A Semantic Approach for Building Pervasive Spaces

Daniel Massaguer Sharad Mehrotra Nalini Venkatasubramanian
Donald Bren School of Information and Computer Science
University of California, Irvine

{dmassagu,sharad,nalini}@ics.uci.edu

ABSTRACT

Large and pervasive sensing, communications, and comput-
ing infrastructures are enabling the realization of pervasive
spaces. Enabling such spaces, however, encompasses a set of
challenges. First, programming each application such that
it connects to each sensor and it interprets the data being
sensed requires a concentration of expertise that is rarely
available. Second, achieving a wise and fair usage of the
infrastructures is impossible with current approaches due
to their lack of awareness of domain and application seman-
tics. This paper summarizes a PhD dissertation that focuses
on designing and implementing a middleware that addresses
these challenges and overcomes the limitations of previous
approaches by featuring a distributed streaming architecture
and by being aware of the semantics of the space and appli-
cations. Namely, we focus on (i) the design and implemen-
tation of the overall system architecture and its underlying
programming and execution model, (ii) a set of mechanisms
to provide the right level of abstraction to applications, and
(iii) a set of mechanisms that are able to protect privacy due
to the inclusion of semantics in the middleware.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

Keywords

Pervasive spaces, middleware, SQL-programming, privacy

1. INTRODUCTION

Large and pervasive sensing, communications, and com-
puting infrastructures are enabling the creation of pervasive
spaces that offer new possibilities, conveniences, and func-
tionalities. Instrumented pervasive spaces that allow observ-
ing people and other entities in a given physical space enable
a rich set of applications ranging from surveillance and sit-
uational awareness to collaborative applications. Consider
for instance, an office environment. Here, collaboration can
be greatly enhanced if members of a team know where team-
mates are, what they are doing, and if they are available for

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

MDS 09, November 30, 2009 Urbana Champaign, lllinois, USA
Copyright 2009 ACM XXX-X-XXXXX-XXX-X/XX/XX ...$10.00.

discussions. Consider also the same office during an emer-
gency such as a fire. Emergency response can benefit from
knowing where the office occupants and firefighters are and
what their health status is. These two types of applications
are our main motivating applications for the work here pre-
sented.

Building these types of applications, nonetheless, carries
a set of challenges including:

1.- Programming abstraction. Building these applications
from scratch is an almost impossible task due to the large
amount of heterogeneous sensors. Programming each appli-
cation such that it connects to each sensor and it interprets
the data being sensed requires a concentration of expertise
that is rarely available. A middleware for pervasive spaces
needs to provide a programming abstraction such that appli-
cations can be programmed independently from how events
are detected.

2.- Privacy. Some of the entities being sensed are people.
This makes privacy an issue. The responsability of keep-
ing sensitive data from being inferred and misused cannot
be trusted to the applications themselves—they are build
to achieve a specific goal which does not necessarily involve
preserving privacy—nor it can be trusted to the sensors—
these know about bits and bytes but do not understand the
concepts of people, sensitive data, and inference channels.
The right place to deal with privacy is at the middleware
level.

This dissertation focuses on a middleware that addresses
the above challenges by embedding semantics in the middle-
ware itself. Namely, we focus on (i) the design and imple-
mentation of such a middleware’s overall system architecture
and its underlying programming and execution model, (ii)
a set of mechanisms to provide the right level of abstrac-
tion to applications, and (iii) a set of mechanisms that are
able to protect privacy due to the inclusion of semantics in
the middleware. Programming abstraction is provided by an
extension to the entity-relationship model and an interface
that allows users to pose SQL-like queries to the middleware
regarding the objects in the physical space. In turn, this
layer of abstraction along with further application seman-
tics enable addressing the challenges of privacy. Privacy is
protected with a utility-based framework that understands
privacy as negative utility and maximizes the utility of the
information being released with an algorithm based on dis-
tributed simulated annealing. All these mechanisms are em-
bedded in a middleware that features a shared code reposi-
tory for reusability and a distributed execution environment
based on mobile agents for scalability and fault-tolerance.

The rest of the paper is organized as follows. Section 2
describes the overall architecture of the system and the con-
cepts of virtual sensors and operators. Section 3 describes
an extension to the entity-relationship diagram for design-
ing pervasive space applications as well as the mechanisms

Query
processor

Privacy
manager

Monitor #

[
) Data
Repository Scheduler [+ collection

Instrumented space
(sensors, nets, machines)

MIDDLEWARE

Figure 1: System architecture

to answer SQL-like queries. Section 4 summarizes our work
on privacy-preservation. Section 5 describes both the sys-
tem implementation and applications that have been imple-
mented with our system. Section 6 summarizes the related
work. Finally, Section 7 summarizes the paper.

2. ARCHITECTURE

Pervasive space applications are interested in semanti-
cally meaningful observations such as where people are and
what they are doing. Raw sensor observations, however,
do not always produce such domain-dependent observations
but rather detect things like temperature, activity in a room,
and location of a cellphone. Our middleware (SATware [2])
bridges the gap between the applications’ interests and the
raw sensor streams with the concept of virtual sensors. Vir-
tual sensors are a set of transformations that when applied to
a set of raw sensor streams produce a semantically meaning-
ful stream at the level of abstraction at which applications
reason. In order to answer a query from an application,
SATware instantiates a set of virtual sensors, the output of
which is forwarded to the application. Note that, beyond
programming simplification, virtual sensors also allow for
more flexibility: the middleware can decide to swap a vir-
tual sensor if a better one becomes available without even
notifying the application.

Fig. 1 depicts the overall system architecture. Applica-
tions pose continuous queries to the Query Processor. The
Query Processor selects a set of virtual sensors that com-
bined with relational operators (e.g., join and selection) will
provide the answers to the queries. Each virtual sensor is
in fact described as a graph of operators. The query plans
formed by the virtual sensors and necessary relational op-
erators are passed to the Data Collection module, which
executes each operator (implemented as a mobile agent) in
one of the machines from the underlying pervasive comput-
ing infrastructure. The streams outputted by the virtual
sensors, prior to being forwarded to the application, pass
through the privacy module, which modifies them to ensure
that privacy is not violated. While data is being collected,
the Monitor module forwards statistics which passes to the
Scheduler module. The Scheduler module adapts the op-
erator parameters in order to optimize resource usage. All
modules consult a repository which contains a snapshot of
the current infrastructure state, domain information, and
code. The next two sections summarize the techniques be-
hind the Query Processor and the Privacy Manager.

3. PROGRAMMING ABSTRACTION

From the point of view of the applications, a pervasive
space is a physical space in which activities and objects are
embedded. In this space, there are 3 types of objects: (1)

eal_world_location
Chape>

SPATIAL
OBJECT

N INANIMATE N
Zuses™
N/ OBJECT

N

Figure 2: Generic OERD N

spatial objects such as rooms, floors, and buildings, (2) peo-
ple such as Mary, Peter, and Alice, and (3) inanimate objects
such as coffee pots, recycle bins, and refrigerators. Each of
these objects have attributes such as name, occupancy level,
location, salary, level of coffee, and so on. These attributes
are either static or dynamic (i.e., they change as a function
of time). For instance, name and salary are static whereas
location is static for spatial objects but dynamic for peo-
ple. We call observable attributes the subset of attributes
that can be sensed by the pervasives space. For example, a
pervasive space with video-based people counters and RFID
readers can detect both the level of occupancy of a room as
well as recognize the people in it.

3.1 Observable E-R

To model a pervasive space, we extend the Entity Rela-
tionship Diagram (the de-facto standard for designing data-
bases) with new data and relationship types: observable at-
tributes and observable relationships. We denote these new
types with dashed circles and rombes and call the new dia-
gram the Observable Entity Relationship Diagram (OERD).
Fig. 2 depicts the OERD for a pervasive space. We call this
diagram the Generic OERD. The Generic OERD describes
a generic pervasive space. It contains the entities People,
Spatial Object, Inanimate Object, and Group. Each entity
has a set of basic attributes. For instance, People has static
attributes that identify an individual (name, login, and pass-
word), and observable attributes that identify its state (lo-
cation, activity, and health).

Whereas the Generic OERD represents a model of the
space shared by any application, it does not include domain-
specific details. For example, a data model for an application
to improve collaboration between students needs to include a
Student entity with a Studentld attribute, and a data model
for an emergency response application needs to include enti-
ties such as Firefighters and Ozygen Tanks. If necessary, the
Generic OERD can be extended for each application to add
new roles that people take (e.g., students and firefighters),
inanimate objects (e.g., backpacks and oxygen tanks), and
spatial objects (e.g., floors and buildings). Fig. 3 depicts an
example where it has been extended with the Student entity.

The OERD is translated to the relational model (i.e. ta-
bles) applying the same standard procedures that are used
to translate an Entity Relationship Diagram to its relational
model. Entities become tables with one column per at-
tribute, N:M relationships become tables with one column
for each entity taking part of the relation and attribute, and
so on. The only difference is that when the tables are pop-
ulated, only static attributes are inserted.

3.2 Continous Queries

Applications query SATware as they would query a data-
base. Continuous queries are posed on the relational model
following an SQL-like syntax extended with window opera-
tors as in the CQL stream query language [1]. SATware’s

eal_world_location
Chape>

SPATIAL
OBJECT

N
Zuses™ N
N OBJECT

Figure 3: Generic OERD extended for a specific ap-
plication

Query Processor translates each query to a query plan (i.e.,
a graph with selections, joins, and other operators). For
each source table in the query plan, SATware selects virtual
sensors to sense the observable attributes of each entry in
the table.

Note that all virtual sensor’s output streams adhere to one
of 2 schemas: the observable attribute schema (entityld, at-
tributeld, attributeValue, time) or the relationship schema
(relationshipld, entitySet, attributeld, attributeValue, time).
This constraint, along with the existence of a generic OERD,
provides SATware submodules with common grounds for se-
mantic reasoning (e.g., see the privacy section below). This
constraint also allows SATware to keep information in its
repository regarding which virtual sensors can sense which
attributes/relationships of which entities. With this infor-
mation, and given a cost for each virtual sensor, the Query
Processor is able to select a subset of virtual sensors that
answer a continuous query at a minimum cost.

Once the virtual sensors are selected, the query plan along
with the virtual sensor descriptions (recall that a virtual
sensor is a graph of operators) are forwarded to the Data
Collection module, which (i) decides in which machine each
operator executes and instantiates them, (ii) decides to share
operators if possible, and (iii) connects the last operator of
the query plan to the application *.

4. PRIVACY

The task of pervasive space applications is to provide an-
swers to users’ queries. While the utility of a query response
is maximized for the observer when the data is in “the most
precise” form, the utility may be quite the opposite for the
target of the query. For instance, if location privacy is a
concern then revealing accurate information about location
is certainly detrimental for the target. There is often such
a conflict between the “positive” and “negative” utilities as-
sociated with a piece of information that comprises a query
response. Traditional access control mechanisms are geared
towards deciding between the binary options of granting and
denying access to a piece of information. In contrast, we
consider a much larger set of options where the same in-
formation is revealed to the observer at a different granu-
larity. Another important feature of our privacy analysis
is that we factor in the information disclosed due to infer-
ence. In the remainder of this section we summarize how we
model background knowledge, observer and target utilities,
and the information release problem as a constrained opti-
mization problem in a utility theoretic framework. We also

!Note that SATware is a distributed streaming system where
query answers are forwarded directly to the application,
without storing them into an intermediate database.

summarize the algorithm we propose to solve the maximiza-
tion problem as well as the implementation of our approach
and some experimental results. For more details, the reader
can check our paper in [36].

4.1 Background Knowledge M odel

We model an observer’s background knowledge (BK°*)
as a set of probabilistic first-order Datalog (pDatalog) clau-
ses [28]. An example of a rule is:

Tuple(Alice, Location,l,t) : p 0.8
— Tuple(Mary, Location, 1, t) : p (1)

A data element is represented as a multi-attribute tuple of
the form: Tuple(objectld, attribute Name, attributeValue,
time) : certainty. The rule above states that if Mary is
at location [at time ¢t with probability p, then Alice is also
present at the same location with a probability of 0.8+p. The
knowledge base consists of rules of the above form along with

some other auxiliary information in the form of hierarchies
and facts.

4.2 Privacy vs Utility

We argue that the potential use (or misuse) of information
is what defines the expected utility of information. Given
this premise, we formulate our objective as follows. Let Yieq
be the answer provided by the Data Collection module, Y;.¢;
be the information being released by the Disclosure Control,
Yierivea the information inferrable from Y., =< the gener-
alization relationship, and Y, a subset of Y, such that
no piece of information in Y, allows one to infer a piece
of information in Yierived — Y, and vice-versa. We cast
the problem as a maximization problem where the objec-
tive is to find a generalization Y}!,; = Y., for each Y}, that
maximizes the observer aggregated expected utility of the
information released while ensuring that the largest nega-
tive utility of all the information pieces the observer can
infer, given his background knowledge and the information
being released, is not greater than the largest positive utility
of all the information pieces the observer can infer given the
generalization hierarchy and the information being released.
Formally it can be stated as:

max EUo (Y,.)) (2)

rel

such that
min_EUr (Yye) + maz_EUo (Y, e) > 0.0 (3)
7‘iel j Y'rieq (4)

where

EUO ()/rlel) = Z

Vyr€GH(Y, ;)

EUo(yr)

min EUr(Y}y)= min EUr(yq)
Yd€Yderived
maz_EUo(Tiel) = max EUo(yr) (5)

yr€GH(Y,)

and EUo(y) and EUr(y) are the expected observer and tar-
get utilities for releasing to the observer a piece of informa-
tion regarding the target. These expected utilities are de-
fined as the product of how much the observer believes y to
be true, the probability of y being true, and the pre-specified
utility of y being used/misused by the observer.

See Table 1 for a summary of the meaning of the symbols.

4.3 Solution

If an observer poses N continuous queries, it is possible
that at any point in time, N distinct tuples might need to

Symbol | Description
Yreq tuples before discl. control
Y, e tuples after discl. control
Yierived info inferrable from Y,.¢;
GH(Y,el) info inferrable from v,
based on gen. hierarchies
<, = generalization relations
EUo Observer’s expected utility
EUr Target’s expected utility

Table 1: Symbols

Yy =findMinIndPartitions(Yy.cq, BK°"®)
for each(Y,,; € Yreq)
do n times in parallel
SimulatedAnnealing(Y},;)
enddo
endfor

Figure 4: Maximization algorithm

be generalized. The algorithm therefore has to search for
a joint generalization scheme for these N tuples. If there
are m levels of generalization per attribute (on average) and
N tu}eles, the number of different generalization schemes is
O(m™). Two important properties of the objective function
are: (i) minimal independent partitions can be solved inde-
pendently and in parallel, and (ii) the utility of a piece of
information is never smaller than its generalization. Given
the exponential size of the feasible region, the need for real-
time solutions, the parallel nature of the problem formula-
tion, and the distributed computing affinity of sentient sys-
tems, we propose a distributed stochastic solution based on
distributed simulated annealing (Fig. 4). We use the Rete
algorithm [19] to compute potential inferences. By making
a few assumptions on the form of the knowledge base and
setting the parameters for the simulated annealing appropri-
atly our algorithm has a time complexity polynomial w.r.t.
the size of the knowledge base and number of queries.

4.4 Implementation

The high-level design for integrating the Privacy Manager
into SATware is shown in Fig. 5. In the Policy Manager,
privacy and utility policies are specified by users through
the Policy Editor, validated by the Policy Processor, and
stored into the Privacy DB. The policy editor obtains the
users policies by adapting a utility elicitation process [13]
based on having the user (i) specify a utility preference net-
work and (ii) anchor the utility of some pieces of information
according to the scale from Fig. 6. The knowledge base rep-
resents the background knowledge of users and it is partly
populated by system and space administrators and partly
learned (on-the-fly) by the system using the BK Generator,
and stored into the BK-DB. The Disclosure Control analy-
ses the possible information (using the proposed distributed
simulated annealing technique) that the observer could in-
fer and, with the active policies, decides which information
should be generalized and how.

45 Experiments

The main goal of the disclosure control submodule is to be
able (i) to produce good results (high utility with adequate
privacy) and (ii) to do so in real-time. To test the parallel
simulated annealing based approach (PSA), we compared
it to two simpler and centralized approaches: a brute force
search (BF) and a brute force search based on a less expres-
sive anonymity-based definition of privacy (minGen). Some
of the results are summarized in Fig. 7 and Fig. 8, the rest
are published in [36]%. We instantiated 5 variations of PSA.

2The results here presented are an average over 33 runs on

120000 111661

100000 96364
80000
60000
40000
20000
617 488 569 994 1727
° BF A1) PA) POALL) POALS) POAC.

minGen PSA(1) PSA(6) PSA(11) PSA(16) PSA(21)

Figure 7: Avg. time overhead of PSA with different
concurrent explorations vs BF and minGen

Time [ms]

0.6

0.5
0.5
0.4
03 0.29
0.2
0.09

ek 0.06

0.02 0.02
0 Hm o w

BF minGen PSA(1) PSA(6) PSA(L1) PSA(16) PSA(21)

Figure 8: Avg. utility loss of PSA with different
concurrent explorations vs BF and minGen

Utility Loss

These instantiations differed on the degree of concurrent ex-
ploration (i.e., number of threads) being used. We call these
PSA(x) where x is the number of concurrent explorations.
Fig. 7 and Fig. 8 show that while the BF approach always
finds the optimal, it takes far more time than the PSA ap-
proaches (minutes versus hundreds of milliseconds), which
manage to return a solution very close to the optimal when
incrementing the amount of concurrent exploration and with
less than a second.

5. IMPLEMENTATION

SATware is being developed in the context of the Re-
sponsphere infrastructure at the UC Irvine campus which
is a unique publicly accessible testbed for interdisciplinary
research in situation monitoring and awareness in the con-
text of emergency response applications. Currently, Respon-
sphere includes more than 200 sensors of 10 different types
deployed over the geographical space that covers about half
of the UCI campus. The sensors range from network pan-
tilt-zoom fixed video cameras, microphones, wireless motes
with accelerometers, temperature sensors, and motion sen-
sors to RFID tag readers and networked people counters.

The Responsphere-SATware framework has been and is
being used to test and develop applications such as privacy-
preserving video surveillance [24, 7, 45], situational aware-
ness for firefighters (SAFIRE) [6], building visitor track-
ing [5], pedestrian traffic analyzer [26], technology-induced
recycling behaviour, fresh coffee alerts, and others. For up-
to-date videos and demos of these and other applications the
reader is referred to the SATware website [8].

6. RELATED WORK

Stream processing engines (SPEs) like TelegraphCQ [15],
STREAM [11], S3 [12], Cayuga [16], Aurora [14], Bore-
alis [9], and MedSMan [31], focus on answering continuous
queries on streams. With the exception of Aurora and Bore-
alis, these systems focus on providing support for SQL-like
queries with sliding windows. Aurora and Borealis focus on
a “Box-and-Arrow” programming model where one describes

a dual-core machine featuring an AMD Turion 64 X2 at
2.0Ghz, with 3GB of memory, and running Linux

Tarpets\ O\I‘JserKers

Notifier, olicy editol
"

Query Yrel —L |

Disclosure Poli
rocessor olicy

P ~ control procéssor
(simulated
annealing)

I

|4

A
Policy DB
(RDF)

Policy Manager
Privacy Managei

BK
enerator
'?rule mining)
—

Figure 5: PrivacyManager

queries as a graph of operators with a series of parameters.
SPEs usually execute the queries on a centralized server and
thus the main challenges orbit around overcoming a con-
straint memory and CPU with static solutions such as chain
scheduling [14] and semantic load shedding [43] as well as
dynamic solutions such as per-tuple dynamic routing [15,
29].

In contrast with SPE’s architectural design, some work on
wireless sensor networks (WSN) have focused on in-network
processing. There has been two main themes in this area.
Some work has focused on improving ad-hoc programming of
sensor networks by providing ways of uploadiong new code to
each node [18, 30]. Others focused on providing a database-
like view of the sensor network and pushing the execution
of the relational operators into the WSN notes [34, 33].

Service-oriented middleware (SOM) for pervasive spaces

like Gaia [3], Oxygen [4], PICO [27], Scooby [38], and Aura [41],

takes an approach closer to the “Box-and-Arrow” from Au-
rora and Borealis. Namely, applications are described as
graphs of services. Each device in the pervasive/ubiquitous
space advertises its capabilites as services. The main chal-
lenges then include how to optimally perform a QoS-based
service discovery and composition [21, 23, 20, 27|, proactive
and reactive failure resilience [22], and dynamic swapping of
services and service graphs.

None of the previous approaches, however, provides the

level of abstraction desired for programming pervasive spaces.

All of them still require the application to specify how to
answer a query. SPEs require applications to specify which
streams to connect. WSNs expect applications to specify
which sensed data they are interested it. SOMs require ap-
plications to specify which services are needed. Our system,
on the other hand, allows applications to specify what they
are really interested in and SATware decides which sensors
and streams to instantiate. Moreover, knowing what the ap-
plications are interested in allows the system to take more
sensible decisions regarding system optimization, reliability,
privacy, and the like.

Regarding privacy, several privacy and anonymity defini-
tions and metrics along with specific solutions have been pro-
posed in the literature. For instance, in the statistical data
publishing domain, metrics such as k-anonymity [39] [42],
I-diversity [32], and others [35] have been proposed. In [17]
the author proves the impossibility for absolute privacy in
statistical databases and defines the alternative metric of
differential privacy, which is a metric relative to the risk of
a user participating in a statistical database. Nonetheless,
none of the previous definitions applies to our scenario: we
need a non-binary definition regarding information that is
not useful in an anonymous/statistical manner.

Our privacy work here complements QoS-related work in
semantic load shedding in SPEs in that whenever a tuple
needs to be dropped, we dropped the one with the least

Target
Labels Utilities
Extremely Sensitive —1.00
Very Sensitive —-0.75
Sensitive —0.50
Somewhat Sensitive —0.25
Not Sensitive 0.00
Observer
Labels Utilities
Don’t Care 0.00
Information Curiosity 0.25
Information Useful 0.50
Information Needed 0.75
Always Needed 0.99

Figure 6: Utility Scales

utility. The difference is that the need to drop tuples is trig-
gered by potential privacy violations whereas in traditional
SPEs systems is triggered by rescource scarcity.

Privacy in pervasive spaces has been researched at mul-
tiple levels. At the network layer, [10] combines hop-to-
hop routing based on handles with limited public-key cryp-
tography to preserve privacy from eavesdroppers and traf-
fic analyzers. At the architectural level, solutions such as
Cricket [37] and Place Lab [40] protect a user’s (private) lo-
cation by limiting the execution of location algorithms and
location-based services to the user’s carry-on device. In con-
trast, we assume that the sensor might not have enough
context and resources to compute observations nor it is the
final recipient of information. Other work regarding privacy
in pervasive spaces includes our own work on private event
detection with trusted sensors but untrusted storage infras-
tructure [24].

7. CONCLUSIONS

The dissertation whose current status is summarized in
this paper focuses on the design and implementation of a
middleware to enable pervasive-space applications. Namely,
we propose an architecture that provides database-like views
of the space. Applications query these views as they would
a database. These queries are usually composed of static
attributes and relationships (e.g., a firefighter’s rank) and
observable attributes and relationships (e.g., the level of O
in a firefighter’s oxygen tank). The middleware provides
continuous answers to the observable part of the query by
deploying the necessary virtual sensors, each of which is a
pre-specified set of operators that interprets raw data com-
ing from sensors to obtain the more abstract (and seman-
tically meaningful) value of an observable attribute or rela-
tionship.

The virtual sensor abstraction not only enables program-
ming at a higher level, but it also enables the middleware to
reason at a semantic level and provide more meaningful pri-
vacy protection. Before disclosing the query answer to the
application, the privacy submodule modifies it to meet the
user specified privacy policies while maximizing the utility
of the answer for the application users. In constrast with
more traditional binary definitions where information is ei-
ther public or private, we propose a utility-based definition
where information is associated with a positive utility for
the querier and a negative utility for the target of the query.
Moreover, further information that the querier might be able
to infer is also associated with a negative utility. With this
definition, we propose a framework where the system has
to decide, at every time instant, which information should
be generalized and how much, such that privacy is preserved
and utility for the querier is maximized. We solved the max-
imization problem with an algorithm based on distributed
simulated annealing. To realistically instantiate such an ap-

proach, we also had to address the problem of obtaining and
representing the utility functions and obtaining and repre-
senting a user’s background knowledge. We proposed solu-
tions for both problems.

Acknowledgements

We would like to thank the SATware research group, the
rest of the PhD committee of the dissertation here described,
and the anonymous reviewers of this and other papers that
are part of the dissertation. Their valuable input and their
contributions on coauthoring papers and code has made it
possible for this research to come to live. Special thanks
to Roberto Gamboni, Jay Lickfett, Jonathan Cristoforetti,
Alessandro Ghigi, Francisco Servant, Ronen Vaisenberg,
Shengyue Ji, Hojjat Jafarpour, Minyoung Kim, Jooyoung
Park, Kyoungwoo Lee, Mamadou Diallo, Bijit Hore, Chris
Davison, Jon Hutchins, Utz Westermann, Gloria Mark, Ramesh
Jain, and Don Patterson.

This work has been partially supported by the NSF under
award Numbers 0331707, 0331690, and 0403433.

8. REFERENCES

[1] A. Arasu, S. Babu, and J. Widom, J. The CQL continuous
query language: Semantic foundations and query execution.
The VLDB Journal, 2006.

[2] B. Hore, H. Jafarpour, R. Jain, S. Ji, D. Massaguer,

S. Mehrotra, N. Venkatasubramanian, and U. Westermann.
Design and Implementation of a Middleware for Sentient
Spaces. In ISI’07, 2007.

[3] Gaia OS, September 2007.

[4] Oxygen project, September 2007.

[5] RFID Tag lookup.
http://www.ics.uci.edu/community /events/openhouse/rfid.php,
2009.

[6] SAFIRE.

http://www.ics.uci.edu/%7Eprojects/cert/verticals.html, 2009.

SATrecorder. http://www.ics.uci.edu/%7Eprojects/SATware,

2009.

[8] SATware website. http://satware.ics.uci.edu, 2009.

[9] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The
Design of the Borealis Stream Processing Engine. In
Proceedings of the 2005 CIDR Conference, 2005.

[10] J. Al-Muhtadi, R. Campbell, A. Kapadia, M. Mickunas, and
S. Yi. Routing through the Mist: Privacy Preserving
Communication in Ubiquitous Computing Environments. In
ICDCS, volume 22, pages 74-83, 2002.

[11] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,
R. Motwani, U. Srivastava, and J. Widom. STREAM: The
Stanford Data Stream Management System, Book chapter,
March 2004.

[12] L. Brown, A. Hampapur, J. Connell, M. Lu, A. Senior, C.-F.
Shu, and Y. Tian. IBM Smart Surveillance System (S3): An
open and extensible architecture for smart video surveillance
(demo). In ICCV05, 2005.

[13] S. Buffett and M. Fleming. Applying a Preference Modeling
Structure to User Privacy. NRC Publication Number: NRC
49372, 2007.

[14] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik.
Monitoring streams—a new class of data management
applications. Technical Report CS-02-04, Brown Computer
Science, February 2007.

[15] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden,

V. Raman, F. Reiss, and M. Shah. TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World. In Proceedings of
the 2003 CIDR Conference, 2003.

[16] A. J. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. M.
White. Towards expressive publish/subscribe systems. In
EDBT, pages 627-644, 2006.

[17] C. Dwork et al. Differential privacy. Proc. ICALP, 2006.

[18] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid development and
flexible deployment of adaptive wireless sensor network
applications. In ICDCS’05, 2005.

[19] C. Forgy. Rete: a fast algorithm for the many pattern/many
object pattern match problem. IEEE Computer Society
Reprint Collection, pages 324-341, 1991.

[7

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

[41]

(42]

(43]

[44]

[45]

X. Gu and K. Nahrstedt. Dynamic qoS-aware multimedia
service configuration in ubiquitous computing environments. In
ICDCS, pages 311-318, 2002.

X. Gu and K. Nahrstedt. Distributed multimedia service
composition with statistical qoS assurances. IEEE
Transactions on Multimedia, 8(1):141-151, 2006.

X. Gu and K. Nahrstedt. On composing stream applications in
peer-to-peer environments. I[EEE Transactions on Parallel and
Distributed Systems, PDS-17(8):824-837, Aug. 2006.

X. Gu, K. Nahrstedt, R. N. Chang, and C. Ward. QoS-assured
service composition in managed service overlay networks. In
ICDCS, page 194. IEEE Computer Society, 2003.

B. Hore, J. Wickramasuriya, S. Mehrotra,

N. Venkatasubramanian, and D. Massaguer. Privacy-preserving
event detection in pervasive spaces. In PerCom 2009, 2009.

G. Hsieh, K. Tang, W. Low, and J. Hong. Field deployment of
IMBuddy: A study of privacy control and feedback mechanisms
for contextual im. Lecture Notes in Computer Science,
4717:91, 2007.

A. Thler, J. Hutchins, and P. Smyth. Adaptive event detection
with time-varying poisson processes. In KDD ’06: Proceedings
of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 207-216, New
York, NY, USA, 2006. ACM Press.

S. Kalasapur, M. Kumar, and B. Shirazi. Dynamic service
composition in pervasive computing. IEEE Trans. Parallel
Distrib. Syst, 18(7):907-918, 2007.

M. Kifer and A. Li. On the semantics of rule-based expert
systems with uncertainty. LNCS on ICDT, 88:102—-117, 1988.
I. Lazaridis and S. Mehrotra. Optimization of multi-version
expensive predicates. In SIGMOD 07, New York, NY, USA,
2007. ACM Press.

P. Levis and D. Culler. Mate: A tiny virtual machine for sensor
networks. In ASPLOSX, 2002.

B. Liu, A. Gupta, and R. Jain. MedSMan: A Streaming Data
Management System over Live Multimedia. In MM’05. ACM,
2005.

A. Machanavajjhala, D. Kifer, J. Gehrke, and

M. Venkitasubramaniam. l-Diversity: Privacy Beyond
k-Anonymity.

S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tag: a tiny aggregation service for ad-hoc sensor networks. In
USENIX OSDI, 2002.

S. R. Madden, M. J. Franklin, and J. M. Hellerstein. TinyDB:
An Acquisitional Query Processing System for Sensor
Networks. ACM Transactions on Database Systems, 2004.

D. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, and

J. Halpern. Worst-Case Background Knowledge for
Privacy-Preserving Data Publishing. In ICDE, 2007.

D. Massaguer, B. Hore, M. H. Diallo, S. Mehrotra, and

N. Venkatasubramanian. Middleware for pervasive spaces:
Balancing privacy and utility. In Middleware 2009, 2009.

N. Priyantha, A. Chakraborty, and H. Balakrishnan. The
Cricket location-support system. In MobiComp, pages 32—43.
ACM Press New York, NY, USA, 2000.

J. Robinson, I. Wakeman, and T. Owen. Scooby: middleware
for service composition in pervasive computing. In MPAC ’04:
Proceedings of the 2nd workshop on Middleware for pervasive
and ad-hoc computing, pages 161-166, New York, NY, USA,
2004. ACM Press.

P. Samarati and L. Sweeney. Protecting privacy when disclosing
information: k-anonymity and its enforcement through
generalization and suppression. Technical report, In
Proceedings of the IEEE Symposium on Research in Security
and Privacy, 1998.

B. Schilit, A. LaMarca, G. Borriello, W. Griswold,

D. McDonald, E. Lazowska, A. Balachandran, J. Hong, and

V. Iverson. Challenge: ubiquitous location-aware computing
and the” place lab” initiative. In WMASH, pages 29-35. ACM
New York, NY, USA, 2003.

J. Sousa and D. Garlan. Aura: An architectural framework for
user mobility in ubiquitous computing environments, 2002.

L. Sweeney. Achieving k-Anonymity Privacy Protection Using
Generalization and Suppression. Int’l journal of uncertainty
fuzziness and knowledge based systems, 10(5):571-588, 2002.
N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack, and

M. Stonebraker. Load shedding in a data stream manager. In
VLDB, pages 309-320, 2003.

A. Toninelli, R. Montanari, L. Kagal, and O. Lassila. A
semantic context-aware access control framework for secure
collaborations in pervasive computing environments. In
International Semantic Web Conference, pages 473—486, 2006.
J. Wickramasuriya, M. Datt, S. Mehrotra, and

N. Venkatasubramanian;. Privacy protecting data collection in
media spaces. In ACM Multimedia 2004, 2004.

