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c,ONS'DER THE FOLLOWING SCE- SELF-ADAPTIVE SOFTWARE REQUIRES HIGH DEPENDABILITY,
nario. A fleet of unmanned air vehicles un-
dertakes a mission to disable an enemy air-  ROBUSTNESS, ADAPTABILITY, AND AVAILABILITY. 'THIS ARTICLE

field. Pre-mission intelligence indicates that DESCRIBES AN INFRASTRUCTURE SUPPORTING TWO

the airfield is not defended, and mission plan-

ning proceeds accordingly. While the UAYs  SIMULTANEOUS PROCESSES IN SELF-ADAPTIVE SOFTWARE: SYSTEM

are en route to the target, new intelligence
indicates that a mobile surface-to-air missile EVOLUTION’ THE CONSISTENT APPLICATION OF CHANGE OVER

launcher now guards the airfield. The UAVs TIME, AND SYSTEM ADAPTATION, THE CYCLE OF DETECTING
autonomously replan their mission, dividing

into two groups—a SAM-suppression unit CHANGING CIRCUMSTANCES AND PLANNING AND DEPLOYING
and an airfield-suppression unit—and pro- RESPONSIVE MODIFICATIONS.

ceed to accomplish their objectives. Duripg
the flight, specialized algorithms for detect-
ing and recognizing SAM launchers auto-
matically upload and are integrated into thenight include environment and land-usenew system would perform as intended.

SAM-suppression unit’s software. monitoring, freeway-traffic management, fire Software engineering aims for the syst
In this scenario, new software componentfighting, airborne cellular-telephone relaytematic, principled design and deployment

are dynamically inserted into fielded, heterostations, and damage surveys in times of nadf applications that fulfill software’s origi-
geneous systems without requiring systeraral disaster. How wasteful to construchal promise—applications that retain full
restart, or indeed, any downtime. Missiorafresh a specific software platform for eactplasticity throughout their lifecycle and that
replanning relies on analyses that includeew UAV application! Far better if software are as easy to modify in the field as they ar
feedback from current performance. Furarchitects can simply adapt the platform|t@n the drawing board. Software engineer

autonomously, can involve multiple, distrib-platform itself adapts on demand even whil¢his goal: specification languages, high-leve
uted, cooperating planners, and where majaerving some other purpose. For example, ggrogramming languages, and object-oriente

e
s
thermore, such replanning can take placthe application at hand, and better yet, if th@ave pursued many techniques for achieving
I
d

changes are demanded and require humairborne sensor platform designed for e
approval or guidance, can cooperate with
sion analysts. Throughout, system integrityprove useful for damage surveys followingsum total still falls short.
requires the assurance of consistency, coan earthquake or hurricane, provided some- Self-adaptive software will provide the key.
rectness, and coordination of changes. one could change the software quicklyMany disciplines will contribute to its pro-

Other applications for fleets of UAVSs enough and with sufficient assurance that thgress, but wholesale advances require a sy
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ianalysis and design, to name just a few. How-
igonmental and land-use monitoring coulcever, while each contributes to the goal, the



tems perspective based on a broadly inclusi
adaptation methodology that spans a wid
range of adaptive behaviors. Central to oy
view is the dominant role of software archis
tecture in planning, coordinating, monitoring,
evaluating, and implementing seamless ada|
tation. This article examines the fundamentg
role of software architecture in self-adaptive
systems and outlines technologies we ha

Evolutionary programming
(algorithm generation, genetic algorithms,
Al-based learning)

Algorithm
selection |

}Generic or parameterized algorithms

Online algorithms

(deterministic, randomized, or —
probabilistic)

}Conditional expressions

considered for supporting the methOdOIOQV'Figure 1. A spectrum of self-adaptability. Generally, approaches near the hottom select among predetermined alterna-
tives, support localized change, and lack separation of concerns. Approaches near the top support unprecedented
changes and provide a clearer separation of software-adaptation concerns.

What is self-adaptive
software?

Self-adaptive software modifies its o
behavior in response to changes in its op
ating environment. By operating enviro
ment, we mean anything observable by
software system, such as end-user ing
external hardware devices and sensors
program instrumentation.

eral questions when developing a self-ad

, W¥hat conditions? fleet of UAVs might

undergo adaptation under a variety of condieost, and even a useful or desirable adapt
Application developers must answer sevtions. Mission replanning is a prime examtion might require more resources than th
aple because automated or human missiddAV can afford. For example, the UAV might

accurate and current must the informaadaptation. A sophisticated UAV with more
tion be? A wide range of strategies can/benboard computing power might be highly
used, from continuous, precise, recenautonomous, interacting with humans infref
observations to sampled, approximatequently, if at all, over the course of its
historical observations. mission.

FrequenciesAdaptation is not without its

tive software system: planners redirect the fleet in response to
changing battlefield. A mechanical failure
Under what conditions does the systena UAV'’s generator might force the UAV t
undergo adaptation? A system might, forely solely on battery power for its electro
example, modify itself to improve systemics, communications, and sensors. Thi
response time, recover from a subsysterturn would require substantial adaptation
failure, or incorporate additional behaviorensure sufficient electrical power for the m
during runtime. sion’s duration. A change in force compo
Should the system be open-adaptive dion (such as the loss of a fleet membe
closed-adaptive? A system is open-adamquipment failure) or the detection of
tive if new application behaviors andunanticipated threat might force rapid a
adaptation plans can be introduced dursubstantial adaptation.

ing runtime. A systems is closed-adaptive

if it is self-contained and not able to sup-Open- or closed-adapted?® closed-adap-
port the addition of new behaviors. tive UAV adapts in isolation, uninfluence
What type of autonomy must be supby the adaptations and behaviors of ot

ported? A wide range of autonomy mightfleet members. It has only a limited numheallocating an ongoing fixed percentage of it

be needed, from fully automatic, self-con-of adaptive behaviors onboard, and no n

tained adaptation to human-in-the-loop. behaviors can be introduced at runtim
Under what circumstances is adaptatiosuch a UAV might be capable of a limite

cost-effective? The benefits gained from aumber of evasive maneuvers in respons
change must outweigh the costs associatédreats, for example, and its repertoire

with making the change. Costs include thevasions cannot be modified or expanded in
oflight. Conversely, an open-adaptive UAVInformation type and accuracy#nally, the
gaccepts behaviors introduced from the outJAV might collect information from numer-

performance and memory overhead
monitoring system behavior, determini
if a change would improve the system, andide, so an evasive maneuver known to
paying the associated costs of updating
system configuration.

How often is adaptation considered? A

wide range of policies can be used, fronType of autonomyEach UAV can be au
opportunistic, continuous adaptation fatonomous to a greater or lesser degree.
lazy, as-needed adaptation. example, a UAV coping with an inflight sul
What kind of information must be col- system failure might require that a huma
lected to make adaptation decisions? Houn-the-loop direct, or at least approve,

ers while in flight.

thiteet member can be communicated to othdecisions. Information sources include

"

hee forced to permanently discard application
for system support for the sake of additiona
memory to accommodate an adaptation, 0
-the adaptation might cut off future avenues ¢
ighange. Implementing the adaptation migh
toequire processor cycles better used for othe
simore pressing concerns, or the adaptatio
ithough desirable, might degrade the UAV’s
tperformance in other respects.
n
ndCost-effectiveness®daptation frequency
also matters. A UAV might be opportunis-
tic, considering and implementing adapta;
tions whenever it has spare processor cycl
dor additional communications bandwidth
heavailable. It might also adapt continuously,
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ewomputing and communication resources t
ethe adaptation process. Alternatively, adap
dtation might only be on demand as warrante
e iy the UAV’s condition and environmental
oftate.

o

braus sources on which to base its adaptation

» real-time readings from internal sensors

for monitoring subsystem health and sta-

For tus (such as battery voltage or fuel levels),

-+ telemetry from external sensors such g
n- radar and magnetometers,

an  sampled observations such as processor
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Plan changes

load or radio signal strength over minutes / Y\

or historical data such as the movemen .
of threat forces over hours. D?jgls%ig?i?:ge %rﬁfr?:;mm %Evﬁ:%iti?qarnd
observations
Figure 1 illustrates the broad spectrum o
self-adaptability. At one extreme, conditional
expressions are a form of self-adaptation; th
program evaluates an expression and alte
its behavior based on the outcome. Althoug
simplistic, conditional expressions are ¢
common mechanism for implementing adap
tive behavior. For example, a just-in-time
compiler might invoke aggressive code-opti

;nlzatlonI techniques if a function is called Architectural Evolution AT
requently. model management

Enact changes and
collect observations

Online algorithms operate under the as
sumption that future events (inputs) are unce
tain. Hence, they will occasionally perform an
expensive operation to more efficiently, Mamtam
respond to future operatioh©nline algo- consistency
rithms are adaptive in that they leverage know and system integrity
edge about the problem and the input doma
to improve efficiency. A memory-cache-pag-Figure 2. High-level processes in a comprehensive, general-purpose approach to self-adaptive software systems.
ing algorithm, for example, leverages the spe
tial and temporal locality of memory refer-
ences in determining which cached page tApproaches near the top more clearly sepgriate adaptation, and constructing a blue
evict when making room for a new page. | rate software-adaptation concerns and applprint for executing that adaptation. “Deploy

Generic and parameterized algorithmsation-specific functionality. For example,change descriptions” is the coordinated con
provide behaviors that are parameterizedlgorithm generation separates the adapteeyance of change descriptions, component
usually through type instantiation or extertion’s specification from the produced algp-and possibly new observers or evaluators
nal inputs. Generic or polymorphic algo-rithm. Separating the concerns of softwar¢ghe implementation platform in the field.

rithms adapt by conforming to different dateadaptation from software function facilitatesConversely, deployment might also extract

types. The C++ Standard Template Librarytheir independent analysis and evolution.| data, and possibly components, from the run
for example, provides generic iterator classes
used to traverse a variety of data structures.

Algorithm selection uses properties of theSoftware udupl‘uﬁon in-the-
operating environment to choose the mashrge
effective algorithm among a fixed set of avalil- Although mechanisms for runtime software
able algorithms. Thus, a system that uses algo- While technical advances in narrow areashange are available in operating systen
rithm selection adapts to changes in its operabf adaptation technology provide some benfor example, dynamic-link libraries in Unix
ing environment by switching among a set|oéfit, the greatest benefit will accrue by develand Microsoft Windows), component object

other point for analysis and optimization.
Adaptation management and consisteng

algorithms. The Self dynamic optimizing com-oping a comprehensiagaptation method; models, and programming languages, these

piler, for example, uses program-profiling dateology that spans adaptation-in-the-small tdacilities all share a major shortcoming: they
collected during program execution to selechdaptation-in-the-large, and then developdo not ensure the consistency, correctnes
different code-optimization algorithms. the technology that supports the entire ranger other desired properties of runtime

At the other extreme, evolutionary progra
ming and machine-learning techniques

ating environment and knowledge gained frorfadaptation management,” describes the lifethe context for reasoning about, specifying

previous attempts to generate new algorithmscycle of adaptive software systems. The lifeand implementing change; and controls

Generally, approaches near the spectruméycle can have humans in the loop or be fullghange to preserve system integrity. With

bottom intertwine concerns regarding softautonomous. “Evaluate and monitor obsereut change management, the risks engen-

ware adaptation and application-specifiovations” refers to all forms of evaluating anddered by runtime modifications might out-

behavior. For example, a conditional expreésebserving an application’s execution, includ-weigh those associated with shutting down

sion combines the adaptation’s specificatioing, at a minimum, performance monitoring,and restarting a system.
with the application’s specification. Conse-safety inspections, and constraint verifica- Software adaptation is a complex proces
quently, understanding, analyzing, and maodtion. “Plan changes” refers to the task jofand is further complicated by change driver;
ifying the two independently is arduous.accepting the evaluations, defining an appraanging from purposeful adjustments in
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ning application and convey them to some

maintenance play key roles in this approach.

-of adaptations. Figure 2 illustrates just suckhange. Change management is a critical
ra methodology that we are investigating.| aspect of runtime-system evolution that
adaptive in that they use properties of the oper- The upper half of the diagram, labeleddentifies what must be changed; provides
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Figure 3. A high-level architecture diagram for the ArchStudio fool suite.

fielded systems to unanticipated perturbationshile ensuring that the model and the impIeEvoluﬁon munugemeni
in the operational environment. The changementation are consistent with one another.
themselves encompass everything from Blonitoring and evaluation services observe It is not enough that we can rearrange ar
simple replacement of an isolated compongitihe application and its operating environmenteplace portions of an application while it is
to wholesale reconfigurations that are perveand feed information back to the diagram’executing. Self-adaptive systems present
sive and physically distributed. Our approactupper half. unique set of challenges with respect to safety.
addresses these demanding and unprece-Software architectures view systems |ageliability, and correctness. For example, an il
dented requirements by managing adaptatiaretworks of concurrent components boundonsidered change—such as the accidental
using a flexible infrastructure to support a fultogether by connectof#\n architectural per{ removal of a critical navigation component—
range of adaptation processes. The infrapective shifts focus away from source cadean compromise a UAV’s safety, reliability,
structure relies on to coarse-grained components and their infeand correctness properties. Consequent|
connections. Designers can abstract awdgcilities for guiding and verifying modifica-
» software agents that automate tasksbscuring details and concentrate on the bigpns are an integral part of our architecture
within the process, picture: the system structure, the interactionsentric approach. Figure 3 details our approach
» explicit representations of software com-among components, the assignment of conte evolution management, the process by
ponents, their interdependencies, angonents to processing elements, and runtjmehich change is applied and controlfe.

their environmental assumptions,
» explicit representations of the enviro

ments in the field where software is detaining state information. Connectors

change. Components are responsible for invariety of tools and adaptation mechanisms
-plementing application behavior and mainevolve an application by inspecting and chang-
réng its architectural model. Changes cal

n
ployed, and transport and routing services for messagesclude the addition, removal, or replacement
» wide-area messaging and event services objects. Components do not know or caref components and connectors, modifications
that connect adaptation managers to adapew their inputs and outputs are delivered aio the configuration or parameters of compo-
tive systems to permit coordinated ahdransmitted or even what their sources or desents and connectors, and alterations in the
coherent adaptation in physically distrip-tinations might be. On the other hand, coneomponent/connector network’s topology. As$
uted, logically decentralized environmentsnectors know exactly who is talking to whomwe show next, our approach maintains system
and how—but are ignorant of the computaeonsistency and integrity by examining each
The lower half of Figure 2, labeled “evo-tions of the components they serve. Strigtlghange and vetoing any changes that render
lution management,” focuses on the mechaeparating computation from communicathe system inconsistent or unsafe.
nisms employed to change the applicatiotion lets a system’s computation and co
software. Our approach is architecture-basethunication relationships evolve indepenDynamic software architectures.Support-
changes are formulated in, and reasoned aveently of one another, including rearrangindgng a broad class of adaptive changes at the
an explicit architectural model residing on theand replacing the components and conneerchitectural level requires that we not only
implementation platform. Changes to theors of an application while the applicationchange components on the fly but also thejir
architectural model are reflected in modifi-executes—a necessary, but insufficientinterconnections. However, simultaneously
cations to the application’s implementatianmechanism for self-adaptive software. changing components, connectors, and top
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| Ports | |Wareh0uses | | Vehicles |

| Connector 1 |
| Plar‘mer | | Teler‘netry | ponent within the hierarchy can only be aware
\ \ of components “above” it and is completely
Connector 2

unaware of components residing at the same

I |
: | : : : level or “beneath” it. Figure 4 shows an exam
Port artist Warehouse artist Vehicle artist ple C2-style architecture for a simple cargo
\
I |

routing logistics system. A component explic
Connector 3 itly utilizes the services of components abov

Router artist it by sending a request message. Commur

cation with components below occurs implic
[ Connector 4 |

1]

itly; whenever a component changes its inter-

nal state, it announces the change by emitting

a notification message, which describes the

Figure 4. A (2-style architecture for a simple cargo-routing logistics system. Ports, vehicles, and warehouses are compo- ~ State change, to the connector below it. Con-

nents that sfore application state. The telemetry component tracks en route cargo shipments. The port artist, vehicle arfisi, ~ nectors broadcast notification messages to
warehouse arfist, and router artist components graphically depict the state of their respective counterparts. The planner every component and connector connected
component uses simple heuristics to suggest cargo routes, and the router component handles roufing requests inifiated by~ on its bottom side. Thus, notification mes
the end user. The graphics component renders the drawing notifications sent from the artists on the end-user’s display. sages provide an implicit invocation mecha
nism, allowing several components to reag
to a single component’s state change. For
example, the “Telemetry” component in Fig-
Ultraviolet returns . ure 4 is only aware of the “Clock,” “Ports,”
> Candidate returns “Vehicles,” and “Warehouses” components
>
Furthermore, the C2-style components can
not assume that they will execute in the same
Merge candidates address space as other components or share
Candidate a common thread of colntrol. . .
), | returns In contrast, Weaves is a dynamic, object
= flow-centric architecture designed for appli-
cations characterized by continuous or inte
mittent voluminous data flows and real-time
Candidate deadlines. Components in Weaves consume
B— returns objects as inputs and produce objects as o
puts (“object” is intended in the sense o
C++, Smalltalk, or Java). Figure 5 depicts al
Component Correlate . .
example Weaves architecture for a portion ¢
sensors 2 & 3 .
= ffﬁ . l?b“gt?l a stereo tracker. Weaves embraces a set| of
= robabilit i inci
Unpopulated Eandidateg architectural principles known as the laws of

—

Correlate sensors 1 & 2

Time )
synchronized Candidate returns

source

. Candidate
Ultraviolet returns
@ returns . f/./‘ P a0

Form candidates

=3

Ultraviolet returns

S0

socket blind communication:
Connector
ob—O g n didate track e no component in a network knows the
enerate candidate Tracks sources of its input objects or the desti
Figure 5. A portion of a Weaves architecture for a stereo-iracking system. nations of its output objects;

¢ no network component knows the seman

tics of the connectors that delivered its

ology in areliable manner requires distinctive mentation language, input objects or transmitted its output
mechanisms and architectural formalisms. both require that all communication be-  objects; and
Many systems are dynamic to some limited tween components occur by exchanging no network component knows the loss of
degree but few embrace dynamic change as a asynchronous messages (C2) or objects a connection.
fundamental consideration. (Weaves), and
There are two distinct approaches |t@ components can encapsulate functionalitfhese laws ensure that no component knows
dynamism at the architectural level: €2  of arbitrary complexity and exploit multi- its location in the network, that every coms
and Weave$.They have many features i ple threads of control. ponent is independent of the semantics of the
common: connectors to which it is attached, and that
However, C2 and Weaves take differenainy Weaves architecture can be edited, re-
« both distinguish between component&pproaches to system composition. C2 conwired, expanded, or contracted on the fly.
and connectors, poses systems as a hierarchy of concurreRtirthermore, Weaves permits connectors to

« neither places restrictions on the granueomponents bound together by connectors-be composed of other connectors and com-
larity of the components or their imple-message-routing devices—such that a conponents, allowing connectors to be specially

=LY
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Figure 6. A high-level architecture diagram for adaptation e

adapted to the characteristics of their op
ating environment with corresponding pe
formance gains.

Several characteristics of C2 and Wea
facilitate runtime change. Because comy
nents communicate asynchronously, C2 &
Weaves avoid several subtle complexit
inherent in supporting runtime change
applications that utilize synchronous co
munication. While this restriction occasio

eable ease and alacrity. In contrast, whilénterconnections among components an

voof connectors. This lets developers optimizenodel, to effect corresponding changes i
aniditercomponent communication while |athe actual implementation.

volution.

r\Weaves supports like forms of componentonnectors and their mappings to imple
manipulation, it emphasizes the dynamic dismentation artifacts. The mapping permit
esibution, modification, and rearrangementchanges, given in terms of the architectura

e¥Veaves architecture is executing, including To guard against untoward change, we prg
invholesale movement of a subarchitecturpose amrchitecture evolution manager (AEM)
from one host to another along with dramati¢that mediates all change operations directe
-changes in the semantics and implementasward the architectural model. A change i

%

|

D

2d

or

ally makes it more difficult to implement paf- tions of its connectors. expressed either as a single basic operation
ticular component interactions, because a In short, C2 has been optimized for flexi-as achange transactionomposed of two or
component must continue to respond to seble components, while Weaves focuses|omore basic operations. All changes are atomic;
vice requests from other components whildigh-performance, flexible connectors. Onehat is, they either complete without error o
awaiting responses it has made of others,jovesearch issue we face is blending these tweave the application untouched. A chang
experience demonstrates that its benefits f@pproaches to dynamic architectures intp tansaction includes operations for forcin
runtime change outweigh its costs. single, cohesive whole. One possible apcomponents and connectors into safe or halt
The independence between hierarchicgiroach is to treat Weaves as an implementatates; adding, removing, and replacing com-
layers in a C2-style architecture furthettion substrate for C2 and “compile” C2-styleponents and connectors; and changing the
reduces component dependencies: a C2 comrchitectures into lower-level, but more effi-architectural topology.
ponent is unaware of components belpwient, Weaves architectures. The AEM maintains the consistenc
itself, so it is oblivious to runtime changes between the architectural model and th
that involve these components.. Converseljylaintaining consistency and system implementation as changes are applied, re-
a component can only be affected by runtimantegrity. Ongoing adaptation continuouslyifies changes in the architectural model to the
changes involving components strictly abqvéhreatens system safety, reliability, and corimplementation, and prevents changes fro
itself. Because C2 components cannot assumectness. Therefore, facilities for guidingviolating architectural constraints. For exam
that they will execute in the same address spaaad checking modifications are an integraple, it can enforce the generic constraint that
as other components, complex compongmgart of our adaptation infrastructure. As arall components must be connected to at leg
dependencies resulting from the use of pointepplication adapts and evolves, we face thene connector but not more than two. Th
variables and global variables are avoided. Sinproblem of preserving an accurate and corAEM is also tailored by application- and
ilarly, because components do not share a corsistent model of the application architecturelomain-dependent change policies that di¢
mon thread of control, control dependencjeand its constituent parts—the componentsate the forms of acceptable change. Withi
are avoided. Taken together, C2’s style ruleand the connectors. We must also maintaithe UAV domain, the AEM can require that
ensure that each component is almost cora-strict correspondence between the archihe UAV system contain at least one naviga
pletely ignorant of the placement, function, andectural model and the executing impletion component. The AEM, which maintains
implementation of its fellow components. | mentation. To deal with these problems, wéhe mapping between the architectural mod
Consequently, at runtime, C2 can adddeploy, as an integral part of the applicationand the implementation, uses this mappin
delete, or rearrange components with remarlan architectural model that describes th# carry out modifications by mapping mode

>

U
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components and connectors into implemg
tation artifacts and translating change op
ations into implementation actions.

Enacting changesThere are many possibl
sources of architectural change, including
application itself, external tools, and repla|
ning agents. Software architects can us
visual, interactivearchitecture editoto con-
struct architectures and describe modifi
tions. A variety of analysis tools can acco
pany the editor—for example, a desi
wizard that critiques an architecture as
designer constructs it, or application- a
domain-dependent design wizards that,
exploiting specialized knowledge, can pr
vent semantic errors or ensure a minim
level of performance or safety. Theodifi-
cation interpretelacts as a second, compe
ion tool to interpret change scripts written
a change-description language to primit

erpperating environmenplannersthat utilize | sertions (inline observers) within the appli
etthe observations to plan adaptive responsesation itself for notification of exceptional

anddeployergo enact the responses withinevents such as resource shortages or the vij

the application. lation of low-level constraints. Additional
e Hosting the numerous agents and suppontequired capabilities include dynamic con
hiang the various activities of adaptation magntrol and alteration of the scope of the asse
nagement that result requires infrastructuréons, insertion and removal of assertion
espport in its own right in the form of reg-while the application is executing, language
istries. Registries at each application site corirdependent assertions, and architecture-se
satain resource descriptions, configurations, anditive assertions. One potential candidate fq
mether declarative information relevant to thehis facility is APP, a tool that supports the
yreite and the adaptive application. Registrieautomated checking of logical assertion
alsewhere might be dedicated to oversegirgxpressed in first-order predicate lodfic.
nand coordinating the activities of the individ- Detecting and noting single events is ng
byal application site registries. Each registrgnough because the occurrence of a patte
eprovides a standard interface by which disef events distributed in both time and plac
irparate agents and interests can query amdll trigger many adaptive strategies. One
approach is to model application behavio
; I
e

abstractly in terms of patterns of events. |
this way, the architect's expectations ar
expressed as agxpectation ageri The

10-

actions supported by the AEM. JWANAGIN G SELF-ADAPTIVE expectation agent responds to the occurrence
SOFTWARE REQUIRES A VARIETY of event patterns, including generating a
higher-level abstract event for the benefit of
Adaptation management OF AGENTS, SUCH AS OBSERV- other (expectation) agents. The expectation
ERS. PLANNERS. AND DEPLOY- agent is a formal specification that, depend-
A self-adaptive system observes its 0 'n ’ ’ ing upon its complexity, can be translated into
behavior and analyzes these observatior ; tofRS. HOoSTING THE NUMEROUS an observer embedded within the application
determine appropriate adaptations. A cc "“{GENTS REQUIRES INFRASTRUC- or implemented as an agent that eavesdrops
panion to the process of evolution mana e- on the activity of the local registry. In addi-
ment is the process of adaptation manz je- TURE SUPPORT IN ITS OWN tion, we must monitor events that occur outr
ment, illustrated in Figure 6. Adaptatic 1 RIGHT. side of the application—such as the quality
management monitors and evaluates he * or availability of a network connection—as

application and its operating environme

plans adaptations, and deploys change

scriptions to the running application.
Viable self-adaptive systems require lo

t, well as adaptation events that arise as a cq
deranipulate the contents of the registry, whiclsequence of dynamic architectural change.

gmation. Interregistry communication takesvation by human observers in cooperatio

acts as a blackboard for exchanging infor- We must also make provision for obser;

term continuity in the face of dynamicmany forms, ranging from directed updatesvith automated agents. One appealing tec
change—in other words, both a standartb wide-area messaging and event notificanology is Joist, which exploits standard Web
locale for the information and tasks requiredion. One promising starting point is the Softbased technologies—HTTP and HTML—to
to carry out the function of adaptation and avare Dock, an infrastructure element for th@rovide a powerful and efficient infrastruc-
focal point for coordinating physically dis- distributed configuration and deployment oture for remote observation of distributed
tributed, logically decentralized adaptationsoftware systems, now under development aipplicationst? Joist embeds a small Web
tasks. For example, complex interdependerthe University of Colorado, Bouldé&® server in the application’s runtime environ-
cies might exist among changes such thatjthe ment, which then monitors the application
incorporation of one change could requjreCollecting observations Self-adaptive soft- and gathers information. This information is
the inclusion of several others for the changeare requires large numbers and varieties adentified through a special URL namespace
to work correctly in its environment. A stan-observations and measurements, randirand it is presented in HTML pages that th
dard locale helps ensure that such informdrom event-generation within the applicationJoist server generates and communicates
tion is at hand. Additionally, an adaptationimplementation to animations suitable forany standard Web browser via HTTP.
might require coordination among multiplehuman observers. Furthermore, adjusting the New techniques must emerge for redug
sites when the application is physically dishumber, extent, and detail of the observationsg the monitoring overhead. Weaves em
tributed and adaptation requires changes ahd measurements must be possible as thlys statistical monitoring techniques tha
several sites simultaneously. application executes and evolves so as lets observers trade accuracy in favor Q
Additionally, managing self-adaptive soft-reduce measurement overhead and avordduced overhead. Using this approach, w
ware requires a variety of agents, such| agasting communication bandwidth on un-can reduce the invasive effect of instrumen
observerdor evaluating the behavior of the necessary observations. tation on a running application to below the
self-adaptive application and monitoring its At a minimum, we require embedded asnoise threshold while still obtaining useful
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information. Furthermore, the instrumentaplanning. Observation planning determines A more general approach explicitly repre
tion can stay permanently embedded withimvhich observations are necessary for decidgents the preconditions and postconditions pf
the application so that an observer can seeiryg when and where adaptations are requiredach component that could affect, or b
tively measure only behaviors of intergsiThe observation planner takes into accourgffected by, other components; represents each
without damaging the application. Applica-environmental assumptions, expected behagocket in terms of one or more required post-
tion developers can use this technique in iars, the availability of observers and obsereonditions; and treats framework instantiatio
variety of ways, including performance vations, and their costs. We can view this tasiis a planning problem. This approach requires
analysis and real-time animation of the beas a classic planning problem where the goasspartial domain model and additional com-
havior of running systems. are information needs, the operators are|thautation but no longer requires that candidate
observers, the preconditions are requiredomponents form an equivalence class.
Evaluating and monitoring. Adaptive | eventtypes, the postconditions are obseryehave already demonstrated this approach jin
demands can arise from inconsistencies @enerated event types, and the operators haamother domain, the automatic generation of
suboptimal behavior within the system. [nobservation and notification costs. This typeimulation scripts for tank trainirig.
particular, inconsistencies can occur whewf planning is well within the range of to-

some architectural element (ranging from aay’s planning technology. Deploying change descriptionsChange
single component or connector to a subsys- Adaptation planning determines exactlyagents propagate and move out among si
tem, or the entire architecture) behaves inwhich adaptations to make and when. The carry out their tasks. Imagine a scenario
manner inconsistent with the behavior »- in which a coordinated change is required at
quired of it or when an element’s assun )-|||‘"m|||‘||||‘"m"m“““”””” two separate sites. Agents responsible for
tions about its operating environment becc 1 each portion of the coordinated change di
invalid. Maintaining consistency in these ¢ - patch from a third site (which oversees th
uations requires monitoring and evaluat g PLANNING IS A VITAL ASPECT other two), taking with them the chang
representative behaviors of the running < 's-  OF SELF-ADAPTIVE SOFTWARE.  descriptions to be installed. Included in th

tem and comparing them to an explicit fi - change descriptions are any new required
mulation of behavioral requirements or er i- SELF'ADAP TATION REQUIRES components or connectors and their affiliate
ronmental assumptions. TWO DISTINCT FORMS OF annotations. These agents, once situated|at
Successful consistency management ‘e- the registries of their respective sites, wil
quires a hybrid approach that combines t ith  PLANNING: OBSERVATION interact with the local AEM, which translate
static and (_lenamic_ analys_is. On_e promis 1g PLANNING AND ADAPTATION the change tra_ns_actiqns contai_n_ed With_ipt e
form of static analysis exploits attributed gre h change descriptions into specific modifica
grammars. Recall that dynamic architectt 2s PLANNING. tions of the system’s implementation.

can be characterized as graphs of compor nts

and connectors. Attributed graph gramm rs

can represent the set of all an application’adaptation planner must take into account tm

possible configurations where architecturapurpose of components, their environment LTHOUGH EACH INDIVIDUAL

changes are regarded as graph-rewrite opesssumptions, and known properties of the enviaspect of our approach has been the focus

tions. Analysis tools can determine if an invgrironment. We are interested in applicatignef much research, integrating these aspegts

ant is preserved by all possible architecturesuch as UAVs) where adaptations must|bmto a comprehensive self-adaptive soft

or can return an example graph (architecturglanned in minutes, not hours. One possibleare methodology is unprecedented. In the

configuration) that violates the invariant. approach relies on the use of predefined splaear future, we hope to complete an initial
Static analysis might be insufficient, intion frameworks that, by limiting the range andntegration of our dynamic architectur

which case runtime checks are employed teariation of possible adaptations, drasticallfechnology, event-based monitoring an

detect inconsistencies. Observers inspeotéduce the computation required for planningevaluation technology, and software de

both the application and the environment in A solution framework is a partially instan- ployment technology in support of self-

which the application operates and evalugtiéated hierarchical solution architecture cgnadaptive softward=

their observations for consistency with relesisting of connectors, sockets (placeholders

vant annotations obtained from the registriesor components), and an equivalence class of

Observers are generated and launched autandidate components for each socket (w ekknowledgments

matically based on the constraints and progomponents can themselves be solution

erties extracted from annotations pertaininframeworks). Given such a framework, an ini- . X X i -

- . . . . bins for discussions that contributed to this work.
to the element under observation. Observetil solution architecture might be found bypennis Heimbinger and Alexander L. Wolf ar
post observed inconsistencies, aggregatelecting components for each socket frorsponsored by the Air Force Materiel Comman
observations, and analyses to the registry. the set of eligible components. Using this|aBome Laboratory, and the Defense Advance|
astantng pin, he ystem canundergo ner S IS R0y AR S o
Planning changesP!annlng is also a vital mental adapt_atlon by choosing alterna_tl e eyman Oreizy, Richard N. Taylor, Nenad Medvi ‘
aspect of self-adaptive software. Self-adagor problematic components whose envirdngovic, and David S. Rosenblum are sponsored by
tation requires two distinct forms of plan-mental assumptions no longer hold in th®ARPA and the Air Force Research Laboratory, Ai
ning: observation planning and adaptatiombserved environment. Force Materiel Command, USAF, under agreeme
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F30602-97-2-0021; by the Air Force Office of Sci-
entific Research, Air Force Material Command,
USAF, under grant F49620-98-1-0061; and by the
National Science Foundation under grant CQR-
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