An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback

Eamonn J. Keogh and Michael J. Pazzani

Department of Information and Computer Science University of California, Irvine, California 92697 USA {eamonn,pazzani}@ics.uci.edu

Abstract

We introduce an extended representation of time series that allows fast, accurate classification and clustering in addition to the ability to explore time series data in a relevance feedback framework. The representation consists of piecewise linear segments to represent shape and a weight vector that contains the relative importance of each individual linear segment. In the classification context, the weights are learned automatically as part of the training cycle. In the relevance feedback context, the weights are determined by an interactive and iterative process in which users rate various choices presented to them. Our representation allows a user to define a variety of similarity measures that can be tailored to specific domains. We demonstrate our approach on space telemetry, medical and synthetic data.

1.0 Introduction

Time series account for much of the data stored in business, medical, engineering and social science databases. Much of the utility of collecting this data comes from the ability of humans to visualize the *shape* of the (suitably plotted) data, and classify it. For example:

- Cardiologists view electrocardiograms to diagnose arrhythmias.
- Chartists examine stock market data, searching for certain shapes, which are thought to be indicative of a stock's future performance.

Unfortunately, the sheer volume of data collected means that only a small faction of the data can ever be viewed.

Attempts to utilize classic machine learning and clustering algorithms on time series data have not met with great success. This, we feel, is due to the typically high dimensionality of time series data, combined with the difficulty of defining a similarity measure appropriate for the domain. For an example of both these difficulties, consider the three time series in Figure 1. Each of them contains 29,714 data points, yet together they account for less than .0001 % of the database from which they were extracted. In addition, consider the problem of clustering these three examples. Most people would group A and C

Copyright © 1998, American Association for Artificial Intelligence (www.aaai.org), All rights reserved.

Figure 1: Examples of time series

together, with B as the outgroup, yet common distance measures on the raw data (such as correlation, absolute distance or squared error) group B and C together, with A as the outgroup.

What is needed is a representation that allows efficient computation on the data, and extracts higher order features. Several such representations have been proposed, including Fourier transformations (Faloutsos et al. 1994), relational trees (Shaw & DeFigueiredo, 1990) and envelope matching/R+ trees (Agrawal et al. 1995). The above approaches have all met with some success, but all have shortcomings, including sensitivity to noise, lack of intuitiveness, and the need to fine tune many parameters.

Piece-wise linear segmentation, which attempts to model the data as sequences of straight lines, (as in Figure 2) has innumerable advantages as a representation. Pavlidis and Horowitz (1974) point out that it provides a useful form of data compression and noise filtering. Shatkay and Zdonik (1996) describe a method for fuzzy queries on linear (and higher order polynomial) segments. Keogh and Smyth (1997) further demonstrate a framework for probabilistic pattern matching using linear segments.

Although pattern matching using piece-wise linear segments has met with some success, we believe it has a major shortcoming. When comparing two time series to see

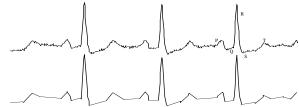


Figure 2: An example of a time series and its piece-wise linear representation

if they are similar, all segments are considered to have equal importance. In practice, however, one may wish to assign different levels of importance to different parts of the time series. As an example, consider the problem of pattern matching with electrocardiograms. If a cardiologist is attempting to diagnose a recent myocardial infarction (MI) she will pay close attention to the S-T wave, and downplay the importance of the rest of the electrocardiogram. If we wish an algorithm to reproduce the cardiologist's ability, we need a representation that allows us to weight different parts of a time series differently.

In this paper, we propose such a representation. We use piece-wise linear segments to represent the shape of a time series, and a weight vector that contains the relative importance of each individual linear segment.

2.0 Representation of time series

There are numerous algorithms available for segmenting time series, many of which where pioneered by Pavlidis and Horowitz (1974). An open question is how to best choose K, the 'optimal' number of segments used to represent a particular time series. This problem involves a trade-off between accuracy and compactness, and clearly has no general solution. For this paper, we utilize the segmentation algorithm proposed in Keogh (1997).

2.1 Notation

For clarity we will refer to 'raw', unprocessed temporal data as time series, and a piece-wise representation of a time series as a sequence. We will use the following notation throughout this paper. A time series, sampled at k points, is represented as an uppercase letter such as A. The segmented version of A, containing K linear segments, is denoted as a bold uppercase letter such as A, where A is a 5-tuple of vectors of length K.

$$\mathbf{A} \equiv \{AXL, AXR, AYL, AYR, AW\}$$

The i^{th} segment of sequence **A** is represented by the line between $(AXL_i \ AYL_i)$ and $(AXR_i \ AYR_i)$, and AW_i , which represents the segments weight. Figure 3 illustrates this notation.

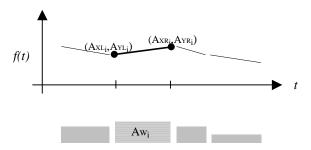


Figure 3: We represent times series by a sequence of straight segments, together with a sequence of weights (shown as the histogram) which contain the relative importance of each segment

After a time series is segmented to obtain a sequence, we initialize all the weights to one. Thereafter, if any of the weights are changed, the weights are renormalized such that the sum of the products of each weight with the length of its corresponding segment, equals the length of the entire sequence, so that the following is always true:

$$\sum\nolimits_{i=1}^{K}W_{i}*(AXR_{i}-AXL_{i})=AXR_{k}-AXL_{1}$$

2.2 Comparing time series

An advantage in using the piece-wise linear segment representation is that it allows one to define a variety of distance measures to represent the distance between two time series. This is important, because in various domains, different properties may be required of a distance measure. Figure 4 shows some of the various distortions one can encounter in time series.

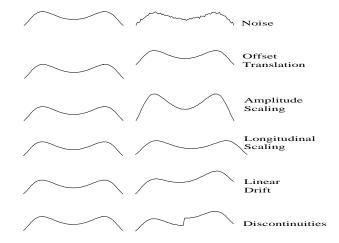


Figure 4: Some of the difficulties encountered in defining a distance measure for time series

It is possible to define distance measures for sequences that are invariant to any subset of the illustrated distortions. For the experiments in this paper we used the simple distance measure given below. This measure is designed to be insensitive to offset translation, linear trends and discontinuities.

$$D(A,B) = \sum_{i=1}^{K} AW_{i} * BW_{i} * |(AYL_{i} - BYL_{i}) - (AYR_{i} - BYR_{i})|$$

It is convenient for notational purposes to assume that the endpoints of the two sequences being compared are aligned. In general, with real data, this is not the case. So we will have to process the sequences first, by breaking some segments at a point which corresponds to an endpoint in the other sequence. This can be done in O(K).

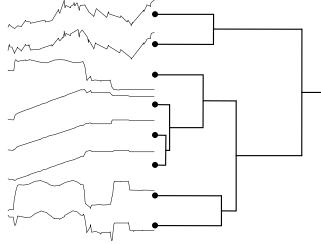


Figure 5: An example of time series hierarchically clustered using our distance measure

2.3 Merging time series

In this section we define an operation on sequences which we call 'merge'. The merge operator allows us to combine information from two sequences, and repeated application of the merge operator allows us to combine information from multiple sequences. The basic idea is that the merge operator takes two sequences as input, and returns a single sequence whose shape is a compromise between the two original sequences, and whose weight vector reflects how much corresponding segments in each sequence agree.

When merging sequences one may wish for one of the two input sequences to contribute more to the final sequence than the other does. To accommodate this, we associate a term called 'influence' with each of the input sequences. The influence term associated with a sequence **S** is a scalar, denoted as **SI**, and may be informally considered a 'mixing weight'. Where the influence term comes from depends on the application and is discussed in detail in sections 3.1 and 4.1 below.

To merge the two sequences A and B with influence terms AI and BI respectively, we use the following algorithm that creates the sequence C:

```
if (AI * BI < 0) then</pre>
                                   sign = -1
else
                                    sign = 1
end
mag = min(|AI|, |BI|) / max(|AI|, |BI|)
scale = max(max(AyL),(AyR)) -
min(min(AyL),(AyR))
for i = 1 to K
     CxL_i = AxL_i
     CxR_i = AxR_i
     C_{YL} = ((A_{YL} * A_{I}) + (B_{YL} * B_{I})) / (A_{I} + B_{I})
      C_{YR_{i}} = ((A_{YR_{i}} * A_{I}) + (B_{YR_{i}} * B_{I})) / (A_{I} + B_{I})
      run = AxR_i - Axl_i
      rise = |(AyL_i - ByL_i) - (AyR_i - ByR_i)|
             = (rise / run) * scale
      C_{W_s} = (A_{W_s} * B_{W_s}) * (1 + (sign * mag) / (1 + d))
end
Cw = normalize(Cw)
```

Table 1: The merge algorithm

2.4 Learning prototypes

Although the merge operator is designed to be a component in the more sophisticated algorithms presented below, it can, by itself, be considered a simple learning algorithm that creates a prototypical sequence. Creating a prototype solely from positive examples works in the following manner. We have a model sequence **A**, which is a typical example of a class of sequences. If we merge sequence **A** with sequence **B**, another member of the same class, the resultant sequence **C** can be considered a more general model for the class. In particular the differences in shape are *minimized* by averaging, and the weights for similar segments are *increased*.

In contrast, creating a prototype from both positive and negative examples uses a negative influence for the negative examples. As before, suppose we have a sequence **A**, which is an example of one class of sequences.

However, suppose $\bf B$ is an example of a different class. If we merge $\bf A$ with $\bf B$, using a negative influence term for $\bf B$, the resultant sequence $\bf C$ is a new prototype for $\bf A$'s class where the differences in shape between $\bf A$ and $\bf B$ are exaggerated and the weights for similar segments are decreased.

The above maps neatly to our intuitions. If we are learning a prototype for a class of sequences from a set of positive examples, we want the shape learned to be an average of all the examples, and we want to increase the weight of segments that are similar, because those segments are good predictors of the class. If however, we are trying to learn from a negative example, we want to exaggerate the differences in shape between classes, and decrease the weight of similar segments, because segments that are similar across classes have no discriminatory power.

3.0 Relevance feedback

Relevance feedback is the reformulation of a search query in response to feedback provided by the user for the results of previous versions of the query. It has an extensive history in the text domain, dating back to Rocchio's classic paper (1971). However, no one has attempted explore time series databases in a relevance feedback framework, in spite of the fact that relevance feedback has been shown to significantly improve the querying process in text databases (Salton & Buckley, 90). In this section we present a simple relevance feedback algorithm which utilizes our representation and we demonstrate it on a synthetic dataset.

Our relevance feedback algorithm works in the following manner. An initial query sequence \mathbf{Q} is used to rank all sequences in the database (this query may be hand drawn by the user). Only the best n sequences are shown to the user. The user assigns influences to each of n sequences. A positive influence is given to sequences that the user approves of. Negative influences are given to sequences that the user finds irrelevant.

The relative magnitude of influence terms reflects how strongly the user feels about the sequences. So if a user "likes" \mathbf{S}_i twice as much as \mathbf{S}_j he can assign influences of $1,\frac{1}{2}$ or 2,1 etc. The sequences are then merged to produce a new query, and the process can be repeated as often as desired.

```
\begin{aligned} & \mathbf{Q}_{\text{new}} &= \text{merge}(\left[\mathbf{Q}_{\text{old}}, \mathbf{Q}_{\text{old}}\mathbf{I}\right], \left[\mathbf{S}_{\text{1}}, \mathbf{S}_{\text{1}}\mathbf{I}\right], \left[\mathbf{S}_{\text{2}}, \mathbf{S}_{\text{2}}\mathbf{I}\right], \dots, \left[\mathbf{S}_{\text{n}}, \mathbf{S}_{\text{n}}\mathbf{I}\right]) \\ & \mathbf{Q}_{\text{new}}\mathbf{I} &= \mathbf{Q}_{\text{old}}\mathbf{I} + \mathbf{S}_{\text{1}}\mathbf{I} + \mathbf{S}_{\text{2}}\mathbf{I} + \dots + \mathbf{S}_{\text{n}}\mathbf{I} \end{aligned}
```

3.1 Experimental results

To test the above algorithm, we conducted the following experiment. We constructed 500 "Type A", and 500 "Type B" time series, which are defined as follows:

- Type A: $Sin(x^3)$ normalized to be between zero and one, plus Gaussian noise with $\sigma = .1$ $-2 \le x \le 2$
- Type B: $Tan(Sin(x^3))$ normalized to be between zero and one, plus Gaussian noise with $\sigma = .1 .2 \le x \le 2$

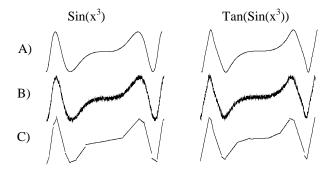


Figure 6: Synthetic data created for relevance feedback experiment

- A) The original time series.
- **B**) The original time series with noise added.
- C) The segmented version of the time series.

Twenty-five experimental runs where made. Each run consisted of the following steps. A coin toss decided whether Type A or Type B was to be the "target" shape (that is, the shape to be considered "relevant" for that particular experiential run). The initial query was made, and the quality of the ranked sequences was measured as defined below. The best 15 sequences were shown to the user, who then rated them by assigning influences that reflected how closely he thought they resembled the target shape. A new query was built and the search/rate process was repeated twice more.

We evaluated the effectiveness of the approach by measuring the average precision of the top 15 sequences, and the precision at the 25, 50 and 75 percent recall points. Precision (P) is defined as the proportion of the returned sequences which are deemed relevant, and recall (R) is defined as the proportion of relevant items which are retrieved from the database. These results are shown in Table 2.

In order to see if the ability to assign negative influence terms is helpful, we did the following. For each experimental run we also built queries which contained just the feedback from the sequences judged relevant. These results are shown in parentheses in Table 2.

	Initial Query	Second Query	Third Query
<i>P</i> of top 15	.51	.91 (.68)	.97 (.72)
P at 25% R	.52	.91 (.69)	.96 (.71)
P at 50% R	.49	.89 (.66)	.95 (.69)
P at 75% R	.51	.87 (.63)	.95 (.68)

Table 2: Results of relevance feedback experiments. The values recorded in parentheses are for the queries built just from positive feedback

As one might expect, the initial query (which does not have any user input) returns the sequences in essentially random order. The second query produces remarkable improvement, and the third query produces near perfect ranking. The queries built from just positive feedback do produce improvement, but are clearly inferior to the more general method. This demonstrates the utility of learning from both positive and negative instances.

4.0 Classification

Given our representation, an obvious approach to classification is to merge all positive instances in the training set, and use the resultant sequence as a template to which the instances to be classified are compared. This may work in some circumstances, but in some domains it may totally fail. The reason for the potential failure is that there may be two or more distinct shapes that are typical of the class.

To avoid this problem, an algorithm needs to be able to detect the fact that there are multiple prototypes for a given class, and classify an unlabeled instance to that class if it is sufficiently similar to *any* prototype. In the next section we describe such an algorithm, which we call CTC (Cluster, Then Classify).

4.1 Classification algorithm

Table 3 shows an outline of our learning algorithm. The input is S, the set of n sequences that constitute the training data. The output is P, a set of sequences, and a positive scalar ε .

An unseen sequence U will be classified as a member of a class if and only if, the distance between U and at least one member of P is less than ε .

The algorithm clusters the positive examples using the group average agglomerative method as follows. The algorithm begins by finding the distance between each negative instance in S, and its closest positive example. The mean of all these distances, neg- dis_1 is calculated. Next the distance between each positive instance in S, and the most similar positive example is calculated. The mean of all these distances, pos- dis_1 is calculated. The fraction $q_1 = pos$ - dis_1 /neg- dis_1 can now be calculated.

At this point, the two closest positive examples are replaced with the result of merging the two sequences, and the process above is repeated to find the fraction $q_2 = pos-dis_2 / neg-dis_2$. The entire process is repeated until a single sequence remains. Figure 7 shows a trace through this part of the algorithm for a dataset that contains just 4 positive instances. The set of sequences returned is the set for which q_1 is minimized.

The ε returned is $(pos-dis_i + neg-dis_i)/2$.

```
Let P<sub>i</sub> be the set of all positive instances in S
Cluster all sequences in P<sub>i</sub>
for i = 1 to n

neg-dis<sub>i</sub> = mean distance between all negative
   instances and their closest match in P<sub>i</sub>
pos-dis<sub>i</sub> = mean distance between all positive
   instances and their closest match in P<sub>i</sub>
q<sub>i</sub> = pos-dis<sub>i</sub> / neg-dis<sub>i</sub>
Let A and B be the closest pair of sequences in P<sub>i</sub>
C = merge([A,AI],[B,BI])
CI = AI + BI
Remove A and B from P<sub>i</sub>
Add C to P<sub>i</sub>
end
let best equal the i for which q<sub>i</sub> is minimized
return P<sub>best</sub> , (pos-dis<sub>best</sub> + neg-dis<sub>best</sub>) / 2
```

Table 3: The CTC learning algorithm

4.2 Experimental results

To test the algorithm presented above we ran experiments on the following datasets.

- Shuttle: This dataset consists of the output of 109 sensors from the first eight-hours of Space Shuttle mission STS-067. The sensors measure a variety of phenomena. 18 of them are Inertia Movement Sensors, measured in degrees (examples are shown in Figures 1 and 7). The task is to distinguish these from the other 91 sensors
- Heart: This dataset consists of RR intervals obtained form Holter ECG tapes sampled at 128 Hz (Zebrowski 1997). The data is in a long sequence that contains 96 ventricular events. We extracted the 96 events, and 96 other sections, of equal length, chosen at random.

For comparison purposes we evaluated 4 algorithms on the two datasets described above. CTC is the algorithm described in section 4.1. CTCuw is the same algorithm with the weight feature disabled (we simply hardcoded the weights to equal one). NN is a simple nearest neighbor algorithm that uses the raw data representation of the time series. An unlabeled instance is assigned to the same class as its closest match in the training set. We used absolute error as a distance measure, having empirically determined that it was superior to the other obvious candidates (i.e. squared error, correlation). NNs is the same algorithm as NN except it uses the sequence representation and the distance measure defined in section 2.2.

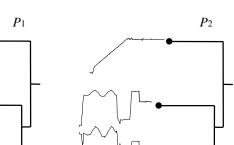
We ran 2 fold cross validation 100 times. All algorithms were trained and tested on exactly the same folds. The results are presented in table 4.

	CTC	CTCuw	NN	NNs	Default
Shuttle	98.1	94.4	83.9	87.7	83.5
Heart	84.5	71.4	61.2	66.3	50.0

Table 4: Experiment results of classification experiments

On both datasets the CTC algorithm performs the best. Its ability to outperform CTCuw seems to be a justification of our weighted representation. On the Shuttle dataset NN performs at the base rate. We surmise this is probably due to its sensitivity to discontinuities, which are a trait of this dataset. NNs ability to do significantly better supports this hypothesis.

 $q_1 = .63$



5.0 Related work

There has been no work on relevance feedback for time series. However, in the text domain there is an active and prolific research community. Salton and Buckley (1990) provide an excellent overview and comparison of the various approaches.

6.0 Conclusions

We introduced a new enhanced representation of time series and empirically demonstrated its utility for clustering, classification and relevance feedback.

References

Agrawal, R., Lin, K. I., Sawhney, H. S., & Shim, K.(1995). Fast similarity search in the presence of noise, scaling, and translation in times-series databases. In *VLDB*, September.

Faloutsos, C., Ranganathan, M., & Manolopoulos, Y. (1994). Fast subsequence matching in time-series databases. SIGMOD - *Proceedings of Annual Conference*, Minneapolis, May.

Hagit, S., & Zdonik, S. (1996). Approximate queries and representations for large data sequences. *Proc. 12th IEEE International Conference on Data Engineering*. pp 546-553, New Orleans, Louisiana, February.

Keogh, E. (1997). Fast similarity search in the presence of longitudinal scaling in time series databases. Proceedings of the 9th International Conference on Tools with Artificial Intelligence. pp 578-584. IEEE Press.

Keogh, E., Smyth, P. (1997). A probabilistic approach to fast pattern matching in time series databases. *Proceedings of the 3rd International Conference of Knowledge Discovery and Data Mining*. pp 24-20, AAAI Press.

Pavlidis, T., Horowitz, S., (1974). Segmentation of plane curves. *IEEE Transactions on Computers*, Vol. C-23, No 8.

Salton, G., & Buckley, C. (1990). Improving retrieval performance by relevance feedback. JASIS 41. pp. 288-297.

Shaw, S. W. & DeFigueiredo, R. J. P. (1990). Structural processing of waveforms as trees. *IEEE Transactions on Acoustics, Speech, and Signal Processing*. Vol. 38 No 2 February.

Rocchio, J. J., Jr.(1971). Relevance feedback in information retrieval: The Smart System - *Experiments in Automatic Document Processing*. Prentice-Hall Inc., pp. 337-354.

Zebrowski, J,J. (1997).

http://www.mpipks-dresden.mpg.de/~ntptsa/Data/Zebrowski-D/

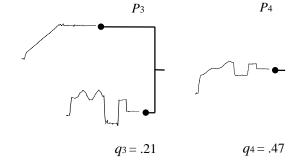


Figure 7: A trace through the CTC algorithm on a small dataset. The first set of prototypes P_1 , are too specific and do not generalize to the test set. The final set P_4 contains a single sequence that is too general, because it is trying to model two distinct shapes. The set P_3 is the best compromise.

 $q_2 = .52$