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DATA COMPLEXITY AND COMPUTATIONAL PROBLEMS

· Exponential data expansion.

· Biological noise and variability. Evolution.

· Physical and Genetic Maps.

· Pairwise and Multiple Alignments.

· Motif Detection/Discrimination/Classification.

· Data Base Searches and “Mining”.

· Phylogenetic Tree Reconstruction

· Gene Finding and Gene Parsing.

· Gene Regulatory Regions and Gene Regulation.

· Protein Structure (Secondary, Tertiary, etc.).

· Protein Function.

· Genomics, Proteomics,  etc.

MACHINE LEARNING

· Machine Learning = Statistical Model Fitting.

· Extract Information from the data automatically (inference) via a process of model fitting (learning from examples).

· Model Selection: Neural Networks, Hidden Markov Models, Stochastic Grammars, Bayesian Networks.

· Model Fitting: Gradient Methods, Monte Carlo Methods,…

· Machine learning approaches are most useful in areas where there is a lot of data but little theory.

THREE KEY FACTORS

Data Mining/Machine Learning Expansion is fueled by: 

· Progress in sensors, data storage, and data management.

· Computing power.

· Theoretical framework: Bayesian Statistics, Probabilistic Graphical Modeling.

INTUITIVE APPROACH

· Look at ALL available data, background information, and hypothesis.

· Use probabilities to express PRIOR knowledge.

· Use probabilities for inference, model selection, model comparison, etc. by computing POSTERIOR distributions and deriving UNIQUE answers.
DEDUCTION AND INFERENCE

· DEDUCTION:



If A(B  and A is true,

             then B is true.

· INDUCTION:



If A(B and B is true,

             then A is more plausible.

BAYESIAN STATISTICS

· Bayesian framework for induction: we start with hypothesis space and wish to express relative preferences in terms of background information (the Cox-Jaynes axioms).

· Axiom 0: Transitivity of preferences.

· Theorem 1: Preferences can be represented by a real number ((A).

· Axiom 1: There exists a function f such that

((non A)=f(((A))

· Axiom 2: There exists a function F such that

((A,B)=F(((A), ((B|A))

· Theorem2: There is always a rescaling w such that P(A)=w(((A)) is in [0,1], and satisfies the sum and product rules.

PROBABILITY AS DEGREE OF BELIEF

· Sum Rule:

P(A|I) = 1-P(non-A|I)

· Product Rule:

P(A,B|I) = P(A|I) P(B|A,I)

· BayesTheorem:

P(A|B) = P(B|A) P(A) / P(B)

· Induction Form:

P(Model|Data) = P(Data|Model) P(Model) / P(Data)

· Equivalently:

P(Model|Data,I) = P(Data|Model,I) P(Model|I) / P(Data|I)

· Recursive Form:

P(Model|D1,D2,…,Dn+1) = P(Dn+1|Model) P(Model|D1,…,Dn) / P(Dn+1|D1,…,Dn)

DIFFERENT LEVELS OF BAYESIAN INFERENCE

· Level 1: Find the best model w*.

· Level2: Integrate over models.

A non-probabilistic model is NOT a scientific model.

EXAMPLES OF NON-SCIENTIFIC MODELS

· F=ma

· E=mc2
· etc…

· These are only first-order approximations and do not “fit” the data (likelihood is zero).

·  Correction: (F+ F’) = (m+m’)(a+a’).

TO CHOOSE A SIMPLE MODEL BECAUSE DATA IS SCARCE IS LIKE SEARCHING FOR THE KEY UNDER THE LIGHT IN THE PARKING LOT.

MODEL CLASSES

· BINOMIAL/MULTINOMIAL MODELS

· NEURAL NETWORKS

· MARKOV MODELS, KALMAN FILTERS

· HIDDEN MARKOV MODELS

· STOCHASTIC GRAMMARS

· DECISION TREES

· BAYESIAN NETWORKS

· GRAPHICAL MODELS IS THE UNIFYING CONCEPT

LEARNING 

· MODEL FITTING AND MODEL COMPARISON

· MAXIMUM LIKELIHOOD AND MAXIMUM A POSTERIORI

PRIORS

· NON-INFORMATIVE PRIORS (UNIFORM, MAXIMUM ENTROPY, SYMMETRIES)

· STANDARD PRIORS: GAUSSIAN, DIRICHLET, ETC.

LEARNING ALGORITHMS

· Minimize -log P(M|D).

· Gradient methods (gradient descent, conjugate gradient, back-propagation).

· Monte Carlo methods (Metropolis, Gibbs sampling, simulated annealing).  

· Other methods: EM (Expectation-Maximization), GEM, etc.

OTHER ASPECTS

· Model complexity.

· VC dimension.

· Minimum description length.

· Validation and cross validation.

· Early stopping.

· Second order methods (Hessian, Fisher information matrix).

· etc.

AXIOMATIC HIERARCHY

· GAME THEORY

· DECISION THEORY

· BAYESIAN STATISTICS

· GRAPHICAL MODELS

GRAPHICAL MODELS

· Bayesian statistics and modeling leads to very high-dimensional distributions P(D,H,M) which are typically intractable.

· Need for factorization into independent clusters of variables that reflect the local (Markovian) dependencies of the world and the data.

· Hence the general theory of graphical models.

· Undirected models reflect correlations: Random Markov Fields, Boltzmann machines, etc.

· Undirected models are used for instance in image modeling problems.

· Directed models reflect temporal and causality  relationships: NNs, HMMs, Bayesian networks, etc.

· Directed models are used for instance in expert systems.

· Mixed Directed/Undirected Models and other variations are possible.

BASIC NOTATION

· G=(V,E) = graph. 

· V = vertices, E = directed or undirected edges.

· XI = random variable associated with vertex i.

· X(Y = X and Y are independent.

· X(Y|Z = X and Y are independent given Z

P(X,Y|Z)=P(X|Z) P(Y|Z)

· N(i) = neighbors of vertex i.

· Naturally extended to sets and to oriented edges.

· “+” = children or descendants or consequences or future.

· “–”  = parents or ancestors or causes or past.

· C+(i) = the future of i.

· Oriented case: topological numbering of the vertices.

UNDIRECTED GRAPHICAL MODELS

· Undirected models reflect correlations: Random Markov Fields, Boltzmann machines, etc.

· Undirected models are used for instance in image modeling problems, statistical mechanics of spins, etc.

· Markov properties are simpler. Global factorization is more complex.

MARKOV PROPERTIES

· Pairwise Markov Property: Non-neighboring pairs Xi and Xj are independent conditional on all the other random variables.

· Local Markov Property: Conditional on its neighbors, any variable Xi is independent of all other variables.

· Global Markov Property: If I and J are two disjoint sets of vertices, separated by a set K, the variables in I and J are independent conditional on the variables in K.

· Theorem: The 3 Markov properties above are equivalent. In addition, they are equivalent to the statement that the probability of a node given all the other nodes is equal to the probability of the node given its neighbors only.

GLOBAL FACTORIZATION

· P(Xi | Xj : j in N(I)) are the local characteristics of the Markov random field. They uniquely determine the global distribution, but in a complex way.

· The global distribution can be factorized as:

P(X1,…,Xn) = exp [-(C fC(XC)] / Z.

· fC = potential or clique function of clique C

· maximal cliques: maximal fully interconnected subgraphs

DIRECTED GRAPHICAL MODELS

· Directed models reflect temporal and causality  relationships: NNs, HMMs, Markov Models, Bayesian Networks, etc.

· Directed models are used, for instance, in expert systems.
· Directed Graph must be a DAG (directed acyclic graph).
· Markov properties are more complex. Global factorization is simpler.

MARKOV PROPERTIES

The future is independent of the past given the present

· Pairwise Markov Property: Non-neighboring pairs Xi and Xj with  i < j are independent, conditional on all the other variables in the past of j.

· Local Markov Property: Conditional on its parents, a variable is independent of all the other nodes, except for its descendants (d-separation).  Intuitively, i and j are d-connected if and only if either (1) there is a causal path between them or (2) there is evidence that renders the two nodes correlated with each other.

· Global Markov Property. Same as for undirected graphs but with generalized notion of separation (K separates I and J in the moral graph of the smallest ancestral set containing I, J, and K.

GLOBAL FACTORIZATION

· The local characteristics are the parameters of the model. They can be represented by look-up tables (costly) or other more compact parameterizations (Sigmoidal Belief Networks, NNs parameterization, etc.).

· The global distribution is the product of the local characteristics:

P(X1,…,Xn) = (i P(Xi|Xj : j parent of i)

BELIEF PROPAGATION OR INFERENCE

Basically a repeated application of Bayes rule.

· TREES

· POLYTREES (Pearl’s algorithm)

· GENERAL DAGS (Junction Tree Algorithm, Lauritzen, etc.)
RELATIONSHIP TO OTHER MODELS

· Neural Networks.

· Markov Models. 

· Kalman Filters.

· Hidden Markov Models and the Forward-Backward Algorithm.

· Interpolated Markov Models.

· HMM/NN hybrids.

· Stochastic Grammars and the Inside-Outside Algorithm.
New Models: IOHMMs, Factorial HMMs, Bidirectional IOHMMs, etc.

APPLICATIONS

