A View of Software Development Environments Based
on Activity Theory

P. Barthelmess and K.M. Anderson
University of Colorado at Boulder

Abstract. We view software development as a collaborative activity that is typically
supported by a software development environment. Since these environments can
significantly influence the collaborative nature of a software development project, it
is important to analyze and evaluate their capabilities with respect to collaboration.
In this paper, we present an analysis and evaluation of the collaborative capabilities
of software development environments using an activity theory perspective.

The discipline of software engineering (SE) emerged to study and develop artifacts to
mediate the collective development of large software systems. While many advances
have been made in the past three decades of SE’s existence, the historical origins of
the discipline are present in that techniques and tools to support the collaborative
aspects of large-scale software development are still lacking. One factor is a common
“production-oriented” philosophy that emphasizes the mechanistic and individualis-
tic aspects of software development over the collaborative aspects thereby ignoring
the rich set of human-human interactions that are possible over the course of a
software development project.

We believe that the issues and ideas surrounding activity theory may be useful in
improving support for collaboration in software engineering techniques and tools. As
such, we make use of the activity theory to analyze and evaluate process-centered
software development environments (PCSDEs).

Keywords: Software engineering, activity theory, software development environ-
ments

1. Introduction

Software development is essentially a design activity. Software is by
nature intangible and its development occurs via a design effort - a stage
that precedes construction in most other engineering disciplines. There
is only one type of material, symbolic representations (Keil-Slawik,
1992). Design artifacts are created and transformed incrementally until
a detailed description of a software product is attained.

Software Engineering deals with the building of software systems
which are so large or so complex that they are built by a team or
teams of engineers. Programming is primarily a personal activity, while
software engineering is essentially a team activity (Ghezzi et al., 1991).
Developing non-trivial software systems is therefore a task that re-
quires a group of participants to work in concert. That is, they must
collaborate in order to reach a common objective.

P;ﬁ © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

at9.tex; 9/03/2000; 15:41; p.1

Early software development was based on the effort of individuals.
The limited capacity of the existing machines prevented the develop-
ment of truly complex systems and, as such, individual programmers
were able to meet the needs of their users (typically themselves). As
machines became cheaper and more powerful, the demand for complex
software systems increased. Soon, individual programmers were not
enough, and teams of programmers were needed to develop these new
systems.

The transition from individual efforts to collaborative ones was (and
is) not an easy one. Many projects failed because of a lack of under-
standing of large-scale software development. In particular, the artifacts
used by individual programmers were not adequate to support the
collaborative activities of large software teams.

As a result of these failures, practitioners turned their attention to
the development of techniques for large-scale software development.
New languages were developed, division of labor strategies were pro-
posed, and new artifacts were suggested. A new term - software en-
gineering - was coined to represent this effort, and the first software
engineering conference was held in 1968 (Naur et al., 1976).

Process-centered software development environments (PCSDEs) form
one category of software engineering tools. These environments are
interesting in that they were designed to support the collaborative ac-
tivities of large software teams. PCSDEs are an important collaborative
tool, in the sense that they provide support for division of work, for
anticipatory reflection via reified plans, and for operational support via
the integration of applications. Therefore, they are potentially useful for
mediating the collaborative aspects of a software development project.

Other authors have evaluated PCSDEs before, e.g. (Ambriola et al.,
1997). Our approach differs from these previous efforts in the sense
that it is centered on a broader classification of collaborative activities,
namely activity theory (Leontjev, 1978). The contribution of activity
theory (AT) and similar theories is that they highlight perspectives
that are different from the typical “production-oriented” view (Floyd,
1992) that is prevalent in software engineering.

Activity theory is a descriptive tool that is useful for analyzing and
understanding collaborative work in general, independently of any spe-
cific field of application. We use AT in this paper to analyze PCSDEs
with respect to their support for the demands of a collaborative effort.
AT has been used as a source of inspiration in the context of CSCW by
some authors, e.g. Bardram (1998b; 1998a), Kuuti (1991; 1992), and
Nardi (1996). Discussions of AT in the context of software development
can be found in (Floyd, 1992).

at9.tex; 9/03/2000; 15:41; p.2

3

The value of any theory is not “whether the theory or framework
provides an objective representation of reality” (Bardram, 1998b), but
rather how well a theory can shape an object of study, highlighting
relevant issues. In other words, a classification scheme is only useful
to the point that it provides relevant insights about the objects it is
applied to.

Our aim is to explore the different alternatives explored by PCS-
DEs at a technical level, showing whenever possible the implications
in the larger context of collaboration support. In order to ground our
observations, we present a detailed survey of a representative set of
PCSDESs and their associated features. Our detailed look at the features
of PCSDEs illustrates both the diversity of options and the limitations
of the employed approaches.

The rest of this paper is organized as follows. In Section 2, we
briefly introduce the concepts of activity theory followed by a historical
perspective on software development. The nomenclature of AT and
PCSDESs are compared and contrasted in section 2.3. We then evaluate
PCSDEs using an AT-based framework in Section 3. Finally, we present
our conclusions in Section 4.

2. Background

2.1. A BRIEF OVERVIEW OF AcCTIVITY THEORY

We now briefly introduce the concepts of activity theory that we employ
in the rest of the paper. Readers interested in a broader treatment of
the subject are referred e.g. to (Leontjev, 1978) and (Engestrém, 1987).

The primary concept employed by AT is human activity. Activities,
as defined by AT, provide enough contextual information to make an
analysis meaningful, while avoiding a narrow focus on an individual or
too broad a focus on whole social systems (Kuuti and Arvonen, 1992).

An activity is defined by an object - as in “object of the exercise”
(Hasan, 1998). “An object can be a material thing, but it can also be
less tangible (such as a plan) or totally intangible (such as a common
idea) as long as it can be shared for manipulation and transforma-
tion by the participants of the activity.” (Kuuti, 1996). An activity is
motivated towards transforming an object into an outcome. Different
objects define different activities. A subject is an agent that undertakes
an activity. In collective activities, a community of agents share an
object and work collectively on its transformation (fig. 1).

The abstract need to 'develop a system’ motivates software develop-
ment activities. A development team is a community that participates

at9.tex; 9/03/2000; 15:41; p.3

Tools
Subject | ___ - Object Outcome
Rules Division
of labour
Community

Figure 1. Entities and relationships in AT - based on (Hasan, 1998).

in this activity and shares its object - the evolving software system.
Subjects, or agents, are the individual team members. The outcome of
this activity is the developed system.

Central to AT is the concept of mediation. The relationships between
subject, object and community are mediated by tools, rules and division
of labor. These artifacts are used by a community to achieve a desired
set of transformations on an object. Artifacts can range from physical
tools, like a hammer, to psychological ones, like languages, procedures,
methods and general experience (Bardram, 1998b).

In software development, a wide range of mediating artifacts is
employed. These artifacts range from conventional languages (e.g., En-
glish) to specialized design and programming languages, methodologies,
procedures and specific applications, such as editors, compilers, and en-
vironments. Membership in a development team is regulated by implicit
or explicit rules. The division of labor emerges from the structure of
the participating organizations, and can be further refined for a specific
activity (e.g. “Mary is the leader of this project”).

Mediating artifacts are the result of a historical-cultural process.
Artifacts embody (crystallize) the collective experience of a commu-
nity. Artifacts are therefore not static entities, but are continuously
shaped and transformed to meet the evolving needs of the community
(Bardram, 1997).

Activities transform objects via a process that typically has several
steps or phases (Kuuti, 1996). Chains of actions guided by a subject’s
conscious goals carry out an activity over the short term, resulting
in objective results. Actions themselves are realized through series of
operations. Operations are performed automatically, in non-conscious
fashion. There is not a strict one-to-one relationship between activities,

at9.tex; 9/03/2000; 15:41; p.4

5

actions, and operations - one activity is realized through many actions
and one single action may be part of multiple activities. The situation
is analogous for operations - an action may be carried through one
or more operations, and a single operation may be part of multiple
actions.

Software development starts with an extremely abstract object (e.g.,
“develop a new system”) and is realized via a highly creative application
of actions that build and transform knowledge representations that are
shared by a team. Operations may involve, for instance, drawing a
diagram or writing a specification.

With respect to our analysis, another useful tool is the notion of
“subject-object-subject” relation that combines the object-subject and
the subject-subject aspects of an activity. The former is referred to as
the instrumental aspects of an activity, while the latter is known as the
communicative aspects of an activity. The “subject-object-subject” no-
tion was developed by Raeithel and Fichtner and adopted by Engestrom
in his analysis of the work performed in courts of law (1997). We base
our description and nomenclature on Bardram’s work (1998b).

Three different levels of interactions are suggested: coordinated, co-
operative and co-constructive (called reflective communication by En-
gelstrom (1997).

The coordinated level corresponds to the routine, repetitive work
performed by a group or organization. Coordinated work follows a
pre-planned sequence with actors simply following their scripted roles.
These scripts are “coded in written rules and places or tacitly as-
sumed traditions. It coordinates the participant’s actions as if from
behind their backs, without being questioned or discussed” (Engestrom,
1997). The underlying coordination ensures that the net result of these
independent actions is the achievement of a common object.

The cooperative level involves the interaction of a group of agents.
At this level, work is no longer independent. The actions of each agent
influence the actions of others, enabling a synergistic effect. Actors
“focus on the shared problem, trying to find mutually acceptable ways
to conceptualize and solve it” (Engestrom, 1997).

Co-construction (reflective communication) corresponds to the re-
elaboration or re-construction of work practices. At this level, work
itself is the subject of contemplation. New, better ways of doing it are
devised. Co-construction can result in the redefinition of the organiza-
tion and interaction in relation to a shared object.

There is a close interplay between these different levels, since they all
represent aspects of what ultimately is a collaborative activity. A pat-
tern of dynamic transformations between these levels can be observed:
coordinated interactions can become cooperative and vice-versa; the

at9.tex; 9/03/2000; 15:41; p.5

6

result of a co-coordinated activity is the redefinition of the interaction
itself, with a possible change in level. Take, for instance, a coding
activity. Coding is typically conducted at the coordinated level, by
an isolated programmer. If a programmer detects a problem with a
specification of a task to be performed, he or she may consult with his
or her peers and with his project leaders. The group can then decide to
favor a specific interpretation, following a potentially complex sequence
of collaborative interactions. The problem with the specification may
also be related to the use of a particular technique or tool. In this
situation, some co-construction may take place, potentially modifying
the way the task itself is to be performed.

Therefore, it must be understood, that a level describes an in-
stantaneous status of some activity, i.e., a routine interaction, usually
performed at the coordinated level can become cooperative and then
eventually co-constructive. Conversely, a typically cooperative level in-
teraction can, through some co-construction effort, be reconceptualized
and performed from that moment on at the coordinated level. One im-
portant aspect of activity theory is thus the recognition of the dynamic
transformation between interaction levels.

To summarize, activities are performed by subjects, motivated by
a goal, transforming an object into an outcome. An object may be
shared by a community of actors, that work together to reach a desired
outcome. Tools, rules and division of labor mediate the relationship be-
tween subjects, community and object. Activities are carried out by ac-
tions, which in turn are realized as sets of operations. Coordination, co-
operation and co-construction are three levels of subject-object-subject
relations. Coordination focuses on individual actors, while coopera-
tive activities focus on a shared object. Co-construction corresponds
to re-elaborations of work practices. These three levels represent an
instantaneous status of an activity.

2.2. A HISTORICAL PERSPECTIVE OF SOFTWARE DEVELOPMENT

Software development is characterized by its complexity. Few other hu-
man endeavors deal with entities that are as complex as large software
systems. The object is typically very abstract. The outcome corre-
sponds to the developed system and is reached via intricate symbolic
manipulations of the original abstract object. Software is produced by a
series of incremental transformations. The objective is to adhere to the
initial motive in incrementally more detailed incarnations of a software
system. Each step in a process should expand the concepts of previous
ones, adding detail but preserving the originally intended semantics —

at9.tex; 9/03/2000; 15:41; p.6

7

this is known as preserving a system’s conceptual integrity (Brooks,
1995).

Software development is a recent phenomenon. At first, very expen-
sive machines were used mainly for military and scientific computa-
tions. The development of software was performed by scientists, using
formalisms closely tied to a specific machine. It was common for a user
of a system and a programmer of a system to be the same person. The
complexity of the software was constrained by the (lack of) resources
of the machines - programs simply could not be very large.

The rapid evolution of computer hardware made it viable to use
computers outside of their initial domains. Large corporations took
advantage of the increased processing power to aid in the process of
conducting business and therefore started to develop software on their
own. This transition was followed by the creation of a new generation
of tools that made development easier. Compilers, editors, and operat-
ing systems were developed. Programming techniques (e.g. structured
programming) started to appear.

As the scope and scale of software systems increased, the problems
of large-scale software development appeared. When a software devel-
opment task is complex enough to require the use of a large team,
adhering to the original goal of a system becomes difficult. Team mem-
bers are likely to have different backgrounds and perspectives. These
perspectives must be aligned during the project, to avoid deviations
from the desired goal. It is essential that all members work in concert
to achieve the goal throughout the software development life cycle. This
unity can only be achieved by a considerable amount of communication
between the team members (Bardram, 1998b; Curtis et al., 1988).

The shift towards support for groups is not unique to software
engineering. Grudin (1994) identifies this phenomenon as part of a
broader groupware effort to provide support for large and small groups
(corresponding to rings 2 and 3 of Grudin’s classification).

Paradoxically, the communication that is vital for maintaining the
conceptual integrity of a software system introduces some of the key
problems encountered in such an effort, e.g., the “Tar-Pit” effect (Brooks,
1995). Communication overload can easily result from the indiscrimi-
nate (and late) addition of developers to a software development project.
The root of the problem is that each participant of a project adds up to
n — 1 communication channels (where n is the number of participants),
leading to a combinatorial explosion of communication paths. This
situation has, of course, a negative effect on progress, since soon all
resources are spent on communication and none on the actual work, and
of course, “work cannot be achieved by just talking about it” (Bardram,
1998b).

at9.tex; 9/03/2000; 15:41; p.7

Initial large-scale software development efforts were chaotic, often
resulting in an explosion of costs and development times, that were
much larger than originally predicted. The outcome was typically quite
different from the original objective of the activity. Many times the
object was simply not produced and the effort was abandoned after
the investment of considerable resources.

As a result, practitioners turned their attention to the development
process itself. A new term, software engineering, was coined to represent
this endeavor. Software engineering strives to further define techniques,
processes, methodologies, and languages to ease the development of
large software systems.

We can interpret the evolution of software development in AT terms
as a quest for the appropriate mediating artifacts. Tools, rules and
strategies for dividing work are essential concerns of SE. In this light,
failures can be seen as activities that lacked the appropriate artifacts to
mediate the relationships between subject, object, and community (see
for instance the importance of representational conventions reported in
(Curtis et al., 1988)).

It may seem surprising that communication can be a root cause of
significant problems. One must remember that the mediating artifacts
for a particular domain are often the result of the work of many genera-
tions of practitioners of that domain. The rapid development of software
engineering prevented it from having the opportunity of leisurely devel-
oping the appropriate set of mediating artifacts. This situation can be
compared to a bridge design effort, in which thousands of designers try
to reach an outcome without having a common understanding of the
physics of bridge construction, without adequate shared languages, and
without a clear division of work. Failures in this situation are hardly
surprising.

Software engineering approaches the problem of collective develop-
ment from a production-oriented viewpoint. While this view allows a
certain amount of anticipatory reflection, e.g., the ability for subjects to
predict important aspects of development prior to initiation and to as-
sess results after completion (Floyd, 1992), it blinds software engineers
to the communicative aspects of a collaborative software development
activity.

PCSDESs represent yet another step in the evolution of mediating
artifacts for software engineering. These environments are different
from previous software engineering tools in that they are built ex-
plicitly to support some form of collaboration. To a limited extent,
they incorporate a host of mediating artifacts. They incorporate reified
procedures and rules, and enable the specification of the division of
work. In addition, integrated tools provide access to an external shared

at9.tex; 9/03/2000; 15:41; p.8

9

memory. As a result, PCSDEs have the potential to be an extremely
powerful collaborative tool, however the current generation of these
environments must still overcome some significant shortcomings.

2.3. CONTRASTING ACTIVITY THEORY AND SOFTWARE
DEVELOPMENT ENVIRONMENTS

PCSDE terms are often similar to those employed by AT, and yet
can represent very different concepts. We now compare these terms in
order to shed light onto their similarities and differences. We start by
describing PCSDESs in their own terminology and then contrast these
terms with those of AT:

A software production process is a sequence of steps or activities
involved in building a software product. The order in which we perform
these activities defines a life cycle (Ghezzi et al., 1991). A process
model is an abstraction of the steps taken during software production.

PCSDEs are environments that provide support for the construc-
tion, evolution and enactment of process models. Process models can
be considered software objects themselves and, as such, have life cycles,
and are specified, designed, implemented, and deployed. Activities are
the atomic units of work, and may be comprised of one or more steps.
Activities are generally associated with roles. Roles describe in an
abstract form the set of skills and/or responsibilities associated with
the execution of one or more activities.

Process models are meant to be instantiated, resulting in an exe-
cutable entity called a project. Zero or more projects based on the
same or different process models can co-exist. Each instance or project
can be in a different stage of its life cycle. Projects are enacted under
the protection of an environment. This protection can vary widely,
ranging from logging mechanisms, through guidance, to enforcement.
An environment is typically responsible for keeping track of the progress
of activities, their termination, and for launching new activities as soon
as their pre-conditions are met. In addition, these environment can
locate agents to fill specified roles.

Agents perform activities and can be either human participants
or executable programs. During activity execution, agents create and
transform artifacts.

Artifacts correspond to typical software development objects, such
as requirements documents, test plans, test cases, etc.

Activity execution is facilitated through the environment. It acti-
vates any required tools of an activity in an integrated fashion. The
environment is also responsible for supporting the management of the
process, i.e., the monitoring and adjustment that is always necessary in

at9.tex; 9/03/2000; 15:41; p.9

10

the face of the variability and unpredictability of software development.
Finally, the process itself is also subject to change, so meta-processes

may be used to help in their evolution.

The table in figure 2 summarizes the differences in nomenclature

used by AT and PCSDEs.

Term Activity Theory PCSDEs

Activity The unit of analysis A single step in a process
typically executed by a
single agent

Object The problem space motivating An entity (or an instance

the activity

Artifact Mediates the relationships
between subject, object, and
community

Tool Physical or psychological

device that mediates subject-

object relationships

Agent An element of a community
that shares an object

Community Subjects that share an object

of an abstract data type

in object oriented terms)
Document or other kind of

deliverable

An application that is
used to help perform some

sequence of operations

Human or application able

to perform activities

Development team

Figure 2. Comparison of terms used by AT and PCSDEs.

As can be seen, the terms often have very different meanings in
PCSDEs and in AT. In particular, an activity is taken to be an atomic
element in PCSDEs, whereas in AT an activity is a composite entity
with a broad scope. In PCSDEs, the closest match to AT’s activity is
a process. Activities in PCSDEs also lack the context they have in AT
- they simply represent a predefined set of operations that needs to be

carried out by an agent.

An agent is an entity defined by its capacity to perform some ser-
vice (“execute an activity”), as opposed to humans that are part of

at9.tex; 9/03/2000; 15:41; p.10

11

a community with a shared object. There is no explicit notion of a
community, even though one finds references to development teams.

The term artifact is typically used to refer to documents (or “deliv-
erables”) that are produced throughout a process. One can for instance
have design artifacts, like a requirements document. Tools are used to
perform operations on artifacts. These are, for instance, diagram and
text editors, compilers, etc. Even though a diagram editor is considered
a tool by PCSDEs, its diagramming language would not be, whereas
in AT a language is considered a tool that is available to a community.

The term object has a rather fuzzy meaning, that we can take to be
equivalent to “entity” in most contexts. It has also a technical meaning
(an instance of an abstract data type).

References to these terms in the rest of the paper should be clear by
context to refer to either the AT or the PCSDE meaning. In those cases
where the context is ambiguous, an explicit reference will be provided.
In addition, we will always have activity refer to the semantics defined
by AT. Finally, even though artifacts and tools have a more nuanced
meaning in AT, the terms are close enough to be used without further
qualification.

3. PCSDEs as Collaborative Tools

PCSDEs are tools for storage and manipulation of process models
that facilitate the creation of a software system and act as artifacts
for the software development activity. Such artifacts can represent,
to a limited degree, the procedures and rules that mediate a devel-
opment effort, as well as some aspects of the division of work. This
representation is typically limited to the most abstract and restricted
sequence of independent work steps. PCSDEs typically do not venture
into more complex forms of interaction. However, the results of these
more complex interactions can be incorporated to a certain extent via
the transformations of artifacts performed by agents as a result of
decisions made outside the scope of a PCSDE proper, e.g., as a result
of conversations held over lunch.

We analyze PCSDE features according to a framework based on AT.
We characterize support features of PCSDEs according to their corre-
sponding level of activity. We are interested in characterizing PCSDEs
according to their ability to cope with the demands of collaboration. As-
pects that are not directly related to collaboration are not considered,
e.g. we do not consider which specific methodologies are supported.

We discuss, for each of the items of our assessment grid (see fig-
ure 3), the general properties that must ideally be present in a PCSDE.

at9.tex; 9/03/2000; 15:41; p.11

12

Coordinated level support
Process Modeling Language
Organizational modeling
User Interaction

Interaction Paradigms
Enforcement
Tool integration

Cooperative level support
Communication
Shared artifacts

Concurrency control

Co-constructive level support

Transition between levels

Figure 8. Analysis framework.

The discussion is grounded by specific examples drawn from actual
PCSDEs.

We are interested in both the instrumental and the communicative
aspects of an activity and therefore choose as the main division of our
framework the three level subject-object-subject notion of coordination,
cooperation and co-construction (Bardram, 1998b; Engestrom, 1997)
described in section 2.1.

3.1. SuPPORT AT THE COORDINATED LEVEL

At the coordinated level, socially-sanctioned patterns of cooperation
are exercised. Support at this level can be seen as providing “the molds
or river beds in which each and every person unfolds his or her own
version of each activity” (Raeithel, 1992). Recognizing and taking ad-
vantage of regularity and patterns in the work is an important part of
an activity. “Anticipation is the motive of the activity, the goal of the
action and orienting basis of the operation” (Bardram, 1997).

In the context of PCSDESs, coordinated level support is realized via
the enactment of descriptions of chains of work steps, represented by a
“process model” formalism. The representations of these patterns are
used by the environment to constrain the work according to what is
prescribed (aka enforcement). The effect of having a PCSDE interpret

at9.tex; 9/03/2000; 15:41; p.12

13

the patterns as scripts may cause undesired effects; for instance, the
result of applying a sequence of steps in a process model may diverge
from social convention. In situations where process enactment diverges
from actual work practice, PCSDEs can become more of a hindrance
to a community than a helpful tool. In addition, the malleability of
the model may be exploited by a restricted group of stake-holders (e.g.
managers), that may use it to try to impose their own personal agendas.

PCSDESs strongly emphasize support for the coordinated level. The
support for the specification, definition and enactment of process mod-
els, i.e., of descriptions of process steps and their partial ordering, is
arguably the main focus of PCSDEs. This is made explicit by the name
chosen for these tools - process centered development environments.

The emphasis on the software process, and therefore on the coor-
dinated level, is compatible with the production-oriented philosophy
of software engineering. Focusing on the coordinated level allows en-
vironments to take maximum advantage of patterns and regularity in
work practices. However, this emphasis on software process can re-
sult in “blindness” with respect to other important aspects of work,
in particular collaboration. From a technical point of view, targeting
the coordinated level makes complete sense - support for the other
levels faces technical difficulties that are yet to be overcome, as we will
examine in section 3.2.

The focus on the coordinated aspect through pre-specification of
sequences of operations may cause as well over-specification. That is,
the lack of adequate support for other modes of interaction may tempt
a community to reduce all work into a sequence of operations, even
when there is no clear pattern in the actual work practice. In other
words, there might be a temptation to ’program’ work in a similar way
one builds other programs (which is very natural in a community of
programmers).

Over-specification can cause frequent breakdowns due to a mismatch
between a process model script and actual work practices. This is es-
pecially possible if the environment enforces strict sequencing, without
allowing recombination and other changes that are necessary to adapt
operations to specific situated conditions of work.

We next discuss specific coordinated level support features. We con-
sider the elements of the representation language itself as well as the
organizational model that binds agents to pre-specified roles. We also
describe the interaction a user has with an environment.

3.1.1. Process Modeling Languages
The representation language, or process modeling language, is the main
component in providing support at the coordinated level. It is a lan-

at9.tex; 9/03/2000; 15:41; p.13

14

guage that allows agents to specify and enact relevant aspects of routine
work.

In general, the representation languages provided by PCSDEs pro-
vide extensive and flexible support for coordinated interactions. These
languages share many characteristics with programming languages -
some are in fact supersets of programming languages, e.g. APPL/A
(Sutton et al., 1990). This situation is not surprising given the origin
of PCSDEs, which are both developed and used by a community of
software developers.

In each of these languages, there exists a trade-off between the level
of abstraction and built-in functionality provided, and the flexibility a
developer has in specifying a process. That is, either a language offers
very flexible but low level support—that can be used to program a large
set of desired behaviors—or higher level functionality is offered, at the
expense of complete control over the final model.

One important characteristic of process modeling languages, iden-
tified by Ambriola et al. (1997), is how well does a language support
the development of a process model. Models are only useful to the
extent they are able to inform the understanding and refinement of
current work practices. Furthermore, when a process model is enacted,
its execution must support these practices, not hinder or disrupt them.
As a result, there is a need for flexibility in both representing work in
a manner suitable for discussion, i.e., in an abstract way, and for spec-
ifying the many details that are necessary for successful performance
of the work itself.

Four basic conceptual elements are widely used across most systems
as building blocks in process models (using PCSDE nomenclature):
activities (work steps), artifacts (documents and other deliverables),
resources (people, automatic agents, tools, schedules, and budgets)
and constraints (temporal and organizational) (Huff, 1996; Lonchamp,
1994). All these aspects represent a rather high level of abstraction and
must necessarily be complemented at the implementation level with ad-
ditional elements, such as versions, communication paths, distribution,
and workspaces. The choice of constructs shows how little of truly com-
plex interactions can be represented by these languages. In particular,
it reveals the operational, coordinated bias of the environments. What
can be represented, and therefore enacted is just routine, repetitive
work.

3.1.2. Organizational Modeling

Organizational models are the element of process models that pertain
to the division of work. The reader might be perhaps surprised by our
choice of discussing this aspect under the general topic of coordinated

at9.tex; 9/03/2000; 15:41; p.14

15

level support. This choice is certainly not justified by the way AT deals
with division of labor and its richer understanding of the interactions
between a community and an object and between a subject and a
community. Our choice is based on the very limited nature of the
mechanisms available in PCSDEs, and is thus itself revealing.

Support for the division of work in PCSDEs is usually based on roles.
Roles describe a set of prescribed scripted responsibilities (Biddle and
Thomas, 1966). A participant can “play” many roles, according to his or
her expertise. An organizational model maps participants to roles. Even
though the importance of organizational models is recognized by some
authors, e.g. (Huff, 1996; Briand et al., 1995). Few details about actual
PCSDE organizational mechanisms are available in the literature. This
is surprising, given the complexity of most large organizations. Typ-
ically organizations employ elaborate hierarchies that are intermixed
with other types of structures such as teams, committees, etc.

One significant concept that is lacking in current PCSDEs is the
notion of groups of participants and their relationships. No kind of
social awareness or stronger notion of community is present in these
systems. As a consequence, their mechanisms are only usable at the
coordinated level, where interactions between participants are not ex-
pected to occur. This support reduces mechanisms for distributing work
to rigid pre-specified matching of participants to roles.

The lack of support for organizational modeling by PCSDEs has
been recognized previously by Sommerville and Rodden (1996), who
state that PCSDEs focus too much on mechanization and less on the
fact that processes are extremely human-centered and support for hu-
mans and their organizational structures is critical.

3.1.3. User Interaction with the environment
Participants interact with PCSDEs through a variety of mechanisms.
In this sense, participants are users of an environment. Existing tools
offer a relatively large set of alternative options that seem flexible in
principle. There is also a clear notion about the implications of the
levels of enforcement of strict sequences of operations. While the need
for flexibility in the sequencing of chains of operations is understood,
it is not clear that existing tools are prepared today to deal with such
flexibility, with a few exceptions, e.g. Spade-1 (Bandinelli et al., 1994).
From the point of view of the participants, user interaction support
is arguably the most important aspect. Participants are not typically
concerned about models (unless they are engaged in co-construction
activities). They are more concerned about how an environment might
empower or constrain their work. We next discuss three aspects related

at9.tex; 9/03/2000; 15:41; p.15

16

to user interaction with an environment: interaction paradigms that
may be employed, enforcement policies, and tool integration.

INTERACTION PARADIGMS - Bandinelli et al. (1996) identify three in-
teraction paradigms: task-oriented, document-oriented and goal-oriented.

— Task-oriented - this interaction style makes use of agendas. These
agendas manage lists of relevant tasks for each user, as e.g. in
SPADE-1 and Leu (Bandinelli et al., 1996). This paradigm usually
implies strict sequencing of tasks.

— Document-oriented - the focus of interaction in these systems are
documents and the services available over these documents. In
Merlin, for instance, a work context displays in graphical form the
relevant documents available for each role, as well as their inter-
relationships. Available operations are provided via menus. Merlin
“moves” documents between work contexts as tasks assigned to
each role are completed (Junkerman et al., 1994). Users are usually
free to apply enabled operations in any desired sequence.

— Goal-oriented - interaction with these systems is centered around a
list of goals to be accomplished. In Marvel, for instance, these goals
are the visualization of a set of rules a user can invoke (Bandinelli
et al., 1996). Goals can usually be satisfied in any order, provided
their preconditions have been satisfied.

While following a strict sequence of operations is natural for comput-
ers, users need to have control of the sequence of state transformations
they are applying (Keil-Slawik, 1992). Operations have to be adapted
to the concrete physical conditions of an action (Bardram, 1997). By
letting users choose a sequence of operations, instead of having them
prescribed by an environment, the intention of an action can be pre-
served in the presence of specific material conditions. A closely related
concept is that of the level of enforcement, which we discuss in the next
subsection.

Bandinelli et al. (1996) argue convincingly that no single paradigm
can be considered a universal solution. There is an understanding that
an adequate paradigm depends both on a user’s preferences and the
type of task at hand, and therefore should be flexibly determined. This
is consistent with the complexity of activities. It would be surprising if
a single paradigm would be sufficient for all situations.

ENFORCEMENT POLICY - An important aspect of process support con-
cerns the amount of control exerted by an environment. On the one
hand, an environment can be non-intrusive, keeping its presence hidden,

at9.tex; 9/03/2000; 15:41; p.16

17

as in SPADE-1 and Provence (Ambriola et al., 1997). Users activate
tools directly and the environment keeps track of their progress in the
background. On the other hand, systems can be totally prescriptive,
enforcing a strict sequence of actions.

It has been recognized, though, that an overly prescriptive approach
does not lead to good results. This is due to the amount of variability
that is usually present in software development efforts (and work in
general). Most systems therefore take a more careful stand, positioning
themselves as guidance tools (Lonchamp, 1994). Furthermore, it ap-
pears to be the case that the level of enforcement also depends upon
specific tasks. Even for a single process, it might be desirable to simply
monitor some parts of the work, while strictly enforcing other aspects,
perhaps because of security constraints, for example (Bandinelli et al.,
1996).

We can again equate the levels of enforcement with AT’s notion of
implementation of actions through sets of operations that are adapted
to situated contexts. The enforcement of specific sequences of opera-
tions obviously precludes this situated implementation of flexible se-
quences. Breakdowns then result from the inadequacy of tools. This is
not a problem, and is part of the normal dynamics of work, except that
the reconceptualization that should result from a breakdown sometimes
cannot be reflected in the evolution of a tool, which would be a natural
respounse. If the strict enforcement causing a breakdown is tightly built
into a supporting application, changing the application is sometimes
beyond what can be done by the participants themselves—they might
for instance not have access to the source code of the application, or
enough resources to implement the changes themselves.

TooL INTEGRATION - Operations are typically executed through the
activation of external tools. These external tools are automatically ac-
tivated by an environment according to the specified steps of a process
model. A typical mechanism for tool integration involves using a wrap-
per or envelope that serves as an interface between an environment and
its tools, encapsulating the details of tool activation.

The amount of control that can be applied through this interface
depends on the ability of each specific tool to react to external requests
during execution. This is a problem especially with respect to legacy
tools, that are not designed with integration in mind. In this case, it
is only possible to control the activation of a tool and then wait for its
termination. The problem with this approach is that an environment
has no control over the actions of a tool during its execution. Thus,
for instance, a text editor may load and modify many files without the
knowledge of its environment.

at9.tex; 9/03/2000; 15:41; p.17

18

Two approaches are used to more tightly integrate tools: either
tools are specifically tailored to work with an environment, or some
integration service is employed, e.g., Sun’s Tooltalk (Sun Microsystems,
1997), DEC’s Fuse (Digital Equipment Corporation, 1999) or OMG’s
CORBA (1999). In either case there are pros and cons. The integration
of external tools enables the use of the latest versions, leveraging on
the efforts of other developers. On the other hand, custom tools provide
a tighter integration with an environment that enables better support
for operations. In particular, since existing tools are typically developed
for individual use, and not for groups, their use severely limits support
for the cooperative level, which we discuss next.

3.2. SUPPORT FOR THE COOPERATIVE LEVEL

Cooperative interaction involves actors focusing on a shared problem,
“trying to find mutually acceptable ways to conceptualize and solve it”
(Engestrom, 1997, p.372). There is therefore a need for communication
and sharing of an object. If we take design to be cooperative learn-
ing (Keil-Slawik, 1992) or cooperative problem solving (Fischer, 1994),
support in PCSDEs for this level is essential. To support this kind of
collaboration, participants need to be able to jointly apply exploratory
manipulation of the symbols that are taken to represent a problem
space(Curtis et al., 1988).

There are two obstacles to this kind of support. The first obstacle is
the production-oriented philosophy of software engineering, discussed
above. The basic premise that design s collaborative learning or prob-
lem solving is not compatible with this philosophy. The second obstacle
is a technical one. The state of the art in supporting full-fledged collab-
oration is not yet sufficient to support large development efforts. This
is not true only of PCSDEs: this goal is largely unsolved in CSCW
in general. Problems range from efficient display of group work to
individual agents (a user interface problem), to providing collabora-
tion capabilities in a way that is compatible with existing social and
work practices of a community of agents. The fact that external tools
(editors, translators) integrated into an environment do not typically
support collaboration aggravates the problem for PCSDEs.

Communication occurs at two levels - ezplicit and implicit. Explicit
communication can be asynchronous (e.g. e-mail) or synchronous (e.g.
video conferencing). Implicit communication is conveyed by changes in
shared artifacts according to socially accepted conventions. Effective
support for collaboration requires both implicit and explicit commu-
nication mechanisms (Robinson, 1993). In particular, there is a need
for this support to be integrated: one should be able to modify a

at9.tex; 9/03/2000; 15:41; p.18

19

shared artifact, observe modifications performed by others, and also
‘talk’ explicitly about the intent of a modification as it occurs.

PCSDEs offer limited support for synchronous and asynchronous
communication and provide some mechanisms for sharing artifacts.
These capabilities are typically considered disjoint. That is, an agent
either communicates or the agent modifies an artifact. It is typically
not the case that implicit communication by artifact transformation
can be accompanied by explicit simultaneous communication.

The access to shared artifacts provided by PCSDEs is predominantly
asynchronous—participants can modify a shared artifact concurrently,
but it is assumed they are working on their own, i.e., they are not
coordinating their modifications. The term conflict resolution is em-
ployed to describe the situation when two or more participants commit
changes on the same artifact simultaneously. As the term conveys, this
situation is considered undesirable. However, these mechanisms used by
PCSDESs go beyond the database concept of an acid transaction. Most
employ mechanisms that are more compatible with the long duration
that is typical in development transactions.

We next discuss communication and sharing support in more detail.

3.2.1. Communication

Asynchronous communication is enabled between agents via message
exchange. Synchronous communication requires support for simultane-
ous interaction by all team members involved in a particular activity.
Direct support for synchronous communication is missing from most
systems.

A typical approach to supporting synchronous communication is to
delegate responsibility to an external CSCW facility controlled by a
PCSDE via tool integration (Ambriola et al., 1997). As a consequence,
the cooperative interaction takes place outside the control of a PCSDE.
It is, thus, no surprise that a misalignment may result between an
environment’s internal representation of a process and the reality of
the external world with this approach.

The main problem with this issue is that PCSDEs are typically un-
aware of the communication that occurs between agents. Unfortunately,
at the cooperative level, a fundamental part of an activity occurs via
this communication. As such, PCSDEs have no means for incorporating
or reflecting on this important part of a group’s work.

Having agents collect and enter this missing information manually,
as is sometimes suggested (Wolf and Rosenblum, 1993), is not adequate.
Such a system is usually circumvented to avoid what is seen as extra
work (Curtis et al., 1988). No agent can be expected to spend his or
her time informing a system about work already performed (Suchman,

at9.tex; 9/03/2000; 15:41; p.19

20

1983). One possible solution is to enhance an environment’s function-
ality so that the work is performed within the environment, and not
away from it. As mentioned by Wolf et al. (1993), this is easier said
than done. There are, unfortunately, some very difficult problems to be
faced in this area.

Few systems offer a tighter integration of synchronous communica-
tion:

— Spade-1 has been integrated with a CSCW toolkit (ImagineDesk)
to include support for synchronous communication (Bandinelli et al.,
1996). The architecture of the toolkit, that supports a service-
request approach, matches the tool control facilities of Spade (black
transitions), making a tighter integration possible. A process model
fragment can be used to coordinate the preparation of the syn-
chronous interaction (e.g., getting agreement on date and time,
building an agenda). Detailed control of the interaction is attained
though a process specification that sends service-requests to the
toolkit components.

— Oz is possibly the only PSEE to include support for synchronous
communication as a primitive construct of the modeling language
(Bandinelli et al., 1996). Multiple participants can be specified and
Oz makes each of them aware when a cooperation is about to start.
The cooperation policy is fixed, i.e., it is not possible to specify
alternative policies.

Finally, explicit communication is typically considered independent
of operations on artifacts, which makes it difficult to support the double
level of language that is required in such situations (Robinson, 1993).

3.2.2. Sharing Artifacts

In design efforts, such as software development, it is essential to share
work artifacts among team members. Artifacts direct attention to rel-
evant details and offer a basis for “what if?” questions in complex
scenarios (Robinson, 1993). The sharing of artifacts can also occur
indirectly, as a result of coordinated level work being performed in
parallel. Even though each activity might be executed in isolation,
sharing will result if a common set of artifacts is transformed in two or
more of these activities.

Unfortunately, the type of synchronous collaboration capabilities
over artifacts that are available to a certain extent in CSCW tools are
missing in PCSDEs. This lack of support precludes the use of techniques
for collaborative design that may otherwise be useful (Fischer, 1994).

at9.tex; 9/03/2000; 15:41; p.20

21

Our discussion therefore focuses on asynchronous collaboration sup-
port, that typically results from providing parallel access to shared
artifacts during activities at the coordinated level.

— OIKOS (Montangero and Ambriola, 1994) offers a rich set of met-
aphors that handle different levels of cooperation: the desk, enwvi-
ronment and office. A desk corresponds to a shared work space,
potentially used by different roles to share information about the
state of their work. Several agents may play their roles on the same
desk, cooperating in a free fashion. Desks are part of environments.
Several groups can play their roles in different desks, but under
the same environment. The environment controls access to shared
documents and therefore allows communication formalized by an
environment’s rules. Finally, an office groups many environments.
The interaction of groups in different environments is the most
formalized one and is controlled by a surrounding process.

— In ALF, several agents can share a single role, which allows them
to work in the same working context, therefore sharing informa-
tion. Different contexts can share artifact instances. Concurrency
control is restricted to short term transactions, which is recognized
by ALF’s developers as a limitation (Canals et al., 1994, p.161).

— EPOS offers a language (WUDL) to specify how access conflicts are
resolved. According to the authors, ”the goal is to keep cooperating
and affected partners notified about product status and possible
conflicts” (Ambriola et al., 1997, p.300). This capability comes
at a cost, however, since a desired behavior can only be achieved
through careful programming.

— In Merlin (Junkerman et al., 1994), work is centered around the
working context of each role. A working context presents a set of
documents and their dependencies (as a graph) that are associated
with a role, along with the activities that can be performed on each
document. Cooperation is supported in an indirect way by Merlin,
in that documents may “move” between the working contexts of
different roles. In other words, when a document has been success-
fully modified by a role, it “disappears” from the role’s context
and is included in the working context of the role responsible for
the next step of the process.

Access to the same artifact by two or more participants is controlled
by concurrency control mechanisms, discussed next.

CONCURRENCY CONTROL - This issue concerns the regulation of mul-
tiple agents accessing a shared set of artifacts. Software development

at9.tex; 9/03/2000; 15:41; p.21

22

stresses this issue in PCSDEs because it involves long-duration trans-
actions and requires the sharing of large set of artifacts throughout the
life cycle of a software system.

Concurrency control is traditionally (e.g. in the context of database
systems) performed by locking and serializing access in such a way that
1solation is guaranteed. Isolation guarantees that “each transaction is
unaware of other transactions executing concurrently in the system”
(Silberschatz et al., 1999). An approach that applies strict locking of
shared artifacts for the entire duration of a transaction is unacceptable
in PCSDEs largely because of the long-term nature of their transactions
and the significant competition for access to artifacts by team members.

Some environments offer a rich set of mechanisms in the context of
extended transaction models (Elmagarmid, 1992; Barghouti and Kaiser,
1991), e.g., EPOS, Spade-1 and Merlin. This functionality is typi-
cally restricted to pre-specified interactions that are programmed into
a process model before process enactment begins. Strictly speaking,
this reduces a cooperation-level activity to one that is completed as a
coordinated-level activity. Transactional protection is based on mecha-
nisms offered by an underlying database used by a PCSDE to store its
artifacts.

3.3. SUPPORT FOR THE C0O-CONSTRUCTIVE LEVEL

Co-construction corresponds to the “interactions in which the actors
focus on reconceptualizing their own organization and interaction in
relation to their shared objects” (Engestrom, 1997, p.373). The activ-
ity has a reflective object—some other activity—that is transformed to
develop new possibilities of action (Raeithel, 1992).

Co-construction in PCSDEs is equated to reconceptualization of
process models. Reconceptualization other than of the sequencing of op-
erations has to be performed by means outside an environment proper.
This is, in a sense, very limited. Breakdowns are generally seen as
undesirable deviations from anticipated patterns, but are recognized as
being unavoidable and intrinsic to the production of software (Ghezzi
and Nuseibeh, 1998).

The construction of a process model is clearly at the co-constructive
level. This kind of activity is motivated by the desire to define how
some other process is to be conducted. Its object is this other process.
In PCSDEs, activities of this type can be performed with the help of
the environment. Meta-processes are used to empower and constrain the
participants of the process development. Systems with such capability
are said to be reflective (Ambriola et al., 1997).

at9.tex; 9/03/2000; 15:41; p.22

23

Co-construction takes place during the execution of activities, as a
result of breakdowns or because of deliberate reconceptualization of an
object of work (Bardram, 1998b). Breakdowns and reconceptualizations
are of course not restricted to the object of work itself, a software
system being developed, but will also impact its associated development
process. This situation occurs naturally, given the close relationship be-
tween process and product (Snowdon and Warboys, 1994). As a result,
the usability of a system is largely determined by the way software and
process evolution is supported.

Change seems to be intrinsic to the development of software, due
to the fact that development is also (or primarily) a discovery process.
At the start of a development project, little is known about the actual
problem. As work progresses, an increased understanding may cause
different approaches to become more desirable. Incremental delivery
is one of the techniques that can be employed to make a problem
quickly apparent. Internal problems need to be monitored and com-
pared against expected progress. Once detected, a change needs to be
implemented.

The absence of strong support for the cooperative level may be a
hindrance during co-construction. Co-construction is inherently collec-
tive, and therefore it is questionable how helpful PCSDEs can really
be if support for work is restricted to the coordinated level (Cugola,
1998).

Reflection is the method of choice for evolution in the majority of
systems, e.g., EPOS, Spade-1, E3, Merlin, PWI, Peace (Lonchamp,
1994):

— In EPOS, processes can modify themselves at run-time through
special operations of the modeling language, Spell (Ambriola et al.,
1997).

— Spade-1 also supports dynamic evolution through reflective fea-
tures, such as late binding and visibility of process information
as data. Activity definitions and state of enacting instances of
activities can be manipulated as any other kind of data (Ambriola
et al., 1997).

— APPL/A (Sutton et al., 1990) and Process Weaver (Fernstrom,
1993) are exceptions, and only allow off-line evolution. Both sys-
tems are compiled, which makes impossible run-time modifica-
tions.

Changes have consequences, i.e., the impact of a change can affect
to a greater or lesser extent other parts of a process. Certainly arti-

at9.tex; 9/03/2000; 15:41; p.23

24

facts are impacted by changes, but even a process itself may suffer a
transformation in response to a change.

Therefore, helping to determine the consequences of a change, or the
propagation of a change, is an important task that must be supported
by PCSDEs. Another aspect of dynamic change has to do with the fact
that many projects may be enacting the same process model, and that
their state may not be quiescent, i.e., one or more activities may be in
execution at the time of the change (Huff, 1996).

3.4. TRANSITIONS BETWEEN ACTIVITY LEVELS

The concept of dynamic transformation between levels is central to the
notion of hierarchical levels (Bardram, 1998b). In essence it establishes
that there may be dynamic shifts in the mode of execution of an
activity. An activity is not exclusively [performed at a] coordinated,
cooperative or co-constructive [level]. It may present a predominant
behavior, but a shift will probably occur, especially in a complex dis-
covery process like software development. One implication of this is
that the transitions between levels need necessarily to be fluid. In other
words, there must be a natural progression from level to level. Ideally,
this transition is imperceptible to agents.

The notion of hierarchical levels is alien to PCSDEs (as are most of
the richer notions of AT). The production-oriented philosophy assumes
that whatever has been coded in a process model corresponds to the
steps that are necessary and sufficient during the unfolding of an activ-
ity. There seems to be an intrinsic belief in the stability of the means
and object of work that would deem transitions unnecessary.

PCSDEs focus primarily on the coordinated level. It is expected
that work will be conducted at this level at all times. Breakdowns or
exploratory work that would be performed at the cooperative level are
not supported in general. These have to be resolved outside the scope
of an environment.

Depending on the nature of a breakdown, shifts to the co-constructive
level can occur. This takes the form of a meta-process, a process whose
object is another process. Given that co-construction probably demands
a high degree of collaboration, it is questionable how successful these
meta-models are in providing adequate support for work.

4. Summary and Conclusions

Activity theory provides a rich descriptive tool that is useful for ana-
lyzing and understanding collaborative work in general, independently

at9.tex; 9/03/2000; 15:41; p.24

25

of any specific field of application. The basic unit of analysis in activity
theory is a human activity. Activities, as defined by AT, provide enough
contextual information to make an analysis meaningful, while avoiding
a narrow focus on an individual or a too broad focus on whole social
systems (Kuuti and Arvonen, 1992).

Very briefly, activities are undertaken by subjects, motivated by a
purpose, transforming an object into an outcome. The object may be
shared by a community of actors, that work together to reach a desired
outcome. Tools, rules and division of labor mediate the relationship
between subjects, community and object. Activities are carried out by
actions, which in turn are realized as sets of operations. Coordination,
cooperation and co-construction are the three levels of subject-object-
subject relations. The focus of coordination is in each individual actor,
while the cooperative level focuses on a shared object. Co-construction
corresponds to re-elaborations of work practices. These three levels
represent an instantaneous status of an activity.

Process-centered software development environments are tools built
with cooperation in mind. They aim at supporting the work of (large)
teams of developers. As the name implies, these environments are geared
towards supporting a process.

To a limited extent, PCSDEs incorporate a host of mediating arti-
facts. They incorporate reified procedures and rules, and some of these
rules specify the division of work. Integrated tools provide access to
an external shared memory. PCSDEs approach the problem of collec-
tive development from a production-oriented philosophy (Floyd, 1992).
This view is consistent with the heritage of the software engineering
area. While this philosophy allows a certain amount of anticipatory
reflection, it blinds software engineers to the communicative aspects of
subject-subject relationships.

Support for the coordinated level is restricted to a shallow view
of work as a sequence of operations, represented by a process model.
Support for the division of work is closely tied to the distribution of
tasks at the coordinated level.

Cooperative level support is restricted by the fact that implicit and
explicit communication are treated separately. Sharing of artifacts is
understood to be asynchronous, in the sense that it is assumed that
actors are unaware of each other’s existence, even if working on the
same artifact concurrently.

Co-construction suffers from the process-oriented bias as well-only
process models can be the object of reconceptualization. Since co-
construction involves collaboration, the lack of stronger support at the
cooperative level is limiting.

at9.tex; 9/03/2000; 15:41; p.25

26

PCSDEs may be adequate for the downstream phases of develop-
ment, but lack functionality for supporting upstream, design activities
(Fischer, 1994). If one views design as collective problem solving or
learning, then the lack of adequate cooperative level support is a serious
hindrance.

The notion of the three levels of performance is not well represented
in PCSDEs. As stated above, the production-oriented philosophy as-
sumes that the routine steps in a process model are sufficient for the
execution of an activity. As such, there is little support for transitioning
an activity between the levels.

However, there is an implicit recognition that each activity may re-
quire different approaches; this recognition is apparent in the existence
of tailorable process models. Evolution is also acknowledged as being
intrinsic to an activity, and a set of specific (reflective) mechanisms is
provided for that purpose.

The need for flexible and diverse user interaction paradigms is also
a strong point of existing PCSDEs. It is understood that different users
have different styles of work and that operations have to be adapted
to unanticipated circumstances that require rearrangement and other
kinds of modifications of the pre-planned sequence of operations.

Even though synchronous cooperative support is lacking, there is
some effort to overcome the technical limitations that can be associ-
ated with the use of strict transactional mechanisms. Some cooperation
is therefore possible through the extended transactional mechanisms
provided.

PCSDEs suffer from the production-oriented philosophy of software
engineering. Despite this, we have identified some positive aspects of
these environments that provide support for work in less restricted
ways. We believe that one contribution of this paper is to identify the
utility of evaluating PCSDEs using the concepts of activity theory. We
believe that future PCSDEs can benefit from this analysis and that
support for the richer notions of collaboration that are provided by AT
can lead to the development of more useful PCSDEs.

Acknowledgements

We gratefully acknowledge the contributions of our anonymous review-
ers who helped to substantially improve our presentation of activity
theory.

at9.tex; 9/03/2000; 15:41; p.26

27

References

Ambriola, V., R. Conradi, and A. Fuggetta: 1997, ‘Assessing Process-
centered Software Engineering Environments’. ACM Transac-
tions on Software Engineering and Methodology 6(3), 283-328.
http://www.acm.org/pubs/citations/journals/tosem/1997-6-3/p283-ambriola/.

Bandinelli, S., E. Di Nitto, and A. Fuggetta: 1996, ‘Supporting Cooperation in the
SPADE-1 Environment’. [EEE Transactions on Software Engineering 22(12).
http://computer.org/tse/ts1996/e0841abs.htm.

Bandinelli, S., A. Fuggetta, C. Ghezzi, and L. Lavazza: 1994, ‘SPADE: An Environ-
ment for Software Process Analysis, Design and Enactment’. In: A. Finkelstein,
J. Kramer, and B. Nuseibeh (eds.): Software Process Modelling and Technology.
Taunton, Somerset, England: Research Studies Press Ldt., Chapt. 9, pp. 223-248.

Bardram, J.: 1997, ‘Plans as Situated Action: An Activity Theory Approach to
Workflow Systems’. In: European Conference on Computer-Supported Coopera-
tive Work - ECSCW’97. Lancaster, UK.

Bardram, J.: 1998a, ‘Collaboration, Coordination, and Computer Support: An Ac-
tivity Theoretical Approach to the Design of Computer Supported Cooperative
Work’. Ph.D. thesis, Aarhus University. Daimi PB-533.

Bardram, J.: 1998b, ‘Designing for the Dynamics of Cooperative Work Activities’.
In: Conference on Computer-Supported Cooperative Work. pp. 89-98.

Barghouti, N. and G. Kaiser: 1991, ‘Concurrency Control in Advanced Database
Applications’. ACM Computing Surveys 23(3).

Biddle, B. and E. Thomas (eds.): 1966, Role Theory: Concepts and Research. New
York: John Wiley & Sons, Inc.

Briand, L., W. Melo, C. Seaman, and B. Basili: 1995, ‘Characterizing and Assessing
a Large-Scale Software Maintenance Organization’. In: Proceedings of the 17th
International Conference on Software Engineering. pp. 133-143.

Brooks, F.: 1995, The Mythical Man-Month : Essays on Software Engineering -
Anniversary ed. Addison-Wesley.

Canals, G., N. Boudjlida, J. Derniame, C. Godart, and J. Lonchamp: 1994, ‘ALF: A
Framework for Building Process-Centered Software Engineering Environments’.
In: A. Finkelstein, J. Kramer, and B. Nuseibeh (eds.): Software Process Modelling
and Technology. Taunton, Somerset, England: Research Studies Press Ldt.,
Chapt. 7, pp. 153-186.

Cugola, G.: 1998, ‘Tolerating Deviations in Process Support Systems via Flexible
Enactment of Process Models’. IEEE Transactions on Software Engineering
- Special Section on Managing Inconsistency in Software Development 24(11),
906-907. http://church.computer.org/tse/ts1998/e0982abs.htm.

Curtis, B., H. Krasner, and N. Iscoe: 1988, ‘A Field Study of the Software Design
Process for Large Systems’. Communications of the ACM 31(11), 1268-1286.
Digital Equipment Corporation: 1999, ‘DEC Fuse Home Page’. http://www.digital-

.com/fuse/.

Elmagarmid, A. (ed.): 1992, Transaction Models for Advanced Database Applica-
tions. Morgan-kaufmann.

Engestrom, Y.: 1987, Learning by Ezpanding: An Activity-theoretical Approach to
Developmental Research. Helsinki: Orienta-Konsultit Oy.

Engestrom, Y.: 1997, ‘Coordination, Cooperation and Communication in the
Courts’. In: Mind, Culture, and Activity. Cambridge University Press, Chapt. 28,
pp. 369-388.

at9.tex; 9/03/2000; 15:41; p.27

28

Fernstrom, C.: 1993, ‘Process Weaver: Adding Process Support to UNIX’. In:
Proceedings of the 2nd International Conference on the Software Process. pp.
12-26.

Fischer, G.: 1994, ‘Domain-Oriented Design Environments’. Automated Software
Engineering 1, 177-203.

Floyd, C.: 1992, ‘Software Development as Reality Construction’. In: C. Floyd, H.
Ziillighoven, R. Budde, and R. Keil-Slawik (eds.): Software Development and
Reality Construction. Springer-Verlag, Chapt. 3.2.

Ghezzi, C., M. Jazayeri, and D. Mandrioli: 1991, Fundamentals of Software
Engineering. Prentice-Hall.

Ghezzi, C. and B. Nuseibeh: 1998, ‘Guest Editorial: Introduction to the Special Sec-
tion’. IEEFE Transactions on Software Engineering - Special Section on Managing
Inconsistency in Software Development 24(11), 906-907.

Grudin, J.: 1994, ‘CSCW: History and Focus’. IEEE Computer 27(5), 19-27.
http://www.ics.uci.edu/ grudin/Papers/IEEE94/IEEEComplastsub.html.

Hasan, H.: 1998, ‘Integrating IS and HCI Using Activity Theory as a Philosophical
and Theoretical Basis’. http://www.cba.uh.edu/ parks/fis/hasan.htm.

Huff, K.: 1996, ‘Software Process Modeling’. In: A. Fuggeta and A. Wolf (eds.):
Trends in Software: Software Process. John Wiley and Sons, Chapt. 1.

Junkerman, G., B. Peuschel, W. Schifer, and S. Wolf: 1994, ‘MERLIN: Supporting
Cooperation in Software Development Through a Knowledge-Based Environ-
ment’. In: A. Finkelstein, J. Kramer, and B. Nuseibeh (eds.): Software Process
Modelling and Technology. Taunton, Somerset, England: Research Studies Press
Ldt., Chapt. 5, pp. 103-130.

Keil-Slawik, R.: 1992, ‘Artifacts in Software Design’. In: C. Floyd, H. Ziillighoven,
R. Budde, and R. Keil-Slawik (eds.): Software Development and Reality Con-
struction. Springer-Verlag, Chapt. 4.4.

Kuuti, K.: 1991, ‘The Concept of Activity as a Basic Unit of Analysis for CSCW
Research’. In: Proceedings of the Second European Conference on CSCW.
Amsterdam, pp. 249-264.

Kuuti, K.: 1996, ‘Activity Theory as a Potential Framework for Human-Computer
Interaction Research’. In: B. Nardi (ed.): Contezt and Consciousness: Activ-
ity Theory and Human-Computer Interaction. Cambridge, MA: MIT Press,
Chapt. 2, pp. 17-44.

Kuuti, K. and T. Arvonen: 1992, ‘Identifying Potential CSCW Applications by
Means of Activity Theory Concepts: A Case Example’. In: Proc. of the Computer
Supported Cooperative Work - CSCW’92. pp. 233-240.

Leontjev, A.: 1978, Activity, Consciousness and Personality. Englewood Cliffs:
Prentice-Hall.

Lonchamp, J.: 1994, ‘An Assessment Exercise’. In: A. Finkelstein, J. Kramer, and B.
Nuseibeh (eds.): Software Process Modelling and Technology. Taunton, Somerset,
England: Research Studies Press Ldt., Chapt. 13, pp. 335-356.

Montangero, C. and V. Ambriola: 1994, ‘OIKOS: Constructing Process-Centred
SDEs’. In: A. Finkelstein, J. Kramer, and B. Nuseibeh (eds.): Software Process
Modelling and Technology. Taunton, Somerset, England: Research Studies Press
Ldt., Chapt. 6, pp. 131-152.

Nardi, B. (ed.): 1996, Contezt and Consciousness: Activity Theory and Human-
Computer Interaction. Cambridge, MA: MIT Press.

Naur, P., B. Randell, and J. Buxton (eds.): 1976, Software Engineering: Concepts
& Techniques. New York: Peterocelli/Charter.

OMG: 1999, ‘Corba Home Page’. http://www.corba.org.

at9.tex; 9/03/2000; 15:41; p.28

29

Raeithel, A.: 1992, ‘Activity Theory as a Foundation for Design’. In: C. Floyd,
H. Zillighoven, R. Budde, and R. Keil-Slawik (eds.): Software Development and
Reality Construction. Springer-Verlag, Chapt. 8.4.

Robinson, M.: 1993, ‘Design for Unanticipated Use...”. In: C. S. G. de Michelis and
K. Schmidt (eds.): Proceedings of the Third European Conference on Computer-
Supported Cooperative Work. Milan, Italy, pp. 187-202.

Silberschatz, A., H. Korth, and S. Sudarshan: 1999, Database System Concepts.
McGraw-Hill, third edition edition.

Snowdon, R. and B. Warboys: 1994, ‘An Introduction to Process-Centered Environ-
ments’. In: A. Finkelstein, J. Kramer, and B. Nuseibeh (eds.): Software Process
Modelling and Technology. Taunton, Somerset, England: Research Studies Press
Ldt., Chapt. 1, pp. 1-7.

Sommerville, I. and T. Rodden: 1996, ‘Human, Social and Organisational Influences
on the Software Process’. In: A.Fuggeta and A.Wolf (eds.): Trends in Software:
Software Process. John Wiley and Sons, Chapt. 4.

Suchman, L.: 1983, ‘Office Procedure as Practical Action: Models of Work and
System Design’. ACM Transactions on Office Information Systems 1(4),
320-328.

Sun Microsystems: 1997, ‘Tooltalk User’s Guide’. ftp://192.18.99.138/802-7318/802-
7318.pdf.

Sutton, S., D. Heimbigner, and L. Osterweil: 1990, ‘Language Constructs for Man-
aging CHange in Process-centered Environments’. In: Proceedings of the 4th
Symposium on Practical Software Development Environments.

Wolf, A. and D. Rosenblum: 1993, ‘Process-Centered Environments (Only) Sup-
port Environment-Centered Processes’. In: Proceedings of the 8th International
Software Process Workshop (ISPW8). Wadern, Germany, pp. 148-149.

at9.tex; 9/03/2000; 15:41; p.29

at9.tex; 9/03/2000; 15:41; p.30

