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1. Introduction 
Responding well in emergency situations is difficult for a variety 

of reasons.  When the emergency transpires across a wide 

geographical region (such as occurs with floods, earthquakes, 

storms, etc.), the sheer amount of information about the 

emergency flowing through the network can overwhelm 

decision makers, masking critical events, needs, and trends.  

Further, all this information is inherently uncertain and dynamic, 

leading to inconsistent views at different times and places that 

trigger competing and often incompatible responses.  Because 

emergencies are rare (thankfully), there is little in the way of 

“standard” responses to fall back on; instead, managers of the 

response must try to envision the many possible trajectories of 

how the emergency will play out, and how alternative responses 

will affect those trajectories.  Finally, the tempo at which 

decisions must be made is daunting, since minor hesitations in 

reaction can direly affect the loss of life and property. 

Multiagent systems hold the promise to help improve the quality 

and speed of decisions under such conditions.  Conceptually, a 

computational “agent” is a process tasked to achieve goals on 

behalf of a user, augmenting the user’s capabilities and, if 

necessary, acting in place of a user who is unavailable or 

focused on other decision tasks.  This is analogous to how a 

(human) theatrical or sports agent is tasked with acting on behalf 

of a performer/athlete during contract negotiations.  Multiagent 

systems are thus networks of such computational agents, 

interacting with each other to achieve outcomes that benefit their 

associated users. 

As computational entities, agents have capabilities that can 

complement the abilities of human users. For example, agents 

can store and rapidly retrieve vast amounts of information.  They 

can quickly project forward along different hypothetical future 

trajectories and keep track of alternative “what-if” scenarios. 

They can perform mundane, routine duties for monitoring and 

evaluating situations, freeing up their users’ attention for 

problems requiring human insight and perspective.  And, 

working together, agents can jointly search through alternative 

combinations of actions that their users might concurrently 

pursue to find good (and in some cases optimal) joint responses. 

While these advantages of incorporating multiagent systems into 

emergency management applications sound compelling, 

realizing these possible benefits in practice, and especially being 

able to count on them when lives are on the line, will require 

advances along a number of fronts.  One particular challenge, 

which is the focus of this paper, is in developing computational 

techniques for distributed agents to use that will strike an 

appropriate balance between preserving the autonomy of a user 

to respond to emergent events while promoting timely, 

orchestrated actions that accomplish collective goals.  

Thus, the position taken in this paper is that multiagent systems, 

distributed among participants in emergency management 

operations, can work in the background to improve group 

performance by automating the process of finding appropriate 

models for participants to have of each other. This allows 

participants to focus their attention on the interactions most 

critical to joint success. To support this position, the remainder 

of this paper summarizes a few examples of application domains 

and prototyped technologies that feature the use of multiagent 

systems to help coordinate their users’ activities. 

2. Coordination of Coalitions 
Independent entities can form a coalition to collectively achieve 

objectives that they cannot individually accomplish. A 

fundamental challenge in coalition operations, however, is in 

smoothly integrating the activities of disparate entities.  Each 

participant in a coalition will have its own perspectives, 

priorities, and standard operating procedures, and it becomes all 

too easy for these to collectively lead to inefficient, 

counterproductive, and sometimes even dangerous joint 

behaviors.  Coordination in a coalition is therefore critical, but 

difficult because entities might not want to reveal too much 

about their inner workings, might wish to maximize their 

independence, and might lack the time and desire to understand 

each other deeply. 

Multiagent techniques can help improve coalition coordination. 

DARPA’s Control of Agent-Based Systems program sponsored 

the Coalition Agents Experiment (CoAX) [1] earlier this decade, 

which developed an integrated system of agent technologies to 

support peacekeeping operations in a fictitious scenario, a 

simplified version of which is shown in Figure 1.  In this 

scenario, several coalition partners are cooperating as a 

peacekeeping force in a country called Binni.  Among the 

activities of the coalition forces are maintaining observation 

posts, delivering humanitarian aid, and enforcing a total 

exclusion zone (TEZ) to keep enemy combatants apart.  Since 

different countries are responsible for different objectives, 

potential inefficiencies can occur (such as when troop 

movements and humanitarian aid deliveries moving along the 

same route get in each others’ way).  More critically, failure to 

coordinate can lead to catastrophic friendly-fire incidents (such 

as when aircraft enforcing the TEZ fire on partner troops that are 

moving to observation posts). 



 

Figure 1.  Simple Coalition Coordination Problem 

The challenge that the coalition partners face is finding the right 

information about themselves to project to others to ensure 

sufficient coordination without revealing sensitive information, 

without flooding each other with irrelevant details, and without 

unnecessarily locking themselves into inflexible plans that could 

become obsolete as domain dynamics evolve. Unfortunately, 

there is no single static description of local activities that works 

well in all scenarios, or even between different groups of agents 

in the same scenario.  Instead, participants need to find the right 

level of detail at which to coordinate their activities in the 

current circumstances. 

If we frame this as a search problem, multiagent technology can 

be brought to bear.  The search is over the space of alternative 

modeling levels at which agents can coordinate, to find the level 

that is best suited to their current needs.  To create the space of 

modeling levels, we capitalize on a valuable side-effect of 

hierarchical planning mechanisms, such as Hierarchical Task 

Networks (HTNs) [2].  HTNs generate agent plans by iteratively 

decomposing higher-level tasks into increasingly primitive tasks, 

until the expansion results in a sequence of primitive actions 

that is expected to achieve the sought-after goal.   

The insight our approach uses is that the intermediate levels of 

plan abstraction summarize, at varying levels of detail, what the 

agent’s plan is.  Thus, if agents can reason about how their 

abstract actions might interact, they could detect possible 

reasons to coordinate using smaller abstract plans (rather than 

sharing detailed plans).  Further, if they resolve potential 

interactions at the abstract plan level, then they can elaborate 

(and revise) their local plans independently and flexibly as their 

local circumstances warrant. 

The ability to identify possible agent interactions and their 

resolutions based on more abstract actions depends critically on 

having sufficient models of what those actions might mean when 

they are elaborated. Our work has defined a process by which 

agents can compute summary information for intermediate 

activities that ensures that possible interactions are never 

overlooked [3]. With these models, an agent engages in a top-

down coordination search. First, it compares its most abstract 

plan with those of others, and immediately prunes away 

unrelated agents (which, for many applications where agents 

have geographic or functional locality, will be most others). For 

each of the agents with  which it  might  interact,  the  agent  can 

 

Figure 2.  Multiple Alternative Coordination Levels 

either resolve the interaction at the abstract level, or exchange 

plans at the next deeper level of detail to further understand and 

isolate the interaction.  This process repeats separately for each 

combination of agents until all interactions have been resolved. 

Figure 2 portrays a series of three levels of coordination along 

this search space. The top level involves abstract actions for 

each of the entities, and resolves interactions very quickly (in 

0.02 cpu seconds) by imposing ordering constraints that tend to 

largely sequence the actions for a makespan of 650.  As we 

progress down to more detailed levels, the agents’ plans are (if 

possible) broken into more primitive actions, allowing 

interactions to be pinpointed more accurately.  The greater the 

detail is, the shorter the makespan becomes, because greater 

amounts of concurrency can be safely achieved.  However, 

greater amounts of computation are needed for coordination as 

the number of agent actions being reasoned about grows. 

While this illustration shows the tradeoff between the benefits of 

better coordination (shorter makespans) and its reasoning costs 

(rising cpu times), what it does not explicitly show is the impact 

on local flexibility.  As the agents work downwards into more 

detailed plan decompositions and make promises about what 

more specifically they will be doing and when, they lock 

themselves into more stringent commitments that leave them 

less wiggle room in case something goes wrong.  Some 

flexibility is important. 

This is a critical concern in emergency management, where 

different participants might possess their own capabilities and 

priorities, and will be reluctant to sacrifice some of their 

autonomy to work with other groups whose responsibilities 

might differ. Yet, stovepiped, segregated responders coordinate 

poorly and slowly, if at all. The trouble is that there is no static 

level for coordination that fits all situations, and renegotiating 

relationships in the midst of an emergency distracts from critical 

activities. It is the position of this paper that adapting 

technologies like those described for coalition operations could 

potentially prove valuable, allowing agents operating in the 

background to weigh the benefits and risks of coordinating at 

different levels of detail, in order to help organizations converge 

more efficiently on levels that strike the right balance between 

integration and autonomy. 



3. Coordination of Distributed Teams 
The DARPA Coordinators program provides another example of 

using multiagent systems to support coordination between 

human entities. In contrast with CoAX, the Coordinators 

program assumed that the users’ goals were fully aligned—they 

were on a team and their individual successes depended entirely 

on the team’s success. Yet, because the people might be 

dispersed and facing different local challenges, there is still great 

advantage in coordinating at an abstract enough level to give 

individuals latitude for improvisation in changing 

circumstances. 

Because the humans being coordinated were part of a team, in 

this application it was assumed that the multiagent system would 

know from the outset what the teamwork interactions were, 

rather than having to discover them as in CoAX.  The 

Coordinators application also assumed a highly stochastic 

environment.  For example, one scenario involved subteams 

simultaneously entering several locations suspected of holding a 

hostage, where those locations might be in very different areas 

(urban, remote, at sea, etc.).  As each subteam moved towards its 

assigned location, it could be delayed, forcing other subteams to 

adjust their movements.  Further, a subteam’s capabilities could 

degrade (loss of personnel or material) or its objectives change 

(new orders received). Meanwhile, to avoid detection, radio 

contact should be minimized. 

Not surprisingly, we again focus on the question of how these 

units should model each other, and in particular how the 

computational agents embedded with the units should help 

create, update, manage, and utilize models of others’ activities.  

Designating a single, central controller is infeasible not only 

because of the inherent risk (single point of failure) and 

scalability (computational bottleneck) concerns, but also 

because of the delays that it would impose on agents being able 

to respond quickly to local events.  Instead, agents should 

exploit periods of connectivity to form and update commitments 

to each other regarding their interactions, and then individually 

adapt their execution policies to their situations while 

continuing to ensure that they adhere to their commitments. 

In essence, an agent’s commitments represent an abstract model 

of itself (when it will accomplish tasks that others are counting 

on) and others (when they will meet its interaction needs).  Our 

research (Figure 3) has investigated techniques that agents can 

use to tractably decide which commitments to make to each 

other, and how to maximize local performance while still 

satisfying commitments [4].  Further, when circumstances 

conspire such that an agent fails to meet a commitment it has 

made, alternative courses of commitments can be triggered, 

essentially implying that agents have contingent policies not 

only over their planned activities, but also over their 

commitments to each other. 

We have implemented these techniques in agents that model 

their coordination problems as a form of decentralized POMDP 

[5]. Our results to date suggest that, for teams of agents who 

individually have complex tasks and with relatively sparse 

relationships between different agents’ tasks, searching in the 

space of inter-agent commitments rather than in the detailed 

joint policy space can lead to considerable speedups, and helps 

agents retain greater flexibility over their own activities.  That 

teamwork in some emergency management situations has similar 

characteristics suggests that associating with human responders 

agents that perform commitment-based coordination could help 

improve both teamwork and responsiveness. 

4. Discussion 
In this paper, we have argued that multiagent systems could 

provide a valuable decision-support infrastructure for managing 

emergency responses, and have illustrated the use of multiagent 

systems to help people coordinate their activities both in 

coalition and in teamwork settings.  This only scratches the 

surface of ideas from the multiagent community that could find 

use in emergency management.  Other ideas include tasking 

automated agents to monitor features of a situation on the user’s 

behalf [6], negotiating task assignments among teams [7], and 

using economic principles to optimize the allocation of joint 

resources across agents [8]. 
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Figure 3: Iterative Commitment Formation Process 


