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Abstract—Two decades since the idea of using software diver-
sity for security was put forward, ASLR is the only technique
to see widespread deployment. This is puzzling since academic
security researchers have published scores of papers claiming to
advance the state of the art in the area of code randomization.
Unfortunately, these improved diversity techniques are generally
less deployable than integrity-based techniques, such as control-
flow integrity, due to their limited compatibility with existing
optimization, development, and distribution practices.

This paper contributes yet another diversity technique called
pagerando. Rather than trading off practicality for security, we
first and foremost aim for deployability and interoperability.
Most code randomization techniques interfere with memory
sharing and deduplication optimization across processes and
virtual machines; ours does not. We randomize at the granularity
of individual code pages but never rewrite page contents. This
also avoids incompatibilities with code integrity mechanisms that
only allow signed code to be mapped into memory and prevent
any subsequent changes. On Android, pagerando fully adheres
to the default SELinux policies. All practical mitigations must
interoperate with unprotected legacy code; our implementation
transparently interoperates with unmodified applications and
libraries. To support our claims of practicality, we demonstrate
that our technique can be integrated into and protect all shared
libraries shipped with stock Android 6.0. We also consider
hardening of non-shared libraries and executables and other
concerns that must be addressed to put software diversity
defenses on par with integrity-based mitigations such as CFI.

I. MOTIVATION

Anyone who develops a new exploit mitigation face non-
trivial trade-offs. Improving security often degrades (some
aspect of) performance and vice versa. To complicate matters,
mitigations have complex and often synergistic interactions.
ASLR and CFI [1], for instance, both rely on DEP to prevent
code injection. Finally, academic research tends to focus on
normal program operation. Our experience, however, from
interviewing and interacting with security engineers is that
“auxiliary” processes such as distribution, updating, and de-
bugging may prevent adoption of new and improved defenses.

CFI passed through the proverbial eye of the needle and is
now a fully supported feature in mainstream C/C++ compilers
such as MSVC, GCC, and LLVM. To keep performance
overheads reasonable, only forward edges are checked but Intel
has announced that hardware support for CFI is forthcoming.
This will allow checking of backwards (return) edges as well.

With more and more code being protected by some vari-
ant of CFI, should we keep working on code-randomization
defenses? We believe so, for the following reasons:

1) CFI and code randomization target complementary steps
in the exploit kill chain. CFI prevents the control flow

hijacking step which diverts execution to an attacker-
controlled location. Code randomization, in contrast,
makes it hard for an attacker to pick the “right” code
locations that, when executed, achieve the exploit goals.

2) CFI and code randomization have disjoint weaknesses.
Code randomization assumes that memory contents are
kept secret from adversaries but various types of infor-
mation leakage can undermine that assumption. CFI is
secret-less but permits control flows not strictly needed
for correct program execution, which leaves harmful
control flows available to adversaries [2], [3], [4], [5].

3) Hardware capabilities may favor one solution over the
other. Future high-end x86 processors will likely make
CFI and even memory safety solutions run with tolerable
overheads. Mobile processors, on the other hand, favor
randomization-based solutions. Modern, 64-bit ARM
processors support non-readable (execute-only) code
pages which helps prevent information leakage [6], [7].

Goals and Contributions The remainder of this paper
describes our efforts to design a code randomization defense
with the same level of practicality as CFI and the other
standard mitigations in widespread use today. Our technique
distinguishes itself by being the first that meets the operational
requirements for protection of shared libraries in the Android
operating system while offering higher entropy and leakage
resilience than existing defenses on that platform. In particular,
our solution—pagerando—is first to randomize code in shared
libraries at the level of individual memory pages while still
interoperating transparently with other types of code. The
following sections explain the design of pagerando (§ II),
evaluate our techniques (§ III), and discuss a few remaining
issues (§ IV).

II. PAGERANDO DESIGN

The goal of pagerando is to increase the randomization
granularity over ASLR [8] while being equally efficient and
deployable. ASLR, as implemented in Linux, simply maps
the program binary into memory at a randomly chosen base
address. While it is easy to fault ASLR for only randomizing
the base address, this approach has a number of practical
benefits. Most importantly, ASLR’ed code can be distributed
and patched just like any binary. Similarly, since the on-disk
binary is never modified, ASLR is transparent w.r.t. code
signing and checksumming techniques as well. Finally, ASLR
maps position independent code pages directly into virtual
memory without modification so only one copy of the .text
section of a shared library is kept in physical memory.
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The Oxymoron approach by Backes and Nürnberger [9]
shows that it is possible to randomize the layout of individ-
ual code pages while still allowing memory sharing across
processes. pagerando randomizes at the same granularity as
Oxymoron, but sorts functions into bins rather than splitting
functions at page boundaries, since binning avoids the need to
insert extra jumps into functions that cross page boundaries.
Unlike Oxymoron, pagerando supports dynamic linking, does
not rely on x86 segmentation, and is interoperable with
external libraries and JIT’ed code. Like ASLR, binaries are
prepared for randomization by the compiler and linker, shipped
to the host system, and randomized at load time as shown in
Figure 1. Since we target Android in our implementation of
pagerando, we modified the LLVM compiler and gold linker
used in AOSP 6.0.1 to prepare libraries for randomization.
We also modified the Android dynamic loader to map each
compatible code page at a random virtual memory address.

Page-level randomization reduces the value of information
leaks. Because ASLR does not randomize relative offsets
inside a loaded module, any leaked pointer reveals the entire
module’s code layout. With pagerando, the leakage from any
code pointer is limited to a single page of code. Since key
gadgets such as those that pivot the stack or drive the main
loop in a COOP-style attack [10], [11] are rare, a single 4KiB
code page is unlikely to contain all required gadgets [12], [13].

Figure 2 shows how code is placed in immutable, page-
aligned bins so that each physical memory page can still be
shared among all processes that load the same library. After
the loader maps each bin at a random virtual addresses, it must
update all references inside and outside the bins to point to
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Fig. 3. Performing inter-page calls using the PGLT.

the correct target addresses. It can’t modify the contents of
the bins themselves because this would prevent sharing the
same physical memory pages between multiple processes. We
preserve the immutability of bins by adding an extra level of
indirection through a page linkage table or PGLT. The PGLT
is used to locate all objects, e.g., functions, external to the
bins referencing them. Each reference inside a bin accesses
a fixed entry in the PGLT and the loader can freely modify
PGLT entries since they are stored in data memory private to
each process. The loader populates the PGLT with the correct
addresses via dynamic relocations that our modified linker
adds for each PGLT entry.

A call that references a callee in another bin uses the PGLT
to determine the correct target address (Figure 3). The caller
loads the destination address from a constant index in the
PGLT and jumps to it. Note that intra-bin calls proceed as
normal and do not use the PGLT.

In traditional, position-independent binaries, instructions
access static data (such as variables inside .data or .bss)
using PC-relative references instead of absolute references
that require load-time relocation. PC-relative references to
data are valid if the compiler and linker can assume a fixed
linear memory layout for an ELF binary, where any location
is at a fixed known offset from any other location in the
module. Randomizing the locations of the bins invalidates
this assumption, since each bin is loaded at a random address
independently of the rest of the binary (this is also why we
need to update inter-bin branches). However, the Global Offset
Table (GOT) is not part of any bin, so the offset from the GOT
to other data objects remains fixed and known at build-time.
We rewrite all data accesses to be GOT-relative (i.e. a fixed



offset from the start of the GOT) and use the PGLT to locate
the GOT. We reserve the first entry in the PGLT for the GOT
address, and rewrite each data access to read this entry and
add it to the GOT-relative offset of the destination (known
at build-time) to determine the absolute address of the data
reference.

To access the PGLT during execution, randomly located
code needs to be able to locate it. One way to make it easy
to locate is to always place the table at a fixed location in
memory. Alternatively, we could place the table at a random
location and store a pointer to it at a fixed location. However,
both approaches would put it within easy reach of adversaries.
Instead, we place the PGLT at a random address, store this
address inside the r9 register and use that register to access the
PGLT. To prevent our code from overwriting the pointer, we
modified the compiler to reserve this register and never use it
for other purposes in PGLT-compatible code. We initialize this
register whenever code from another module calls a function
inside a bin as shown in Figure 4. We assume that the contents
of r9 is preserved across the lifetime of the function and
its callees (the ARM ABI specifies that r9 is a callee-saved
register, so external functions will preserve it across calls).
To make sure the register is correctly initialized before use,
we identify all entry points into the protected library (all
code addresses that can be called from the outside) and build
a table of entry wrappers, one per entry point. Each entry
wrapper saves the current value of r9, sets r9 to the correct
value, and then transfers control to the actual entry point. This
ensures compatibility with non-pagerando binaries, since the
executable and other libraries call pagerando code as normal.

In some cases, entry wrappers need to perform some extra
steps to pass parameters correctly to the callee. Some param-
eters are passed on the stack and the callee expects them
to be on top of the stack at the call site, but saving r9 to
the stack in the entry wrappers breaks this expectation. The
compiler solves this problem for us, as we emit each entry
wrapper as compiler bytecode—LLVM IR in this case—and
each wrapper calls the callee using a LLVM function call with
a full list of the parameters. The compiler then takes care
of correctly passing the parameters to the callee using the
required registers and stack slots. We encountered a related but
slightly more complicated corner case for variadic functions
(functions with a variable number of type of arguments). In
this case, the function internally uses the va_start compiler
intrinsic to initialize a va_list structure containing a list of
the parameters. To correctly support the intrinsic, we lift it
and the structure out of the function and into the wrapper, and
pass in the va_list structure as a new hidden parameter to
the callee, instead of the variadic argument.

III. EVALUATION

Our implementation of pagerando targets 32-bit ARMv7
shared libraries for the Android Open Source Project (AOSP)
version 6.0.1 (Marshmallow). We evaluate our implementation
on a HiKey ARM development board (LeMaker version) with
a HiSilicon Kirin 620 8-core ARM Cortex-A53 processor and
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Fig. 4. When an external library calls a function inside a bin, the call is routed
through an entry wrapper which points r9 to the PGLT before transferring
control to the callee.
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Fig. 5. pagerando score overhead on Vellamo 3.2 browser benchmarks with
Chrome. Error bars represent 95% confidence interval.

2GB of RAM. The board requires a 64-bit Android kernel,
but 64-bit Android is by default a multiboot 32/64-bit system
with 32-bit libraries in /system/lib/ and 64-bit libraries in
/system/lib64/. We built the 64-bit portion of the OS as
normal, without pagerando, and applied pagerando protections
to all 32-bit system libraries. We installed all benchmarks with
the armeabi-v7a ABI, which means that the benchmark
apps will only use the 32-bit pagerando protected runtime and
system libraries.

We found that dynamic frequency scaling had a significant
impact on benchmark variance, so we configured the CPU to
run at a constant 1.2 GHz. Running this board at a fixed clock
speed required adding a heatsink and fan to avoid overheating
the CPU.

A. Vellamo Benchmark Performance

We evaluate the overall performance and memory impact of
pagerando using the Vellamo Mobile Benchmark 3.2. Vellamo
consists of an extensive browser benchmark suite (including



Sunspider and Octane), a CPU performance suite, and mul-
tiprocessing benchmarks. As mentioned, we installed the 32-
bit version of the Vellamo app so it will only use pagerando
protected system libraries. We also installed the 32-bit version
of the Chrome browser for Android (v51.0.2704.81) for use
in the browser portion of Vellamo. We ran Vellamo 10 times
and report the average results.

We found that the impact of pagerando largely depends on
the shared library usage of the benchmark. We believe the
browser chapter of Vellamo is the most representative of real-
world usage of shared libraries. The metal chapter consists
of CPU-bound workloads without many library calls, and the
multi chapter is similar but with a large outlier, Process-
Communication, which measures inter-process communication
latency in a tight loop, similar to the Bionic benchmarks we
discuss below.

Overall, pagerando lowers the total score of the Vellamo
browser benchmarks by 1.09%, metal by 0.62%, and multi by
6.5%. We show the entire browser chapter results in Figure 5.

We also measured the memory overhead for Chrome while
running the Vellamo benchmarks using the dumpsys system
tool. This tool reports a metric called the Proportional Set
Size (PSS) of an app, which is the app’s total unshared RAM
usage plus a portion of the shared RAM usage corresponding
to the number of processes that RAM is shared with. We found
that our current implementation of pagerando adds 19% to the
average shared library memory PSS of Chrome. We believe
there is substantial room for optimization of this overhead. We
describe how and where we can optimize overheads in § IV-A.

B. Bionic Micro-benchmarks Performance

We also evaluated the worst-case performance impact of
pagerando by repeatedly calling small library functions in
a tight loop. The Android implementation of libc, Bionic,
includes a small micro-benchmark which repeatedly calls 166
different libc functions. Since pagerando requires instru-
mentation at every library entry point to set up the PGLT
register and the library functions themselves are small, we
naturally observe a higher percentage performance overhead
for the Bionic benchmarks. Overall, we found that pagerando
incurs a 52.33 ± 0.19% geometric mean performance slow-
down over all micro-benchmarks (averaged over 5 runs).

C. Security

The entropy of pagerando is equivalent to other solutions
randomizing at the page level [9]: A shared library having
p bins and being loaded into an n bit address space, allows

n!
(n−p)! different layouts. The probability of guessing the full
layout is inversely proportional to the number of layouts, i.e.
(n−p)!

n! . The C standard library, libc.so, contains roughly
384KiB code which fits into 96 4KiB bins. If we conserva-
tively assume that a 32-bit system has 216 base addresses to
chose from [14], the probability of guessing where code pages
reside in memory is (216−96)!

216! ∼ 2−1535 which is far less than
the corresponding probability with ASLR (2−16) for all shared
libraries containing more than 4KiB of code.

Like other types of fine-grained code randomization,
pagerando is also more resilient to layout disclosure than
ASLR but remains theoretically vulnerable to attacks that can
disclose arbitrarily many code pointers [15]. We discuss ways
to increase leakage resilience of pagerando without making it
any less practical or deployable in the following section.

IV. DISCUSSION

This section outlines a few outstanding issues that, when
addressed, strengthen the security of code randomization tech-
niques and put them on par with other exploit mitigations.

A. Optimizations

Our prototype implementation of pagerando has ample
room for optimization of both inter-bin control-flow transfers
and library entry point wrappers. We implemented inter-bin
control flow in the linker by adding a code snippet (stub) for
each call or jump between bins. Thus, each inter-bin control
flow requires an extra direct call or jump to the stub that would
not be required if the compiler inserted all instrumentation for
bin interwork. Enabling link-time optimization would allow
the compiler to optimally insert this instrumentation.

Our current implementation of entry wrappers uses code
relocations to conveniently load the absolute address of the
PGLT, which disallows sharing of these wrappers between
processes. Entry wrappers should instead load the address of
the PGLT from a PC-relative data word, stored next to the
entry wrapper code in memory. This allows the dynamic loader
to only relocate a single location and share all entry wrapper
code between processes. This will significantly lower the per-
process memory overhead when using pagerando.

Even further optimization is possible by coarsening the
randomization granularity to a small multiple of the page size.

B. Mixed-Granularity Randomization

Different randomization granularities are ideal for different
classes of code. Page-level randomization that pagerando
implements is ideal for shared libraries which are loaded in
multiple processes and thus must be shared. However, exe-
cutables and libraries that are only loaded in a single process
do not benefit from memory sharing. Load-time randomization
of the executable code at a finer granularity, e.g. at the level
of individual functions [16], increases security against leakage
attacks while requiring less instrumentation than pagerando.
The selfrando function-level randomizer (which was recently
integrated into the Tor Browser [17]) is an example of a
practical and deployable load-time option for native code not
in shared libraries [12].

C. Debugging

One of the key challenges with code randomization is
that it interferes with debugging. With ASLR, debuggers
simply adjust for a single base address offset. In the case of
pagerando, we need to teach the debugger that modules have
a base address for each bin (ELF segment).

Mature debuggers like gdb already support a plethora
of ABIs. Moreover, the ABI for Texas Instruments C6000



embedded processors uses a data segment base table, DBST,
which is substantially similar to our PGLT. Therefore, gdb
can be extended to support the pagerando ABI with modest
effort.

D. Error Reporting

Automatic reporting of crashes is critical for diagnosing and
removing bugs in deployed software. The reported instruction
pointer indicates the crash location and return addresses can be
used to determine the calling context. With code randomiza-
tion, the instruction pointer and return addresses at the time
of the crash will diverge even if crashes occur at the same
location in the source code. To make sure that error reports
can be symbolicated (translated to source code locations) and
correlated, we must normalize the code addresses in crash
reports. Doing so is possible if we store the seed value used
to initialize the random number generator or store a mapping
that translate randomized addresses back to canonical ones.

The normalization mapping must remain hidden to adver-
saries. One way to keep it hidden is to unmap the memory
pages storing the mapping during normal operation and only
allow read access to the mapping while normalizing addresses.
Another option is to securely store the randomization seed
which can then be used together with the program binary to
compute the normalization map lazily. Either option is likely
fast enough in practice since normalization of code addresses
is only necessary for error reports, back traces, and exception
handling—none of which happens on the fast path.

E. Leakage Resilience

Leaking code pointers or other information correlated with
the code layout is the most effective way to bypass code
randomization defenses [18]. ASLR is particularly susceptible
to leakage but finer-grained variants are vulnerable too—
particularly when adversaries can access arbitrary memory
locations [15], [19] or launch an exploit repeatedly [20], [21].
There are several ways make code randomization defenses
leakage resilient. One line of work seeks to prevent leakage
in the first place by preventing reads to code pages [22],
[23] and by hiding code pointers that indirectly reveal code
locations [7], [11], [24], [25]. An alternative line of defense
is to rewrite the code continuously [26], [27] to invalidate the
leaked information or use destructive reads to prevent exe-
cution of what was read [28], [29]. Runtime re-randomization
strategies require accurate tracking and updating of all pointers
in memory which is not possible in practice [30]. Destructive
reads are interesting as well but potentially less secure than
leakage resilience strategies [31]. Out of these approaches,
preventing leakage resilience in the first place appears to be the
most practical and efficient strategy on systems with hardware
support for execute-only memory—which includes modern
ARMv8 Android devices.

V. RELATED WORK

Backes and Nürnberger showed that randomizing shared
libraries below the level of memory pages substantially

increases system-wide memory consumption [9]. Their
solution—Oxymoron—uses an indirection table similar to
our PGLT but uses the vestiges of x86 segmentation rather
a dedicated register to address the indirection table. Since
pagerando targets ARM processors, we reserve a register to
point to the PGLT. Unlike Oxymoron, our solution supports
dynamic linking and interoperability with legacy code.

Bojinov et al. [32] describes the difficulties of making tra-
ditional ASLR compatible with the restrictions of the Android
operating system. Since then, Google has added additional
restrictions such as SELinux [33] security policies.

When child processes are created by forking off an existing
process, the child inherits the memory layout of the parent
process. In Android, apps are launched by forking the Zygote
process which pre-loads shared libraries and resources. Lu et
al. [34] prototyped techniques to randomize on fork. Their pro-
totype uses dynamic binary instrumentation which interferes
with Android’s SELinux policies.

Sun et al. [35] also studied randomization of code in
shared libraries on Android. Unlike pagerando, their solution,
Blender, does not require modification to the Android compiler
or linker. Moreover, Blender randomizes processes that are
forked off the Zygote process like Lu et al. However, Blender
is limited to base-address randomization and is therefore no
more resilient to information leakage than ASLR.

Previous work on integrity and randomization-based exploit
mitigations is extensive. The surveys by Szekeres et al. [36],
Skowrya et al. [37], Larsen et al. [38], and Burow et al. [39]
provide comprehensive overviews of the academic literature.

VI. CONCLUSION

This paper demonstrates that practical and efficient code
randomization solutions can be built and integrated into mod-
ern *NIX operating systems. We do so by using our tool to
compile and protect all shared libraries on stock Android 6.0.
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