EBNF rules have their
limits toosymbols. For example, they cannot describe symbols having some number of

As, followed by the same number of Bs, followed by the same number of Cs:
AnBnCn, where n ≥ 0. To specify such a description, we need a more powerful
notation: type 1 or type 0 in the Chomsky Hierarchy; programming languages
like Python are type 0, the most complicated/powerful in the hierarchy. So why
do we use EBNF? Because it is the simplest notation that is powerful enough
to describe the syntactic structures in a typical programming language.

1.8.1 Describing EBNF using Recursive EBNF rules

EBNF descriptions are powerful enough to describe their own syntax. Although EBNF is powerful enough to de-
scribe itself using mutual recur-
sion

such an idea may seem odd at first, recall that dictionaries use combinations
of English words to describe English words. The EBNF rules describing EBNF
illustrate mutual recursion: although no rule is directly recursive, the RHS of
rhs is defined in terms of sequence, whose RHS is defined in terms of option
and repetition, whose RHSs are defined in terms of rhs. Thus, these rules are

5The EBNF rule r is “tail–recursive”: the recursive reference occurs at the end of an
alternative. All “tail–recursive” EBNF rules can be replaced by equivalent EBNF rules that
use repetition; but not all recursive rules are tail–recusive; eq isn’t.
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mutually described in terms of each other.

For easier reading, these rules are grouped into three categories: character– The description is grouped into
3 categories, and the later rules
use the names of the earlier rules

set related, LHS/RHS related (mutually recursive), and EBNF related. Recall
that when a boxed character appears in an EBNF rule, it stands for itself, not
its special meaning in EBNF. The empty symbol appears as an empty box.

EBNF Description: ebnf description

lower ⇐ a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z
upper ⇐ A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z
digit ⇐ 0|1|2|3|4|5|6|7|8|9
special ⇐ -| |"|#|&|’|(|)|*|+|,|.|/|:|;|<|=|>
character ⇐ lower | upper | digit | special
empty ⇐

lhs ⇐ lower{[ ]lower}
option ⇐ [ rhs ]

repetition ⇐ { rhs }

sequence ⇐ empty | {character | lhs | option | repetition}
rhs ⇐ sequence{ | sequence}

ebnf rule ⇐ lhs ⇐ rhs
ebnf description ⇐ {enbf rule}

Section Review Exercises

1. a. Write a tabular proof that shows AAAABBBB is a legal eq. b. Draw a
derivation tree showing AABB is a legal eq.

Answer:
Status Reason (rule #)
eq Given
AeqB Replace eq by the second alternative in its RHS (1&2)
AAeqBB Replace eq by the second alternative in its RHS (1&2)
AAAeqBBB Replace eq by the second alternative in its RHS (1&2)
AAAAeqBBBB Replace eq by the second alternative in its RHS (1&2)
AAAABBBB Replace eq by the first (empty) alternative in its RHS (1&2)

2. Replace the integer list EBNF rule by an equivalent directly recursive one.

Answer: integer list ⇐ integer | integer,integer list

3. Rewrite the EBNF rule ebnf⇐ {A[B|C]} as an equivalent BNF description.

Answer:
choice ⇐ | B | C
bnf ⇐ | A choice bnf

Chapter Summary

This chapter examined the use of EBNF rules to describe syntax. It started by
discussing EBNF descriptions, named rules, and the control forms used in their
right–hand sides: sequence, choice, option, and repetition. We saw how to write
three different kinds of proofs to demonstrate whether or not a symbol was legal
according to an EBNF description: in English, and more formally as tabular
proofs and derivation trees. We saw various EBNF descriptions throughout the
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chapter, and analyzed each according to it syntax and semantics. To be correct,
EBNF descriptions must be inclusive enough to include all legal symbols, but
restrictive enough to exclude all illegal symbols. Sometimes different EBNF
rules are equivalent: they classify all symbols exactly the same: legal in both or
illegal in both. We saw that syntax charts present exactly the same information
contained in EBNF rules, but more graphically: we should be able to convert
descriptions back and forth between EBNF rules and their syntax charts. Fi-
nally, this chapter discussed recursive descriptions (using direct and mutual
recursion) and the latter’s use in an EBNF description of EBNF descriptions.

Chapter Exercises

1. The control forms in each of the following pairs are not equivalent. Find
the simplest (shortest) symbol that is classified differently by each control
form in the pair. Hint: try small combinations of A and B.

a1. [A][B] b1. {A | B} c1. [A][B]
a2. [A[B]] b2. {A} | {B} c2. A | B

2. Simplify each of the following control forms (but preserve equivalence).
For this problem, simpler means shorter or has fewer nested control forms.

a. A | B | A c. [A]{A} e. [A|B] | [B|A] g. A| AB
b. [A[A[A]]] d. [A]{C} | [B]{C} f. {[A|B][B|A]} h. A | AA | AAA | AAAA

3. Write an EBNF description for phone, which describes telephone numbers
written according to the following specifications.

� Normal: a three digit exchange, followed by a dash, followed by a
four digit number: e.g., 555-1212

� Long Distance: a 1, followed by a dash, followed by a three digit
area code enclosed in parentheses, followed by a three digit ex-
change, followed by a dash, followed by a four digit number: e.g.,
1-(800)555-1212

� Interoffice: an 8 followed by a dash followed by a four digit number:
e.g., 8-2404.

The description should be compact, and each rule should be well named.

4. Write an EBNF description for sci not, numbers written in scientific no-
tation, which scientists and engineers use to write very large and very
small numbers compactly. Avogadro’s number is written 6.02252xl0↑23
and read as 6.02252 —called the mantissa— times 10 raised to the 23rd

power —called the exponent. Likewise, the mass of an electron is written
9.11xl0↑–31 and earth’s gravitational acceleration constant is written 9.8
—this number is pure mantissa; it is not required to be multiplied by any
power of ten. Numbers in scientific notation always contain at least one
digit in the mantissa; if that digit is nonzero:

� It may have a plus or minus sign preceding it.

� It may be followed by a decimal point, which may be followed by
more digits.

� It may be followed by an exponent that specifies multiplication by
ten raised to some non-zero unsigned or signed integer power.
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The symbols 0.5, 15.2, +0.0x10↑5, 5.3x10↑02, and 5.3xlO↑2.0 are all
illegal in scientific notation. Hint: my solution uses a total of five EBNF
rules: non 0 digit, digit, mantissa, exponent, and sci not.

5. a. Write an EBNF description for list, which shows a list of Xs punctu-
ated according to the following rule: one X by itself, two Xs separated by
and, or a series of n ≥ 3 Xs where the first n−1 are separated by commas,
with and separating the last two. Legal: X; X and X; X, X and X; and X,

X, X and X. Illegal: empty symbol; X,; X, X; X, and X; X, X, and X; X
and X and X; commas missing or in other strange places.

b. Write an EBNF description for list, which shows a list of Xs punctu-
ated according to the following rule: one X by itself, two Xs separated by
and, or a series of n ≥ 3 Xs where the first n − 1 are ended by commas,
with and appearing before the last X. Legal: X; X and X; X, X, and X;
and X, X, X, and X. Illegal: empty symbol; X,; X, X; X, and X; X, X

and X; X and X and X; commas missing or in other strange places.

6. Write an EBNF description for comma integer, which includes normal-
ized unsigned or signed integers (no extraneous leading zeros) that have
commas in all the correct places (separating thousands, millions, billions,
etc.) and nowhere else. Legal: 0; 213; -2,048; and 1,000,000. Illegal:
-0; 062; 0,516; 05,418; 54,32,12; and 5,,123. Hint: What can you say
is always true in legal numbers with commas and triples of digits?

7. Using the following rules, write an EBNF description for train. A single
letter stands for each car in a train: Engine, Caboose, Boxcar, Passenger
car, and Dining car. There are four rules specifying how to form trains.

� One or more Engines appear at the front; one Caboose at the end.
� Boxcars always come in pairs: BB, BBBB, etc.
� There cannot be more than four Passenger cars in a series.
� One dining car must follow each series of passenger cars.

These cars cannot appear anywhere other than these locations. Here are
some legal and illegal exemplars.

Train Analysis

EC Legal: the smallest train
EEEPPDBBPDBBBBC Legal: a train showing all the cars
EEBB Illegal: no caboose (everything else OK)
EBBBC Illegal: three boxcars in a row
EEPPPPPDBBC Illegal: more than four passenger cars in a row
EEPPBBC Illegal: no dining car after passenger cars
EEBBDC Illegal: dining car after box car

8. The interaction of two syntactic structures can sometimes have an unex-
pected problematic semantic interaction. Briefly describe a bad interac-
tion in an integer set that specifies values that are comma integers.

9. A “range” is a compact way to write a sequence of integers. We will use
the symbol .. to mean “up through”, so the range 2..5 denotes the val-
ues 2, 3, 4, and 5: the values 2 up through 5 inclusive at both ends.
Using such a notation, we can write sets more compactly: instead of
{2, 3, 4, 5, 8, 10, 11, 12, 13, 17, 18, 19, 21} we could write
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{2..5, 8, 10..13, 17..19, 21}. Semantically, for any range x..y the
meaning of the range is
x ≤ y The range x..y is equivalent to all integers between x and y

inclusive. By this rule, the range x..x is equivalent to just the
value x.

x > y The range x..y is equivalent to the “empty” range and contains
no values.

By convention, we do not use ranges to write single values nor ranges
of two values (1,2 is more compact than 1..2). With can define inte-
ger range and use it to update our integer set EBNF description.

EBNF Description: integer set (updated to use range)

integer range ⇐ integer[..integer]
integer list ⇐ integer range{,integer range}
integer set ⇐ { [integer list] }

a. Given the semantics of sets of ranges, convert the following sets into
canonical form, using ranges when appropriate.

a. {1,5,9,3,7,11,9} c. {8,1,2,3.4,5,12,13,14,10} e. {1..3,8,2..5,12,4}
b. {1..3,8,5..9,4} d. {2..5,7..10,1} f. {4..1,12,2,7..10,6}

g. The following EBNF description for integer-set is more compact than
the previous one. But, they are not equivalent: this definition allows more
sets than the previous definition. Find one of these sets.
EBNF Description: integer set (more compact, but not equivalent)

integer list ⇐ integer{,integer|..integer}
integer set ⇐ { [integer list] }

10. a. Write a directly recursive EBNF rule named mp that describes all
symbols that have matching parentheses. Legal: (), and ()()(), and
()(()()), and ((())())(()(()))(). Illegal: (, and ()), and (()().
b. Show a tabular proof and its derivation tree proving ()(()()) is legal.

11. I once saw a bumper sticker that said, “Sucks Syntax”. What is the joke?
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