Efficient Parallel Set-Similarity Joins Using MapReduce
Rares Vernica Michael J. Carey Chen Li
Department of Computer Science, University of California, Irvine
http://asterix.ics.uci.edu/fuzzyjoin-mapreduce/

Problem Statement

Example: Data Cleaning/Master-Data-Management

Customer data from two departments

Sales
ID Name . . .
S10 John W Smith . . .

Returns
ID Name . . .
R20 Smith John . . .

Master customer data across two departments

Customers
ID Name . . .
C30 John W Smith . . .

Parallelizing Set-Similarity Joins

Large amounts of data
E.g., GeneBank: 100M, Google N-gram: 1T
Data or processing does not fit in one machine
Use a cluster of machines and a parallel algorithm
MapReduce: shared-nothing data-processing platform

Challenges
Partition problem for parallelism
Solve the problem using Map, Sort, and Reduce
Compute end-to-end set-similarity joins
Deal with out-of-memory situations

MapReduce Review

map (k1, v1) → list(k2, v2);
reduce (k2, list(v2)) → list(k3, v3).

combine (k2, list(v2)) → list(k2, v2).

Prefix Filtering for Data Partitioning

Pigeonhole principle
Global order for set elements:
E.g., sim is overlap size, \(\tau = 4 \)
Prefix length is 2

Processing Stages and Alternatives

Stage 1: Token Ordering
Compute the token frequencies and sort
Two MapReduce phases: sort in MapReduce (BTO)
One MapReduce phase: sort in memory (OPTO)

Stage 2: Kernel (RID-Pair Generation)
Use prefix-filter to divide, conquer using:
Nested loops (BK)
Single-machine set-similarity join algorithm (PK)

Stage 3: Record Join
Generate pairs of similar records
Two MapReduce phases: reduce-side join (BRJ)
One MapReduce phase: map-side join (OPRJ)

Experimental Setting

Hardware
10-node IBM x3650 cluster
- Intel Xeon processor E5520 2.26GHz with four cores
- Four 300GB hard disks
- 12GB RAM

Datasets
DBLP: average length: 259 bytes; 1.2M records; 300MB
CITESEERX: average length: 1374 bytes; 1.3M records; 1.8GB

Increased each up to \(\times 25 \), preserving join properties

Experimental Results

Hardware
- 10-node IBM x3650 cluster
 - Intel Xeon processor E5520 2.26GHz with four cores
 - Four 300GB hard disks
 - 12GB RAM

Datasets
- DBLP: average length: 259 bytes; 1.2M records; 300MB
- CITESEERX: average length: 1374 bytes; 1.3M records; 1.8GB
- Increased each up to \(\times 25 \), preserving join properties