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CONSIDER THE FOLLOWING SCE-
nario. A fleet of unmanned air vehicles un-
dertakes a mission to disable an enemy air-
field. Pre-mission intelligence indicates that
the airfield is not defended, and mission plan-
ning proceeds accordingly. While the UAVs
are en route to the target, new intelligence
indicates that a mobile surface-to-air missile
launcher now guards the airfield. The UAVs
autonomously replan their mission, dividing
into two groups—a SAM-suppression unit
and an airfield-suppression unit—and pro-
ceed to accomplish their objectives. During
the flight, specialized algorithms for detect-
ing and recognizing SAM launchers auto-
matically upload and are integrated into the
SAM-suppression unit’s software.

In this scenario, new software components
are dynamically inserted into fielded, hetero-
geneous systems without requiring system
restart, or indeed, any downtime. Mission
replanning relies on analyses that include
feedback from current performance. Fur-
thermore, such replanning can take place
autonomously, can involve multiple, distrib-
uted, cooperating planners, and where major
changes are demanded and require human
approval or guidance, can cooperate with mis-
sion analysts. Throughout, system integrity
requires the assurance of consistency, cor-
rectness, and coordination of changes.

Other applications for fleets of UAVs

might include environment and land-use
monitoring, freeway-traffic management, fire
fighting, airborne cellular-telephone relay
stations, and damage surveys in times of nat-
ural disaster. How wasteful to construct
afresh a specific software platform for each
new UAV application! Far better if software
architects can simply adapt the platform to
the application at hand, and better yet, if the
platform itself adapts on demand even while
serving some other purpose. For example, an
airborne sensor platform designed for envi-
ronmental and land-use monitoring could
prove useful for damage surveys following
an earthquake or hurricane, provided some-
one could change the software quickly
enough and with sufficient assurance that the

new system would perform as intended.
Software engineering aims for the sys-

tematic, principled design and deployment
of applications that fulfill software’s origi-
nal promise—applications that retain full
plasticity throughout their lifecycle and that
are as easy to modify in the field as they are
on the drawing board. Software engineers
have pursued many techniques for achieving
this goal: specification languages, high-level
programming languages, and object-oriented
analysis and design, to name just a few. How-
ever, while each contributes to the goal, the
sum total still falls short.

Self-adaptive software will provide the key.
Many disciplines will contribute to its pro-
gress, but wholesale advances require a sys-
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tems perspective based on a broadly inclusive
adaptation methodology that spans a wide
range of adaptive behaviors. Central to our
view is the dominant role of software archi-
tecture in planning, coordinating, monitoring,
evaluating, and implementing seamless adap-
tation. This article examines the fundamental
role of software architecture in self-adaptive
systems and outlines technologies we have
considered for supporting the methodology. 

What is self-adaptive
software?

Self-adaptive software modifies its own
behavior in response to changes in its oper-
ating environment. By operating environ-
ment, we mean anything observable by the
software system, such as end-user input,
external hardware devices and sensors, or
program instrumentation.

Application developers must answer sev-
eral questions when developing a self-adap-
tive software system:

• Under what conditions does the system
undergo adaptation? A system might, for
example, modify itself to improve system
response time, recover from a subsystem
failure, or incorporate additional behavior
during runtime.

• Should the system be open-adaptive or
closed-adaptive? A system is open-adap-
tive if new application behaviors and
adaptation plans can be introduced dur-
ing runtime. A systems is closed-adaptive
if it is self-contained and not able to sup-
port the addition of new behaviors.

• What type of autonomy must be sup-
ported? A wide range of autonomy might
be needed, from fully automatic, self-con-
tained adaptation to human-in-the-loop.

• Under what circumstances is adaptation
cost-effective? The benefits gained from a
change must outweigh the costs associated
with making the change. Costs include the
performance and memory overhead of
monitoring system behavior, determining
if a change would improve the system, and
paying the associated costs of updating the
system configuration.

• How often is adaptation considered? A
wide range of policies can be used, from
opportunistic, continuous adaptation to
lazy, as-needed adaptation.

• What kind of information must be col-
lected to make adaptation decisions? How

accurate and current must the informa-
tion be? A wide range of strategies can be
used, from continuous, precise, recent
observations to sampled, approximate,
historical observations.

What conditions? A fleet of UAVs might
undergo adaptation under a variety of condi-
tions. Mission replanning is a prime exam-
ple because automated or human mission
planners redirect the fleet in response to the
changing battlefield. A mechanical failure of
a UAV’s generator might force the UAV to
rely solely on battery power for its electron-
ics, communications, and sensors. This in
turn would require substantial adaptation to
ensure sufficient electrical power for the mis-
sion’s duration. A change in force composi-
tion (such as the loss of a fleet member to
equipment failure) or the detection of an
unanticipated threat might force rapid and
substantial adaptation.

Open- or closed-adapted? A closed-adap-
tive UAV adapts in isolation, uninfluenced
by the adaptations and behaviors of other
fleet members. It has only a limited number
of adaptive behaviors onboard, and no new
behaviors can be introduced at runtime.
Such a UAV might be capable of a limited
number of evasive maneuvers in response to
threats, for example, and its repertoire of
evasions cannot be modified or expanded in
flight. Conversely, an open-adaptive UAV
accepts behaviors introduced from the out-
side, so an evasive maneuver known to one
fleet member can be communicated to oth-
ers while in flight.

Type of autonomy? Each UAV can be au-
tonomous to a greater or lesser degree. For
example, a UAV coping with an inflight sub-
system failure might require that a human-
in-the-loop direct, or at least approve, an

adaptation. A sophisticated UAV with more
onboard computing power might be highly
autonomous, interacting with humans infre-
quently, if at all, over the course of its
mission.

Frequencies?Adaptation is not without its
cost, and even a useful or desirable adapta-
tion might require more resources than the
UAV can afford. For example, the UAV might
be forced to permanently discard applications
or system support for the sake of additional
memory to accommodate an adaptation, or
the adaptation might cut off future avenues of
change. Implementing the adaptation might
require processor cycles better used for other,
more pressing concerns, or the adaptation,
though desirable, might degrade the UAV’s
performance in other respects.

Cost-effectiveness? Adaptation frequency
also matters. A UAV might be opportunis-
tic, considering and implementing adapta-
tions whenever it has spare processor cycles
or additional communications bandwidth
available. It might also adapt continuously,
allocating an ongoing fixed percentage of its
computing and communication resources to
the adaptation process. Alternatively, adap-
tation might only be on demand as warranted
by the UAV’s condition and environmental
state.

Information type and accuracy? Finally, the
UAV might collect information from numer-
ous sources on which to base its adaptation
decisions. Information sources include 

• real-time readings from internal sensors
for monitoring subsystem health and sta-
tus (such as battery voltage or fuel levels),

• telemetry from external sensors such as
radar and magnetometers,

• sampled observations such as processor
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load or radio signal strength over minutes,
or historical data such as the movements
of threat forces over hours.

Figure 1 illustrates the broad spectrum of
self-adaptability. At one extreme, conditional
expressions are a form of self-adaptation; the
program evaluates an expression and alters
its behavior based on the outcome. Although
simplistic, conditional expressions are a
common mechanism for implementing adap-
tive behavior. For example, a just-in-time
compiler might invoke aggressive code-opti-
mization techniques if a function is called
frequently.

Online algorithms operate under the as-
sumption that future events (inputs) are uncer-
tain. Hence, they will occasionally perform an
expensive operation to more efficiently
respond to future operations.1 Online algo-
rithms are adaptive in that they leverage knowl-
edge about the problem and the input domain
to improve efficiency. A memory-cache-pag-
ing algorithm, for example, leverages the spa-
tial and temporal locality of memory refer-
ences in determining which cached page to
evict when making room for a new page.

Generic and parameterized algorithms
provide behaviors that are parameterized,
usually through type instantiation or exter-
nal inputs. Generic or polymorphic algo-
rithms adapt by conforming to different data
types. The C++ Standard Template Library,
for example, provides generic iterator classes
used to traverse a variety of data structures.

Algorithm selection uses properties of the
operating environment to choose the most
effective algorithm among a fixed set of avail-
able algorithms. Thus, a system that uses algo-
rithm selection adapts to changes in its operat-
ing environment by switching among a set of
algorithms. The Self dynamic optimizing com-
piler, for example, uses program-profiling data
collected during program execution to select
different code-optimization algorithms.2

At the other extreme,evolutionary program-
ming and machine-learning techniques are
adaptive in that they use properties of the oper-
ating environment and knowledge gained from
previous attempts to generate new algorithms.3

Generally, approaches near the spectrum’s
bottom intertwine concerns regarding soft-
ware adaptation and application-specific
behavior. For example, a conditional expres-
sion combines the adaptation’s specification
with the application’s specification. Conse-
quently, understanding, analyzing, and mod-
ifying the two independently is arduous.

Approaches near the top more clearly sepa-
rate software-adaptation concerns and appli-
cation-specific functionality. For example,
algorithm generation separates the adapta-
tion’s specification from the produced algo-
rithm. Separating the concerns of software
adaptation from software function facilitates
their independent analysis and evolution.

Software adaptation in-the-
large

While technical advances in narrow areas
of adaptation technology provide some ben-
efit, the greatest benefit will accrue by devel-
oping a comprehensive adaptation method-
ology that spans adaptation-in-the-small to
adaptation-in-the-large, and then develops
the technology that supports the entire range
of adaptations. Figure 2 illustrates just such
a methodology that we are investigating.

The upper half of the diagram, labeled
“adaptation management,” describes the life-
cycle of adaptive software systems. The life-
cycle can have humans in the loop or be fully
autonomous. “Evaluate and monitor obser-
vations” refers to all forms of evaluating and
observing an application’s execution, includ-
ing, at a minimum, performance monitoring,
safety inspections, and constraint verifica-
tion. “Plan changes” refers to the task of
accepting the evaluations, defining an appro-

priate adaptation, and constructing a blue-
print for executing that adaptation. “Deploy
change descriptions” is the coordinated con-
veyance of change descriptions, components,
and possibly new observers or evaluators to
the implementation platform in the field.
Conversely, deployment might also extract
data, and possibly components, from the run-
ning application and convey them to some
other point for analysis and optimization.

Adaptation management and consistency
maintenance play key roles in this approach.
Although mechanisms for runtime software
change are available in operating systems
(for example, dynamic-link libraries in Unix
and Microsoft Windows), component object
models, and programming languages, these
facilities all share a major shortcoming: they
do not ensure the consistency, correctness,
or other desired properties of runtime
change. Change management is a critical
aspect of runtime-system evolution that
identifies what must be changed; provides
the context for reasoning about, specifying,
and implementing change; and controls
change to preserve system integrity. With-
out change management, the risks engen-
dered by runtime modifications might out-
weigh those associated with shutting down
and restarting a system.

Software adaptation is a complex process
and is further complicated by change drivers
ranging from purposeful adjustments in
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fielded systems to unanticipated perturbations
in the operational environment. The changes
themselves encompass everything from a
simple replacement of an isolated component
to wholesale reconfigurations that are perva-
sive and physically distributed. Our approach
addresses these demanding and unprece-
dented requirements by managing adaptation
using a flexible infrastructure to support a full
range of adaptation processes. The infra-
structure relies on

• software agents that automate tasks
within the process,

• explicit representations of software com-
ponents, their interdependencies, and
their environmental assumptions,

• explicit representations of the environ-
ments in the field where software is de-
ployed, and 

• wide-area messaging and event services
that connect adaptation managers to adap-
tive systems to permit coordinated and
coherent adaptation in physically distrib-
uted, logically decentralized environments.

The lower half of Figure 2, labeled “evo-
lution management,” focuses on the mecha-
nisms employed to change the application
software. Our approach is architecture-based:
changes are formulated in, and reasoned over,
an explicit architectural model residing on the
implementation platform. Changes to the
architectural model are reflected in modifi-
cations to the application’s implementation,

while ensuring that the model and the imple-
mentation are consistent with one another.
Monitoring and evaluation services observe
the application and its operating environment
and feed information back to the diagram’s
upper half.

Software architectures view systems as
networks of concurrent components bound
together by connectors.4An architectural per-
spective shifts focus away from source code
to coarse-grained components and their inter-
connections. Designers can abstract away
obscuring details and concentrate on the big
picture: the system structure, the interactions
among components, the assignment of com-
ponents to processing elements, and runtime
change. Components are responsible for im-
plementing application behavior and main-
taining state information. Connectors are
transport and routing services for messages
or objects. Components do not know or care
how their inputs and outputs are delivered or
transmitted or even what their sources or des-
tinations might be. On the other hand, con-
nectors know exactly who is talking to whom
and how—but are ignorant of the computa-
tions of the components they serve. Strictly
separating computation from communica-
tion lets a system’s computation and com-
munication relationships evolve indepen-
dently of one another, including rearranging
and replacing the components and connec-
tors of an application while the application
executes—a necessary, but insufficient,
mechanism for self-adaptive software.

Evolution management

It is not enough that we can rearrange and
replace portions of an application while it is
executing. Self-adaptive systems present a
unique set of challenges with respect to safety,
reliability, and correctness. For example, an ill-
considered change—such as the accidental
removal of a critical navigation component—
can compromise a UAV’s safety, reliability,
and correctness properties. Consequently,
facilities for guiding and verifying modifica-
tions are an integral part of our architecture-
centric approach. Figure 3 details our approach
to evolution management, the process by
which change is applied and controlled.5 A
variety of tools and adaptation mechanisms
evolve an application by inspecting and chang-
ing its architectural model. Changes can
include the addition, removal, or replacement
of components and connectors, modifications
to the configuration or parameters of compo-
nents and connectors, and alterations in the
component/connector network’s topology. As
we show next, our approach maintains system
consistency and integrity by examining each
change and vetoing any changes that render
the system inconsistent or unsafe.

Dynamic software architectures. Support-
ing a broad class of adaptive changes at the
architectural level requires that we not only
change components on the fly but also their
interconnections. However, simultaneously
changing components, connectors, and top-
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ology in a reliable manner requires distinctive
mechanisms and architectural formalisms.
Many systems are dynamic to some limited
degree but few embrace dynamic change as a
fundamental consideration. 

There are two distinct approaches to
dynamism at the architectural level: C26

and Weaves.7 They have many features in
common:

• both distinguish between components
and connectors,

• neither places restrictions on the granu-
larity of the components or their imple-

mentation language,
• both require that all communication be-

tween components occur by exchanging
asynchronous messages (C2) or objects
(Weaves), and 

• components can encapsulate functionality
of arbitrary complexity and exploit multi-
ple threads of control.

However, C2 and Weaves take different
approaches to system composition. C2 com-
poses systems as a hierarchy of concurrent
components bound together by connectors—
message-routing devices—such that a com-

ponent within the hierarchy can only be aware
of components “above” it and is completely
unaware of components residing at the same
level or “beneath” it. Figure 4 shows an exam-
ple C2-style architecture for a simple cargo-
routing logistics system. A component explic-
itly utilizes the services of components above
it by sending a request message. Communi-
cation with components below occurs implic-
itly; whenever a component changes its inter-
nal state, it announces the change by emitting
a notification message, which describes the
state change, to the connector below it. Con-
nectors broadcast notification messages to
every component and connector connected
on its bottom side. Thus, notification mes-
sages provide an implicit invocation mecha-
nism, allowing several components to react
to a single component’s state change. For
example, the “Telemetry” component in Fig-
ure 4 is only aware of the “Clock,” “Ports,”
“Vehicles,” and “Warehouses” components.
Furthermore, the C2-style components can-
not assume that they will execute in the same
address space as other components or share
a common thread of control.

In contrast, Weaves is a dynamic, object-
flow-centric architecture designed for appli-
cations characterized by continuous or inter-
mittent voluminous data flows and real-time
deadlines. Components in Weaves consume
objects as inputs and produce objects as out-
puts (“object” is intended in the sense of
C++, Smalltalk, or Java). Figure 5 depicts an
example Weaves architecture for a portion of
a stereo tracker. Weaves embraces a set of
architectural principles known as the laws of
blind communication:

• no component in a network knows the
sources of its input objects or the desti-
nations of its output objects;

• no network component knows the seman-
tics of the connectors that delivered its
input objects or transmitted its output
objects; and 

• no network component knows the loss of
a connection. 

These laws ensure that no component knows
its location in the network, that every com-
ponent is independent of the semantics of the
connectors to which it is attached, and that
any Weaves architecture can be edited, re-
wired, expanded, or contracted on the fly.
Furthermore, Weaves permits connectors to
be composed of other connectors and com-
ponents, allowing connectors to be specially
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adapted to the characteristics of their oper-
ating environment with corresponding per-
formance gains.

Several characteristics of C2 and Weaves
facilitate runtime change. Because compo-
nents communicate asynchronously, C2 and
Weaves avoid several subtle complexities
inherent in supporting runtime change in
applications that utilize synchronous com-
munication. While this restriction occasion-
ally makes it more difficult to implement par-
ticular component interactions, because a
component must continue to respond to ser-
vice requests from other components while
awaiting responses it has made of others, our
experience demonstrates that its benefits for
runtime change outweigh its costs. 

The independence between hierarchical
layers in a C2-style architecture further
reduces component dependencies: a C2 com-
ponent is unaware of components below
itself, so it is oblivious to runtime changes
that involve these components.. Conversely,
a component can only be affected by runtime
changes involving components strictly above
itself. Because C2 components cannot assume
that they will execute in the same address space
as other components, complex component
dependencies resulting from the use of pointer
variables and global variables are avoided. Sim-
ilarly, because components do not share a com-
mon thread of control, control dependencies
are avoided. Taken together, C2’s style rules
ensure that each component is almost com-
pletely ignorant of the placement, function, and
implementation of its fellow components. 

Consequently, at runtime, C2 can add,
delete, or rearrange components with remark-

able ease and alacrity. In contrast, while
Weaves supports like forms of component
manipulation, it emphasizes the dynamic dis-
tribution, modification, and rearrangement 
of connectors. This lets developers optimize
intercomponent communication while a
Weaves architecture is executing, including
wholesale movement of a subarchitecture
from one host to another along with dramatic
changes in the semantics and implementa-
tions of its connectors.

In short, C2 has been optimized for flexi-
ble components, while Weaves focuses on
high-performance, flexible connectors. One
research issue we face is blending these two
approaches to dynamic architectures into a
single, cohesive whole. One possible ap-
proach is to treat Weaves as an implementa-
tion substrate for C2 and “compile” C2-style
architectures into lower-level, but more effi-
cient, Weaves architectures.

Maintaining consistency and system
integrity. Ongoing adaptation continuously
threatens system safety, reliability, and cor-
rectness. Therefore, facilities for guiding
and checking modifications are an integral
part of our adaptation infrastructure. As an
application adapts and evolves, we face the
problem of preserving an accurate and con-
sistent model of the application architecture
and its constituent parts—the components
and the connectors. We must also maintain
a strict correspondence between the archi-
tectural model and the executing imple-
mentation. To deal with these problems, we
deploy, as an integral part of the application,
an architectural model that describes the

interconnections among components and
connectors and their mappings to imple-
mentation artifacts. The mapping permits
changes, given in terms of the architectural
model, to effect corresponding changes in
the actual implementation.

To guard against untoward change, we pro-
pose an architecture evolution manager (AEM)
that mediates all change operations directed
toward the architectural model. A change is
expressed either as a single basic operation or
as a change transaction composed of two or
more basic operations. All changes are atomic;
that is, they either complete without error or
leave the application untouched. A change
transaction includes operations for forcing
components and connectors into safe or halt
states; adding, removing, and replacing com-
ponents and connectors; and changing the
architectural topology.

The AEM maintains the consistency
between the architectural model and the
implementation as changes are applied, re-
ifies changes in the architectural model to the
implementation, and prevents changes from
violating architectural constraints. For exam-
ple, it can enforce the generic constraint that
all components must be connected to at least
one connector but not more than two. The
AEM is also tailored by application- and
domain-dependent change policies that dic-
tate the forms of acceptable change. Within
the UAV domain, the AEM can require that
the UAV system contain at least one naviga-
tion component. The AEM, which maintains
the mapping between the architectural model
and the implementation, uses this mapping
to carry out modifications by mapping model
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components and connectors into implemen-
tation artifacts and translating change oper-
ations into implementation actions.

Enacting changes. There are many possible
sources of architectural change, including the
application itself, external tools, and replan-
ning agents. Software architects can use a
visual, interactive,architecture editor to con-
struct architectures and describe modifica-
tions. A variety of analysis tools can accom-
pany the editor—for example, a design
wizard that critiques an architecture as a
designer constructs it, or application- and
domain-dependent design wizards that, by
exploiting specialized knowledge, can pre-
vent semantic errors or ensure a minimum
level of performance or safety. The modifi-
cation interpreter acts as a second, compan-
ion tool to interpret change scripts written in
a change-description language to primitive
actions supported by the AEM.

Adaptation management

A self-adaptive system observes its own
behavior and analyzes these observations to
determine appropriate adaptations. A com-
panion to the process of evolution manage-
ment is the process of adaptation manage-
ment, illustrated in Figure 6. Adaptation
management monitors and evaluates the
application and its operating environment,
plans adaptations, and deploys change de-
scriptions to the running application.

Viable self-adaptive systems require long-
term continuity in the face of dynamic
change—in other words, both a standard
locale for the information and tasks required
to carry out the function of adaptation and a
focal point for coordinating physically dis-
tributed, logically decentralized adaptation
tasks. For example, complex interdependen-
cies might exist among changes such that the
incorporation of one change could require
the inclusion of several others for the change
to work correctly in its environment. A stan-
dard locale helps ensure that such informa-
tion is at hand. Additionally, an adaptation
might require coordination among multiple
sites when the application is physically dis-
tributed and adaptation requires changes at
several sites simultaneously.

Additionally, managing self-adaptive soft-
ware requires a variety of agents, such as
observersfor evaluating the behavior of the
self-adaptive application and monitoring its

operating environment,planners that utilize
the observations to plan adaptive responses,
and deployers to enact the responses within
the application. 

Hosting the numerous agents and support-
ing the various activities of adaptation man-
agement that result requires infrastructure
support in its own right in the form of reg-
istries. Registries at each application site con-
tain resource descriptions, configurations, and
other declarative information relevant to the
site and the adaptive application. Registries
elsewhere might be dedicated to overseeing
and coordinating the activities of the individ-
ual application site registries. Each registry
provides a standard interface by which dis-
parate agents and interests can query and

manipulate the contents of the registry, which
acts as a blackboard for exchanging infor-
mation. Interregistry communication takes
many forms, ranging from directed updates
to wide-area messaging and event notifica-
tion. One promising starting point is the Soft-
ware Dock, an infrastructure element for the
distributed configuration and deployment of
software systems, now under development at
the University of Colorado, Boulder.8,9

Collecting observations. Self-adaptive soft-
ware requires large numbers and varieties of
observations and measurements, ranging
from event-generation within the application
implementation to animations suitable for
human observers. Furthermore, adjusting the
number, extent, and detail of the observations
and measurements must be possible as the
application executes and evolves so as to
reduce measurement overhead and avoid
wasting communication bandwidth on un-
necessary observations.

At a minimum, we require embedded as-

sertions (inline observers) within the appli-
cation itself for notification of exceptional
events such as resource shortages or the vio-
lation of low-level constraints. Additional
required capabilities include dynamic con-
trol and alteration of the scope of the asser-
tions, insertion and removal of assertions
while the application is executing, language-
independent assertions, and architecture-sen-
sitive assertions. One potential candidate for
this facility is APP, a tool that supports the
automated checking of logical assertions
expressed in first-order predicate logic.10

Detecting and noting single events is not
enough because the occurrence of a pattern
of events distributed in both time and place
will trigger many adaptive strategies. One
approach is to model application behavior
abstractly in terms of patterns of events. In
this way, the architect’s expectations are
expressed as an expectation agent.11 The
expectation agent responds to the occurrence
of event patterns, including generating a
higher-level abstract event for the benefit of
other (expectation) agents. The expectation
agent is a formal specification that, depend-
ing upon its complexity, can be translated into
an observer embedded within the application
or implemented as an agent that eavesdrops
on the activity of the local registry. In addi-
tion, we must monitor events that occur out-
side of the application—such as the quality
or availability of a network connection—as
well as adaptation events that arise as a con-
sequence of dynamic architectural change.

We must also make provision for obser-
vation by human observers in cooperation
with automated agents. One appealing tech-
nology is Joist, which exploits standard Web-
based technologies—HTTP and HTML—to
provide a powerful and efficient infrastruc-
ture for remote observation of distributed
applications.12 Joist embeds a small Web
server in the application’s runtime environ-
ment, which then monitors the application
and gathers information. This information is
identified through a special URL namespace,
and it is presented in HTML pages that the
Joist server generates and communicates to
any standard Web browser via HTTP.

New techniques must emerge for reduc-
ing the monitoring overhead. Weaves em-
ploys statistical monitoring techniques that
lets observers trade accuracy in favor of
reduced overhead. Using this approach, we
can reduce the invasive effect of instrumen-
tation on a running application to below the
noise threshold while still obtaining useful
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information. Furthermore, the instrumenta-
tion can stay permanently embedded within
the application so that an observer can selec-
tively measure only behaviors of interest
without damaging the application. Applica-
tion developers can use this technique in a
variety of ways, including performance
analysis and real-time animation of the be-
havior of running systems.

Evaluating and monitoring. Adaptive
demands can arise from inconsistencies or
suboptimal behavior within the system. In
particular, inconsistencies can occur when
some architectural element (ranging from a
single component or connector to a subsys-
tem, or the entire architecture) behaves in a
manner inconsistent with the behavior re-
quired of it or when an element’s assump-
tions about its operating environment become
invalid. Maintaining consistency in these sit-
uations requires monitoring and evaluating
representative behaviors of the running sys-
tem and comparing them to an explicit for-
mulation of behavioral requirements or envi-
ronmental assumptions.

Successful consistency management re-
quires a hybrid approach that combines both
static and dynamic analysis. One promising
form of static analysis exploits attributed graph
grammars. Recall that dynamic architectures
can be characterized as graphs of components
and connectors. Attributed graph grammars
can represent the set of all an application’s 
possible configurations where architectural
changes are regarded as graph-rewrite opera-
tions. Analysis tools can determine if an invari-
ant is preserved by all possible architectures
or can return an example graph (architectural
configuration) that violates the invariant.

Static analysis might be insufficient, in
which case runtime checks are employed to
detect inconsistencies. Observers inspect
both the application and the environment in
which the application operates and evaluate
their observations for consistency with rele-
vant annotations obtained from the registries.
Observers are generated and launched auto-
matically based on the constraints and prop-
erties extracted from annotations pertaining
to the element under observation. Observers
post observed inconsistencies, aggregated
observations, and analyses to the registry.

Planning changes. Planning is also a vital
aspect of self-adaptive software. Self-adap-
tation requires two distinct forms of plan-
ning: observation planning and adaptation

planning. Observation planning determines
which observations are necessary for decid-
ing when and where adaptations are required.
The observation planner takes into account
environmental assumptions, expected behav-
iors, the availability of observers and obser-
vations, and their costs. We can view this task
as a classic planning problem where the goals
are information needs, the operators are the
observers, the preconditions are required
event types, the postconditions are observer-
generated event types, and the operators have
observation and notification costs. This type
of planning is well within the range of to-
day’s planning technology.

Adaptation planning determines exactly
which adaptations to make and when. The

adaptation planner must take into account the
purpose of components, their environmental
assumptions, and known properties of the envi-
ronment. We are interested in applications
(such as UAVs) where adaptations must be
planned in minutes, not hours. One possible
approach relies on the use of predefined solu-
tion frameworks that, by limiting the range and
variation of possible adaptations, drastically
reduce the computation required for planning.

A solution framework is a partially instan-
tiated hierarchical solution architecture con-
sisting of connectors, sockets (placeholders
for components), and an equivalence class of
candidate components for each socket (where
components can themselves be solution
frameworks). Given such a framework, an ini-
tial solution architecture might be found by
selecting components for each socket from
the set of eligible components. Using this as
a starting point, the system can undergo incre-
mental adaptation by choosing alternatives
for problematic components whose environ-
mental assumptions no longer hold in the
observed environment.

A more general approach explicitly repre-
sents the preconditions and postconditions of
each component that could affect, or be
affected by, other components; represents each
socket in terms of one or more required post-
conditions; and treats framework instantiation
as a planning problem. This approach requires
a partial domain model and additional com-
putation but no longer requires that candidate
components form an equivalence class. We
have already demonstrated this approach in
another domain, the automatic generation of
simulation scripts for tank training.13

Deploying change descriptions. Change
agents propagate and move out among sites
to carry out their tasks. Imagine a scenario
in which a coordinated change is required at
two separate sites. Agents responsible for
each portion of the coordinated change dis-
patch from a third site (which oversees the
other two), taking with them the change
descriptions to be installed. Included in the
change descriptions are any new required
components or connectors and their affiliated
annotations. These agents, once situated at
the registries of their respective sites, will
interact with the local AEM, which translates
the change transactions contained within the
change descriptions into specific modifica-
tions of the system’s implementation.

ALTHOUGH EACH INDIVIDUAL
aspect of our approach has been the focus
of much research, integrating these aspects
into a comprehensive self-adaptive soft-
ware methodology is unprecedented. In the
near future, we hope to complete an initial
integration of our dynamic architecture
technology, event-based monitoring and
evaluation technology, and software de-
ployment technology in support of self-
adaptive software.
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