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INTRODUCTION

The task of design involves a complex set of processes. Starting from a global
statement of a problem, a designer must develop a precise plan for a solution that
will be realized in some concrete way (e.g., as a building or as a computer
program). Potential solutions are constrained by the need to eventually map this
plan into a real-world instantiation. For anything more than the most artificial
examples, design tasks are (0o complex to be solved directly. Thus, an important
facet of designing is decomposing a problem into more manageable subunits,
Design of computer systems, software design, is the particular design task to be
focused on in this chapter.

Software design is the process of translating a set of task requirements
(functional specifications) into a structured description of a computer program
that will perform the task. There are three major elements of this description.
First, the specifications are decomposed into a collection of modules, each of
which satisfies part of the problem requirements. This is often referred to as a
modular decomposition. Second, the designer must specify the relationships and
interactions among the modules. This includes the control structures, which
indicate the order in which modules are activated and the conditions under which
they are used. Finally, a design includes the data structures involved in the
solution. One can think of the original goal-oriented specifications as defining’
the properties that the solution must have. The design identifies the modules that
can satisfy these properties. How these modules are to be implemented is a
programming task, which follows the design task.

This chapter presents a theory of the global processes that experts use to
control the development of a software design. After a review of some relevant
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literature, the theory is described in detail. Thinking aloud protocols collected
from both expert and novice designers on a moderately complex problem provide
evidence for these theoretical ideas. Finally, we speculate on how such processes
might be learned.

RESEARCH ON DESIGN AND PLANNING

Although there has been little research that focuses directly on problem-solving
processes in software design, there are a number of research areas that are
peripherally related. The first of these, formal software design methodologies, is
indicative of the guidelines that experts in the field propose to structure the task
of designing. The second area, automatic programming, provides a detailed
analysis of the task from an artificial intelligence viewpoint. Finally, research on
planning and design gives insight into planning processes that may be general
across domains.

Software Design Methodologies

There are two reasons for considering the professional literature in this field. A
reasonable model of performance in any domain ought to relate to accepted
standards of good practice in that domain. These formalized methods were writ-
ten by experts in the area trying to convey to others the procedures they use to
perform the task. In addition, most expert designers are familiar with this litera-
ture and may incorporate facets of these methodologies into their designs.

Software design involves generating a modular decomposition of a problem
that satisfies the requirements described in its specifications. Design methods
provide different bases for performing modular decompositions. There are two
prevailing views in the literature as to what this basis should be. Both positions
prescribe problem reduction approaches to the design process. One focuses on
data structures and the other on data flow. The various methodologies differ in
the nature and specificity of the problem reduction or decomposition operators
and of the evaluation functions for determining the adequacy of alternative de-
compositions.

With the data-structure-oriented approaches (e.g., Jackson, 1975; Warnier,
1974), a designer begins by specifying the input and output data structures
according to certain guidelines. A modular decomposition of a problem is iden-
tified by deriving the mapping between the input and output data structures.
Because such methods involve the derivation of a single *‘correct’’ decomposi-
tion, there is no need for evaluation criteria or the comparison of alternative
decompositions.

Data-flow oriented approaches (Myers, 1975; Yourdon & Constantine, 1975)
are a collection of guidelines for identifying trial decompositions of a problem,
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Thus, these methods are more subjective, allowing a designer to exercise more
judgment. As a result, numerous heuristics for evaluating potential decompo-
sitions are used with these methods. Examples of such evaluation guidelines
include: maximizing the independence and cohesion of individual modules, pro-
viding a simple (as opposed to general) solution to the current subproblem, etc.
These guidelines control the evaluation of possible solutions to a design problem
and the generation of new alternative designs.

Most formal software design methodologies require that the design proceed
through several iterations. Each iteration is a representation of the problem at a
more detailed level. Thus, the initial decomposition is a schematic description of
the solution. This becomes more detailed in the subsequent iterations. In general,
this mode of decomposing the problem leads to a top-down, breadth-first expan-
sion of a design.

There are competing views that prescribe different modes of expansion. Some
of these are characterized by such terms as bottom-up, middle-out, or inside-out
(Bochm, 1975). Such positions have been developed in response to what some
individuals feel are unsatisfactory properties of a top-down expansion. There are
problems in which it is necessary to understand certain crucial lower-level
functions in order to identily high-level constraints on the design. These alterna-
tive modes of expansion may be used by a designer in problems for which an
initial decomposition is difficult to derive. There are undoubtedly problems for
which each of these methodologies is particularly suited. However, the formal
literature on software design lacks a mapping between types of problems and the
appropriate design methodology.

Automatic Programming Systems

Another source of information about the task of software design comes from
automatic programming systems. The term awtomatic programming has been
used to refer to activities ranging from the design and development of algebraic
compilers to systems that can write a program from information given in the form
of goal-oriented specifications (Biermann, 1976; Heidorn, 1976). The latter rep-
resent attempts to specify the procedures of software design in a mechanizable
form.

Simon’s (1963, 1972) Heuristic Compiler was one of the earliest proposals for
a programming system that generated code from abstract specifications. This
program’s task was to generate IPL-V code for subroutines that were compo-
nents of some larger program. It was implicitly assumed that the original specifi-
cations had been decomposed into detailed functional descriptions for a collec-
tion of routines that would make up the complete program.

The definitions of routines to be generated by the Heuristic Compiler could
take one of two forms, with each form being handled by a separate special
compiler. The first form involved a before and after description of the states of
certain cells in the IPL system. The specification described the inputs and outputs
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of a routine. The state description compiler’s task was to derive the sequence of
IPL instructions that brought about that transtformation. The other form of defi-
nitions was in terms of imperative statements describing the function to be
performed by a given subroutine, which was handled by the function compiler,
Both specialized compilers used suitably generalized forms of means-ends
analysis to generate sequences of IPL instructions that would meet the input
specifications.

One branch of current research on automatic programming can be viewed as
attempts to generalize the ideas that were originally contained in the state descrip-
tion compiler. Biermann (1976) describes several automatic progranuming sys-
tems that derive programs from examples of input-output behavior for a routine
or from formal descriptions of inputs and outputs. Note that the data-structure-
oriented software design methodologies discussed carlier resemble these systems
in their focus on deriving detailed actions from inputs and outputs.

Other automatic programming systems have been developed that generate
routines from information supplied through a natural language dialogue with the
user (Heidorn, 1976). These efforts can be viewed as generalizations of the
function compiler. Such systems consist of four components (Balzer, 1973;
Green, 1977; Heidorn, 1976). First, the system acquires a description of the
problem to be solved, frequently via interactions with a relatively naive user.
Second, this information is synthesized into a coherent description of the pro-
gram to be written (Green, 1977). This description is then verified, and
additional information, if necessary, is acquired through further interactions with
the user (Balzer, Goldman, & Wile, 1977). Finally, the refined description is
used as input to a subsystem that synthesizes the program in the high-level
language, making decisions about data structures, algorithms, and control struc-
tures. Much of the current work in automatic programming focuses on the fast of
these components.

Balzer and his colleagues have considered the task of wransforming an infor-
mal natural language specification of a program into a formal description of a
design. This design would then be input into a code generation subsystem. There
are two aspects of Balzer's work that are relevant here. First, he attempts to
develop techniques that enable one to carry out the initial phases of the design
effort. Incomplete goal-oriented specifications are first translated into abstract,
incomplete functional specifications and then refined into a complete set of
formal specifications for the program. Second, the knowledge used by Balzer's
system is domain independent. This system can be contrasted with the programs
of Long (1977) and Mark (1976) that are strongly domain dependent, and where
design problems are proposed in a single microworld.

A system that is designed to deal with the problems of detailed design and
code generation is a program called PECOS (Barstow, 1977, 1979). PECOS
generates LISP code from a high-level description of input and output data
structures and the algorithms to be used to solve the problem. A distinguishing
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feature of PECOS is that the program uses a collection of rules. It encodes both
general knowledge and specific information about LISP to guide its problc‘m-
solving efforts, rather than using a uniform strategy like means-ends analysis.

PECOS’ knowledge base is in the form of a large set of rules. Gcn(?ral rul_es
deal with representation techniques for collections, enumeration techniques (or.
collections, and representation techniques for mappings. Each of thﬁ:{;(: subsels of
rules can be organized into a hierarchical structure with a number of m\crmcdl.mc
jevels between the most abstract concepts (e.g., collection) and information
about specific procedures or data structures (e.g., linked free cells). "

PECOS employs problem-solving mechanisms that itcmlivpjly refine each
component of the specifications. A partially refined subproblem is sclcclcq, and
then a rule is applied to it. Each rule application can produce one o‘l thr?c
outcomes. First, the subproblem can be refined to the next lower level of dc_:(ml.
Second, crucial properties of some component of the subproblem can be iden-
lified and included in the description. Third, additional information about the
subproblem can be gathered.

This review of automatic programming demonstrates that there are lwo.a.)x‘n—
ponents to the task of software design. The first is the translation ({(.llxe m‘mul
goal-oriented specifications into a high-level functi()nal‘ decomposition of the
original problem. This incomplete, abstract description of lhc“pr()blcm must then
be refined into a set of formal specifications that precisely define data structures,
control structures, and the functions performed by various modulesii'n the pro-
gram. The second stage of the design process involves a collection of 1'mplcmcn—
ation decisions. These decisions specify data structures and algorithms t'hut
satisty the functional descriptions and efficiency criteria. 'I‘l.)e'ﬁrst phase re(}lmrcs
powerful problem-solving strategies that can factor the ongl.nal pmb?em m}o a
collection of subproblems. It also requires the generation of successive refine-
ments of each subproblem, incorporating more and more detail about the de-
veloping solution.

Models of Planning and Design

There exist two problem-solving systems (Hayes-Roth & Hayes-Roth, 1979;
Sacerdoti, 1975) that contain mechanisms that seem adequate to carry (_)ut the
processes required in the initial phase of the design process. Both of these
systems generate a plan of action. ‘

Sacerdoti’s (1975) NOAH solves robot planning problems by a process of
successive refinement. Sacerdoti assumes that the knowledge necessary to' gener-
ate a plan is organized in a collection of knowledge structures, each of which
contains the specification of some subgoal and the actions necessary to accom-
plish that subgoal. Each unit of knowledge has the information necessary to take
one element of a developing plan and produce its next more detailed refinement.
Sacerdoti assumes that the complete plan is generated i(crativcly.-Al any stage of
the planning process, each segment of the plan is expanded to its next level of
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refinement. Then generalized problem-solving processes, called critics, are used
to reorganize this more detailed plan into an internally consistent and efficient
sequence of actions. The process repeats itself at the next level, terminating with
a plan whose individual steps can be executed to solve the initial problem.

Hayes-Roth & Hayes-Roth (1979) describe a HEARSAY-like system that
plans routes for performing a collection of everyday errands. Knowledge about
the planning of errands is organized into a collection of pattern-directed modules,
called specialists, that communicate through a global data structure called the
Blackboard. The behavior of this system is opportunistic in the sense that data
currently on the blackboard can trigger a specialist that makes a decision at some
arbitrary level of abstraction in the developing plan.

Hayes-Roth and Hayes-Roth point out that a system like NOAH is quite
rigid, in that it is restricted to a purely top-down, breadth-first expansion of a
solution. Their system, in contrast, is capable of making a best or most useful
decision at any level of abstraction; is capable of incremental or partial planning;
and can adopt different planning methods depending on the specifics of a given
problem.

Many of Hayes-Roth and Hayes-Roth’s criticisms concerning the rigidity of a
program like NOAH arc well taken. On the other hand, many of the phenomena
that they have observed in their protocols may be duc to the task and the level of
expertise of their subjects. None of their subjects had extensive experience with
errand-planning tasks. It may be the case that one would observe quite different
behavior in an environment that required the solution of a large number of
subproblems and the integration of these solutions. One might also expect more
orderly kinds of behavior in situations where successful performance required the
integration and utilization of a large, well-organized body of relevant knowledge.

There has been a limited amount of research on the process of design or on
problems that are difficult enough to require the construction of an elaborate
plan. Much of the work on expert problem solving in thenmodynamics (Bhaskar
& Simon, 1977), physics (Larkin, 1977), and other semantically rich domains is
not directly relevant to processes involved in solving design problems, because
these studies all use problems that can be solved by a single, well-understood
problem method, or schema. An expert in these domains first has to identify the
relevant schema and then apply the schema to the problem. In contrast, the major
task in design is the reduction of the original problem into a collection of sub-
problems.

Levin (1976) has attempted to develop a theory of software design processes
that is consistent with current thinking on the structure of the human
information-processing system and known problem-solving methods. Levin
(1976) postulates that design can be viewed as involving three fundamental
processes: *‘selecting problems to work on, gathering information needed for the
solution, and generating solutions [p. 2]."" Levin argues that the problem selec-
tion process is controlled by a set of global strategics and local information about
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constraints that are directly relevant to the current subproblem. He developed a
simulation model that takes as input the protocol of an expert designer working
on a fairly difficult problem and produces a list of subgoals generated by that
designer during the process of solving the problem.

Stmon (1973) sketches out a theory of psychological processes involved a

design task in the context of discussing the distinction between well-structured
and ill-structured problems.

The whole {architectural} design then, begins to acquire structure by being decom-
poscd into various problems of component design, and by evoking, as the design
progresses, all kinds of requirements to be applied in testing the design of its
components. During any given short period of time, the architect will find himself
working on a problem which, perhaps being in an ill structured state, soon converts
itself through evocation from memory into a well structured problem {p. 190}.

Simon’s view of the design process is that the original design problem is
decomposed into a collection of well-structured subproblems under the control of
some type of executive process that carries out the necessary coordination
functions. Also note that information retrieved from long-term memory is incor-
porated into the developing solution; it is this additional information that converts
the original ill-structured problem into a collection of well-structured problems.

Much of the work discussed previously focuses on the decomposition of
complex tasks into more manageable subtasks. Our interpretation of the literature
on software design is that this decompositional process is central to the task.
Moreover, we belicve that the mastery of decomposition should be what dif-
ferentiates experts from novices. The theory to be presented next is built on the
process of decomposition and its associated control strategics.

A THEORY OF PROBLEM SOLVING IN SOFTWARE
DESIGN

The following is an outline of a theory of processes involved in solving a
software design problem. The successful performance of this task involves the
coordination of a complex set of processes. Some apply abstract knowledge
about the task. Others retrieve computer science knowledge or information about
the design problem or are involved in the storage of relevant information for later
use in solving problems. The focus of this discussion is on the global structure of
the design task, particularly its guiding control processes, and on the manipula-
tion of knowledge within the problem-solving effort.

Experts have knowledge concerning the overall structure of a good design and
of the process of generating one. Using this knowledge, they direct their actions
to insure that their designs will satisfy these structural constraints. This implies
that skilled designers have knowledge describing the structure of a design inde-
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pendent of its content. This abstract knowledge about design and design pro-
cesses, along with the set of procedures that implement these processes, will be
referred to as the design schema. This schema, which develops through experi-
ence with software Lic-.Q»Ai-gx\, cnables efficient management of a designer’s re-
sources in doing this particular specialized and complex task. We propose that
the generation of a design is controlled by the interaction between the design
schema and the more specific knowledge that describes how to accomplish
particular goals.

A schema is a higher-order knowledge structure that governs behavior in a
particular domain or activity, providing a broad abstract structure onto which an
exemplar is to be mapped. These knowledge structures specily principal ele-
ments of a given domain and include mechanisms that drive the generation
process and that lead to outcomes that are structured according to conventions
shared by expert members in a discipline. A schema can be used to organize
complex material into constituents and may be applied recursively to break some
of these constituents down further. These same structures also guide the com-
prehension process by arranging incoming information so that it is structured
according to the underlying abstract schema. Absence of an appropriate schema
can interfere with both the initial comprehension and subsequent x'ccu@ lext.”

The design schema is used in both the generation and comprehensionof
software designs. The design schema is not tied to any spécific problen domain
but consists instead of abstract knowledge about the structure of a completed
design and the processes involved in the generation of that design. It accounts for
the overall structure of expert design behavior and the similarities among experts.
Of course, the design schema will differ from expert to expert, because their
experiences with software design will not be identical. However, the overall
nature of these schemata will be similar for most people. Therefore, we choose 1o
simplify this discussion by referring to a single, modal design schema.

The design schema develops as a result of experience with software design.
Originally, a designer’s approach to this task is assumed to involve general
problem-solving strategies, such as ““divide and conquer.”” As an individual has
more and more experience with this activity, these general strategies are trans-
formed into a specialized schema. The schema is developed through the addition
of domain-specific concepts, tactics, and evaluative criteria. Whenever a de-
signer’s specialized schema is inadequate to solve a problem, more general
strategies take over.

The design schema is assumed to include: (1) a collection of components that
partition the given problem into a set of meaningful tasks; (2) components that
add elements to tasks in order to assure that they will function properly (e.g.,
initialization of data structures or of loops); (3) a set of processes that control the
generation and/or comprehension of designs; and (4) evaluation and generation
procedures that ensure effective utilization of knowledge. Each component of the
design schema is composed of both declarative and procedural knowledge about
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the abstract nature of the design process. The schema can be applied recursively,
which leads to a modular decomposition of the problem into more and more
detailed modules.

The schema can be viewed as driving the generation of a software design by
breaking up the initial task into a set of subproblems. Knowledge of the particular
subproblems that are identified during this decomposition interacts heavily with
the schema. However, the design schema itself does not contain knowledge
about any particular class of problems. The schema can be applied to the original
problem or to any subproblem at a lower level. The recursive application of the
design schema to subproblems enables decomposition of each problem into a
manageable set of tasks.

How the decomposition proceeds depends on the designer, the designer’s
experience, and the problem at hand. There are several decomposition strategies
that a designer can use to guide the process. One strategy is to break the problem
into input, process, and output elements. Whercas there are other strategies that
could be used to decompose some problems, the input-process-output strategy 18
preeminently used. In order to keep this discussion more concrete, we describe
decomposition in terms of this prevailing strategy.

The initial pass at decomposition results in a representation of the problem
that is a simplified “i(_)}il_iqg_-modcl" of the systeny; that is, a model is devised
specifying a set of tasks that will solve the problem and a control structure for
these tasks. It is then expanded into a set of well-defined subproblems. The
solutions to these subproblems represent a solution to the original design prob-
lem. This process of decomposition is now applied to each subproblem in turn,
resulting in more and more detailed plans of what should be done to accomplish
the task. Once an individual selects a given element to refine further, the schema
is assumed to execute to completion, developing a solution model for that ele-
ment and refining it into a more detailed plan. If any of the elements resulting
from this process are complex (i.e., accomplish multiple functions that are not
recognized as having known solutions), the schema is called recursively to re-
duce them to the next level of detail,

The application of the schema to an element of a design causes a set of
high-level goals and procedures for accomplishing those goals to be activated.
Thus, the schema includes procedures that examine information relevant to the
expansion of a given element, critique potential solutions, generate alternative
solutions for a subproblem, etc. The input component, for example, {inds infor-
mation that must be passed to a process component before the actual processing
can be initiated. If the chosén input data structure is complex, that is, requires
some degree of processing itself to generate the appropriate data structure, then a
new subproblem is generated as a descendant of the original one.

The design schema represents the global organization of a designer’s profes-
sional knowledge. As such, it will impact almost every tacet of the designer’s
behavior in the domain. Nevertheless, the design schema does not encompass a
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person’s knowledge of specific facts in computer science or understanding\of
how things function in the real world. There are undoubtedly other aspects of this
domain that should not be subsumed under the schema, but our theory is/mot
sufficiently developed to isolate them at this point.

The decomposition process uses two additional problem-solving strategies.
The first can be described as problem solving by analogy, or, to use Sussman’s
(1977) term, *‘the debugging of almost right plans.”” When the solution model
generated for a given subproblem, or some part of it, is recognized as being
analogous to an already understood algorithm, that algorithm is evaluated for
applicability in the current context. If it is found to be reasonably applicable, it is
debugged and incorporated into the developing solution. This attempt to retrieve
previous solutions is invoked once a solution model has been derived, but before
any further refinement takes place.

The second method can be characterized as problem solving by understand-

ing. This is prominent in cases where an element identified by application of thg

design schema is not understood in enough detail for the design schema to be
applied to it. The designer’s knowledge of the problem area in question, as well
as of computer science, is then used to refine the understanding of this element.
This method may be employed at any point in the solution. It is most frequently
applied when developing a solution model but can also be applied during refine-
ment of a subproblem.

In addition to controlling the overall problem-solving process, the design
schema has some coordination and storage functions. Success{ul solution of a
design problem requires that information generated during each problem-solving
episode be stored in long-term memory. This information must be interconnected
with the expert’s knowledge about computer science as well as with the develop-
ing solution. Much of what goes on can be described as the development of an
understanding of the problem. The information generated during these under-
standing phases must be stored such that it can be retricved later for the solution
of other subproblems. The design schema ensures that successive episodes are
organized so information generated can be stored in a coherent representation of
the developing solution.

The utilization of memory is influenced by its organization and by the effec-
tiveness of the abstract cues provided by the schema. Experience enables con-
cepts to be linked on the basis of the utility of considering the concepls together.
This usefulness can be defined in terms of concepts that frequently occur in the
same context (e.g., linked lists and efficient insertion and deletion of items at
random places within the list) or that are alternative solution techniques to
similar problems (e.g., a symbol table may be represented as a hash table or as a
static tree table).

When a computer science concept is learned, that concept is associated with
the context in which it is learned. For example, one might first learn about a
particular data structure in the context of a certain problem. Later, in another
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problem that would be appropriate for this type of data structure, one might fail
to apply this new concept, because the current context might not encourage its
retrieval. Eventually, through experience with the concept in many other con-
texts, it becomes linked to more abstract conditions for its use. Further, as a
person’s design schema develops such that it can manage the complexity of
alternate solutions, this concept would become connected to the concepts of other
data structures that would be considered in similar contexts. Thus, memory
organization is altered, reflecting the designer’s developing schema and previous
experiences.

The major control processes of the design schema are summarized as a set of
very abstract production rules in Fig. 8.1. Each rule encapsulates a complex
subprocess that an expert may use while generating a software design. The rules
arc an attempt to capture the global control processes only; many aspects of the
design schema are not addressed at all. In particular, no reference is made to the
processes that generate alternative solutions or critique designs, or to the memory
coordination functions that the schema performs. Moreover, the rules onl rcfcr
to the gcnc,rqg}pn of a design; they do not cncompdss its comprehcnsml .

The g(mf of software design is to break down a problem into a set of sub-
processes that accomplish the task. After the initial decomposition, there may be
multiple subproblems to be solved. The designer must have a way of selecting a
problem to work on from the currently unsolved subproblems. The selection rule
(Rule 1) provides a coherent way of determining what problem to tackle next.
The rules assume that the list of unsolved subproblems are stored on an agenda.
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The selection rule resuits in one of them being marked as a current subpr()blcmw Wé

The other rules are applied to this problem. 7 ¢

L anfumeny

The usual order in which a designer attempts subproblem solution is top- awhptbe

down, breadth-first. The design schema causes each element of the current
iteration to be expanded to the next level of detail. This expansion continues until
a new representation of the complete solution is developed at the next level of

detail. Solving the problem top-down, breadth-first ensures that all the informa-
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available to the next iteration.
One reason for this strategy is that the elements of a developing design can
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interact with each other. Although one of the heuristics that guides the decompo- .l

sition process is the attempt to define subproblems that do not interact or interact
only weakly, this is not always possible. Further refinement of one element may
require knowledge of decisions that will be made in developing a not-yet-
considered element.

A designer may choose to deviate from this order.
dictated by individual differences in design style, in the
that the designer may have concerning the problem, or in differences in the
solution model. The solution model with its various constituents may enable a
designer to recognize that a solution relevant to the current problem is known.
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DESIGN SCHEMA RULES: SELECTION RULE
DESIGN SCHEMA RULE 1:
IF (no current subproblem exists)
AND (any unsolved subproblems on agenda)
THEN (select highest priority subproblem or, if muttiple subproblems at
highest priority, select next subproblem in breadth-first order
at highest priority and make it new current subproblem)

DESIGN SCHEMA RULES: SOLUTION MODEL DERIVATION PROCESS
DESIGN SCHEMA RULE 2:
IF (p is current subproblem)
AND {solution model for p does not exist)
THEN (set goal to create solution model for p)
DESIGN SCHEMA RULE 3:
IF (goal to create solution model for p)
AND (p is not well understood)
THEN ({retrieve information relevant to p and refine understanding of p)
AND (add new subproblem p’ to agenda)
AND {make p’ current subproblem)
DESIGN SCHEMA RULE 4:
IF (goal to create solution mode! for p)
AND (p is understood as “trivial”)
THEN (assert that p is solved)
AND (delete p as current subproblem)
DESIGN SCHEMA RULE 5:
IF (goal to create solution model for p)
AND (p is understood as “complex”)
THEN (define solution model! for p)

DESIGN SCHEMA RULES: SOLUTION RETRIEVAL PROCESS
DESIGN SCHEMA RULE 6:

IF (solution model for p exists)
THEN (search memory for potential solutions which match critical fea-
tures of solution model for p)
DESIGN SCHEMA RULE 7:
IF {potential solution s to problem p is found)
THEN (evaluate applicability of s)
DESIGN SCHEMA RULE 8:
IF {potential solution s to problem p is hi i
p is highly applicable)
THEN (assert that p is solved)
AND (delete p as current subproblem)
DESIGN SCHEMA RULE 9:
IF {potential solution s to problem p is moderately applicable)
THEN (add to agenda new subproblem p' created from solution model
for p augmented by s)
AND {make p’ current subproblem)

FIG. 8.1. A production system representation of the design schema control processes.
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DESIGN SCHEMA RULE 10:
IF {potential solution s is weakly applicable)
THEN ({reject potential solution s)

DESIGN SCHEMA RULES: REFINE SOLUTION MODEL DECOMPOSITION
DESIGN SCHEMA RULE 11:
IF {no potential solution to problem p is found)
THEN {expand solution model for p into well-defined subproblems using
understanding and evaluation processes as needed)
AND (add each new subproblem generated to agenda)

FIG. 8.1. (Continued)

This solution then can be adapted to the current situation. Also, the representa-
tion of each element of the solution model may enable a designer to estimate their
relative difficulties or to identify potential interactions that impact further de-
velopment of the design. The realization that one or more constituents have
known solutions, are critical for success, present special difficulties, etc. can
cause the designer to deviate from a top-down, breadth-first expansion of the
overall design by assigning a higher priority to a particular constituent.

Once a subproblem has been selected, the designer attempts to derive a
solution model for it (Rule 2). Recall that the solution model is an abstract
simplified description of elements of the subproblem’s solution. This solution
model is the basis for all succeeding work on this problem. Rules 2 through 5
describe the processes that may result in the generation of the solution model for
the current subproblem. If the current subproblem is perceived to be complex,
the designer must first undertake to reformufate it before a solution model can be
generated. Rule 3 represents the process by which information relevant to the
subproblem is considered, and a new more understandable problem is produced.
Once it is precisely formulated, a solution model is generated if the problem
requires further decomposition (Rule 5). If the problem, once understood, is
sufficiently simple, it is marked as solved and is not further considered (Rule 4).

The next set of rules (Rules 6 through 10) encompass the processes by which a
designer attempts to retrieve from memory a previously constructed solution to
all or part of the current subproblem. First, the solution model for this problem is
used as a retrieval cue to access potential solutions in memory (Rule 6). These
solutions are then evaluated f{or their usefulness in the current context (Rule 7).
The rules give a simplified characterization of the results of this evaluation
process. The solution is either accepted as is (Rule 8), modified to fit the current
situation (Rule 9), or rejected (Rule 10).

If no usable solution to the current subproblem is found, the solution model is
refined into a collection of well-defined subproblems (Rule 11). This refinement
process takes into account data flow, functional analysis, aesthetic, practical, and
other criteria, and implementation considerations. Each new subproblem thus
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generated is added to the agenda. The set of rules is applied to the subproblems
on the agenda until all problems are considered to be solved.

The theory just presented describes a mechanism by which experts are able to
integrate and structure their high-level knowledge of software design. Although
experts in the field should manifest mature design schemata, we would not
expect beginning designers to show evidence in their behavior of this complex
organization. Thercfore, many differences we might observe between experts
and novices can be attributed to differences in the state of development of their
design schemata.

A COMPARISON OF EXPERT AND NOVICE DESIGN
PROCESSES

The processes involved in designing software are learned through experience. To
examine their development, we collected thinking-aloud protocols from people at
various skill levels. This set of protocols forms a rich data base of evidence about
the problem-solving processes used in software design. There are, of course,
many similaritics in the way experts and novices approach this process; subjects
at different ievels used many of the same global processes. Differences as a
function of expertise fall into two major categories: the processes used to decom-
pose the problem and solve individual subproblems, and the representation and
utilization of relevant knowledge. In this section, the similarities and differences
among subjects are discussed and related to the theoretical ideas proposed carlier.

Subjects and Materials

Four of the subjects were experienced designers. They include a professor of
electrical engineering (S35), two graduate students in computer science (S2 and
§5), both of whom had worked as programmers and designers for several years,
and a professional systems analyst with over 10 years experience (S3).

The five novices were undergraduale students recruited from an assembly
language programming class. They had all taken from four to eight computer
science courses; most had had part-time programming jobs. Whereas these sub-
jects are moderately experienced programmers, they have little experience with
software design per se. We selected two subjects from this group (S17 and S19)
and examined their thinking-aloud protocols in detail. Both these subjects had
taken a course that specifically taught software design.

We also collected a protocol from a subject with no software design experi-
ence (525, whom we call a prenovice). This subject has taken several program-
ming courses and has written programs in the course of the research in which she
is involved. Her experience differs from the novices in two ways: her formal
training has dealt solely with the practical aspects of programming, and therefore
she has little knowledge of the theoretical constructs of computer science; and,
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PAGE-KEYED INDEXING SYSTEM

BACKGROUND. A book publisher requires a system to produce a page-
keyed index. This system will accept as input the source text of a book and pro-
duce as output a list of specified index terms and the page numbers on which
each index term appears. This system is to operate in a batch mode.

DESIGN TASK. You are to design a system to produce a page-keyed index.
The source file for each book to be indexed is an ASCII file residing on disk.
Page numbers will be indicated on a line in the form /*NNNN, where /* are
marker characters used to identify the occurrence of page numbers and NNNN
is the page number.

The page number will appear after a block of text that comprises the body
of the page. Normally, a page contains enough information to fill an 8% x 11
inch page. Words are delimited by the following characters: space, period,
comma, semicolon, colon, carriage-return, question mark, quote, double quote,
exclamation point, and line-feed. Words at the end of a line may be hyphenated
and continued on the following line, but words will not be continued across
page boundaries.

A term file, containing a list of terms to be indexed, will be read from a card
reader. The term file contains one term per line, where a term is 1 to 5 words
long.

The system should read the source file and term file and find all occurrences
of each term to be indexed. The output should contain the index terms listed
alphabetically with the page numbers following each term in alphabetical order.

FIG. 8.2. The text of the page-keyed indexer problem.

all her programming cxperience has been statistical programming in FORTRAN.

The particular problem given to the subjects is to design a page-keyed indexing
system. The problem specifications are shown in Fig. 8.2. This problem was
chosen because it is of moderate difficulty and understandable to individuals with
a wide range of knowledge of software design, but does not require knowledge of
highly specialized techniques that would be outside the competence of some
expert subjects; that is, a reasonable design could be constructed for this task
using only the techniques taught in upper-division undergraduate courses in
computer science or those contained in standard textbooks on computer science
algorithms. A variety of approaches, however, could be taken to design such a
system.

The protocols of a subset of the subjects were analyzed in detail, whereas
others were examined more cursorily to find corroborating evidence. The method
by which this analysis was carried out and the results obtained can be found in
Atwood and Jeffries (1980). The discussion following is based primarily on the
detailed analysis, but examples have been chosen freely from all the protocols.
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Similarities Across Expertise Levels

On a first reading of these protocols, one is struck by the variations in the design
solutions as much within expertise levels as across them. Both the design style of
the individual subject and the set of subproblems he or she chose to attack make
cach solution very different from any of the others. More careful consideration,
however, brings up many similarities, both within experience groups and across
all the subjects.

Almost all the subjects approached the problem with the same global control
strategy: Decompose the problem into subproblems. They began with an initial
sketchy parse of the problem, which we have called the solution model. Some
subjects were quite explicit about their solution models, whereas for others it was
necessary to infer the underlying model. Whenever a subject made a quick,
smooth transition from one element of the solution to the next, without any overt
consideration of alternatives and without reference to external memory, we as-
sumed that the solution model underlay this decision.

The solution models for the indexer problem are surprisingly similar for both
experts and novices. In general, subjects decided to read in the terms, build some
sort of data structure to contain them, compare the terms to the text, agsociate the
page numbers with each term, and output the terms and page numbers. We do not
assume that this would be true for all software design problems. The indexer
problem was chosen to be “straightforward’’; for such a problem, expertise is
needed not for the initial solution model but for the expansion of this model into a
well-defined set of subproblems and the further refinement of those subproblems.
Our results arc therefore potentially limited to similar straightforward problems.
In tasks for which the determination of a solution model is itself a difficult task,
quite different problem-solving methods may be used. Once the initial solution
model was derived, the subjects attempted to expand this iteratively. No subject
went directly from the solution model to a complete solution. They broke the
problem into subproblems and refined the solution through several levels.

As a group, the novices explored a set of subproblems similar to those exam-
ined by the experts. The initial decomposition led to equivalent constituents, and,
in further iterations, the novices as a group developed subproblems that were still
comparable to the experts. The experts tended to examine more subproblems and
frequently found different solutions. Even for idiosyncratic aspects of the prob-
lem, however (e.g., how to treat hyphenated words, terms that cross page boun-
daries), the novices were as likely as the experts to incorporate a particular
element into the solution.

Although the novices applied the same general problem-solving methods as
did the experts, their solutions were neither as correct nor as complete. Fur-
thermore, the novices were not able to apply the more efficient problem-solving
processes that the experts used. The novices were lacking in skills in two areas:
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processes for solving subproblems, and ways of representing knowledge effec- }

tively.
Subproblem Solution Processes

- . 1
LA X Marpnany uLc-t.,é\Lce

!
Decomposition..  When these subjects, both experts and noviccs,.pcrcciivcd a
p;iHEiZ{ﬂ&rgiblun to be complex, they decomposed it into a col.l_ccl.mn of more
manageable subproblems. The experts, of course, were more «.:Hccuvc than the
novices at doing this. They showed some stylistic differences in Wh(:fl and how
they used the decomposition process, but its use is pervasive in all four expert
protocols. '
$2’s protocol is an almost perfect example of solution by rf:pcul.cd decomposi-
tion. He is a proponent of design by stepwise rcl'incmc;.\l‘; lll.lhlS !)r(‘nocolf he
rigidly adheres to such a strategy. His initial clccmm‘)oafmon is llsu‘ng ul-lh.c‘
major steps to be accomplished, little more than a precise rcfornmluu‘un of his
solution model. On the next iteration, he adds a control structure 1o this C(.)“CC-
tion of modules. Successive passes decompose these modules into sets of sub-
modules until he is satisfied that he has reached the fevel of primitive upcru(ioﬂn&

S3 also iteratively decomposes the problem in a top-down, breadth-first,
beginning-to-end manner. Her style and the design she cvcn(.uall){ pmd.uccs are
similar to that of S2, except that her protocol is interspersed with digressions that
relate to subproblems at other levels and at other positions in the .problcn?. S3
also attempts fewer iterations than S2, bringing the problem to a slightly Inghcr
level of detail in two passes as S2 did in five or six. In fact, at th‘c end of the
protocol, she realizes that the second iteration is so much more dcl’unlcd than the
first that it taxes her ability to comprehend the solution, She then incorporates a
sketchy third iteration at a *‘higher’” level than the previous one.

After articulating his problem model, S5 notes that in order to know how to
read the term file into a data structure, he needs to know more about how lhc
matcher works. He then proceeds to work out the design of the matcher and its
associated data structures. This places him directly in the middle of the dccovmu-
sition tree, working simultaneously on two distinct branches. After usccrlun'\mg
how the match process would operate, he proceeds to l:lcsh out the design,
proceeding from here in a top-down, breadth-first, bcgmmng,-lo-c[ul manner,

The core of $35's solution is an algorithm he retrieves that defines the (9ml
data structure and the matcher. Using this as a base, he builds lh‘c d.csign ina
top-down, breadth-first manner, although he does not .cxpund it bf:gmmng to cn'd.
The reason for this is that he defines the problem in terms ol data su'uc'(%ncs
derived from his original- functional analysis of the problem decomposition.
Occasional deviations from this breadth-first order occur when hc. uncn)pls to
define low-level primitive actions that are the building blocks ‘u(' his design.

All these experts demonstrate the existence of a polished design sclfcmu z}nd a
sophisticated ability to use the decomposition method to expand their designs.
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Differences across experts were in part dictated by disparate design styles but to a
great extent were due to differences in their knowledge of and ability to retricve a
relevant solution plan.

The novices, on the other hand, were much less effective in their use of the it-
erative decomposition method. They seem to fack the more subtle aspects of the
design schema. A well-developed schema should guide the designer toward the
production of a “‘good’’ design, as opposed to one that accomplishes the task
*‘by hook or by crook.'" This means that considerations of efficiency, aesthetics,
etc. should influence the manner in which design elements are expanded. There
is no evidence of this in the novices. Furthermore, the schema should include
procedures that enable designers to make resource decisions about the order in
which to expand the modules (e.g., most difficult first, or a module that uses a
data structure might be designed before the one that produces it). In the novices
that we have examined in detail, we see no deviations from the default breadth-
first, beginning-to-end consideration of modules.

The best of the novices was S19. He is the only novice that iterates the
problem through more than two levels of decomposition. However, beyond the
first level, he is unable to recursively apply some of the same decomposition
strategies he used earlier. S19 gets particularly bogged down in his ‘‘compare’’
routine, rewriting it several times without complete success. On each attempt, he
simply tries to generate a solution through brute force by writing down the
necessary steps. There is no hint of having generated a model for this process nor
of any attempt to further decompose it.

S17 was able to decompose the indexer problem and to generate an adequate
initial pass at a solution. He then attempted to expand his solution (mostly at the
urging of the experimenter). However, he makes no attempt to further decom-
pose his chosen modules. Each subsequent iteration simply repeats the previous
solution, adding on new “‘facts’’ as he discovers them. For example, at one point
he considers the possibility that a term straddles pages. He changes his design to
accommodate this, but he does so by augmenting existing elements, not by
decomposing them into submodules. This sort of behavior indicates that S17 is
unable to recursively apply the design schema.

Another of the novices writes down a solution in terms of steps, instead of
modules. The distinction between steps and modules is necessarily a fuzzy one.
However, a set of steps differs from a modular decomposition in that steps have
no hierarchical structure, steps of very different levels of detail may occur to-
gether, and steps have only a primitive control structure. In the second iteration of
his design, this novice merely produces a similar set of steps, more specifically
tied to the architecture of a particular computer. He appears to understand that a
problem should be broken down but has not developed a design approach that
decomposes into subproblems.

Although the novices have not incorporated the more subtle aspects of the
design schema into their behavior, they can apply the basic principles. The
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prenovice, S25, however, has not developed even a rudimentary design schema.
First, S257s protocol is qualitatively different from those of the computer science
majors. They produced designs that, although differing in many details from
those of the experts, were at least marginally acceptable solutions to the problem.
525 did not produce a design. She generated a mixture of FORTRAN coade and
comments that together could be taken as a partial solution to the task of writing a
program to solve the indexer problem. Moreover, she got quite bogged down in
the selection of data structures for the text and terms and in the implementation of
procedures to compare items in these structures. Because of these difficulties,
she eventually abandoned the task without generating a complete solution.

525 made no attempt to decompose the problem; she did not seem to be using
any kind of an overall model to guide her solution. She let the problem descrip-
tion and the portion of the *‘program’’ already written direct her expansion of a
solution. Information did not seem to accumulate over the solution attempt; she
attacked the same subproblem repeatedly but often made no progress beyond the
initial attempt. She did seem to understand that input, process, and output com-
poneats were needed, but this was not sufficient to produce a correct initial
decomposition of the problem.

We take this continuum of more effective use of the decomposition method
with increasing expericnce as strong evidence for both the reality and the useful-
ness of the design schema. Another aspect of expertise that is apparent in these
protocols is the ability of the experts to generate and evaluate alternative sg-
lutions to a subproblem.

1’

Evaluation of Alternatives.  When the experts are trying to determine
whether a parficular plan is actually a good solution to a subproblem, they state
alternative solutions and select among them. S3, for example, explicitly men-
tions that the page numbers could be stored in an array or a linked list. She does
some calculations of the relative storage requirements of cach and chooses the
linked list because it is more efficient. S35 spends some time considering two
ways of implementing his term data structure; one is time efficient, and the other
is storage efficient. He concludes that, without knowledge of the actual computer
system to be used, he does not have enough information to decide which is
better. He chooses to leave both as alternatives.

The novices seldom consider more than one possible solution to any subprob-
lem. From the marginal utility of some of the solutions they do retrieve, it scems
that they are hard pressed to find even one solution to many subproblems. For
example, at one point, S19 says ‘“This might be the only way I can think of to be
able to do this. It’s going to be awful expensive,”’ and clsewhere, *‘It’s inelfi-
cient and expensive, but it’s easy.’” He seems to have some ability to critique his
solutions but is at a loss o correct the deficiencies he finds. .

In the few cases in which the novices choose among alternatives, they make
simple dichotomous decisions (do X or not X). Their decision is invariably made
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on the basis of programming convenience. For example, S19 notices that a term
could straddle a page. He spends some time deciding whether or not to permit
this and decides that it is easier not to allow it, although this solution is unlikely
to be realistic in terms of indexing a textbook.

Retrieval of Known Solutions.  One of the features of the decomposition
technique is that it enables the designer to convert a problem into a set of simpler
subproblemns, eventually reaching the point where all the subproblems have
known solutions. Although the novices attempt to employ decomposition, we see
no evidence that they do so in order o arrive at a set of known solutions. The
experts, in contrast, seem to have a large repertory of solutions and of methods
for decomposing a problem. The clearest examples of this are when some of the
expert subjects were able to recall and apply a single solution to the major
problem tasks. §35 and S5 both attempted this.

S35, after reading the specifications, immediately states *‘Well, the obvious
answer to this is to use the technique of Aho and Corasick, which appeared in
CACM (Aho & Corasick, 1975)."" This article describes an algorithm for search-
ing text for embedded strings. He says: “‘basically what you do is you read the
term file, and you create a finite state machine from it. And then you apply this
finite state machine to the text. "’ S35 then spends the next 2 hours expanding this
solution into a complete design, incorporating the idiosyncrasies of this problem
(c.g., that the page number is not known until the end of the page) into this
general algorithm. It is apparent that his understanding of the algorithm strongly
influences the expanding design and many of the design decisions.

Alter his initial parsing of the problem, S5 notes that the match process is
critical for an efficient and successful solution. This reminds him of a published
algorithm (Boyer & Moore, 1977) that may be applicable to this situation: **Now
my immediate inclination is to, about three CACMs ago, this particular problem
was discussed. '’ The algorithm he refers to is similar to the one recalled by $35.

S5's memory of this algorithm is somewhat sketchy, though, and he is unsure
of how it interacts with the rest of the design. He works through the match
process and its associated data structure in some detail. The resulting algorithm is
similar to, but not identical with, the published algorithm. In a very real sense, he
constructs an original solution that incorporates many of the features that he
recalls from the Boyer and Moore algorithm. From there, he proceeds iteratively
through refinements of the design as a whole.

Our other two experts, S2 and 83, did not retrieve a single solution to the
major tasks, but they frequently solved subproblems by incorporating plans that
they had used before. For example, S2 uses a linked list to store the page
numbers. He notes that the insertion procedure is somewhat tricky to implement;
he would prefer to refer to one of his earlier programs, rather than spend the time
to work out the details again. S3, when considering the problem that hyphens can
serve two distinct functions in the text (as part of a word or to divide a word at a
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line boundary), mentions that she knows of a similar case that was solved by
requiring that distinct characters be used in each case. ‘

The experts not only retrieve solution plans to all or pu.r( olhlhe p‘rob'lcm,f)ut
they are able to modily those solutions to fit the current s.uuulmn. S$35's dcslgn
was a modification of a well-understood plan. S5 only retrieved the 5!((:1(:(01\ ofa
plan; he spent most of his time augmenting and altering this plan to fit the actual
problem. . .

The novices show no evidence that they are trying to adapt prcvmusly leumc.d
solutions to any part of this problem. No novice ever l’n‘adc a sm!env\cnl like "‘(lu‘s
is just like X" or **I did something similar when Y. T'hey do retrieve solu'uon‘s:
but only at the lowest levels. For example, S17 decided thu'l‘h‘c W()llld ﬂ‘?g the
first empty position for each term in his page-number array. ‘l his is a s.;()lpuo.n to
the problem of locating the current end of the pugc-nu.mbcr list, b.ul itis irnr .(rom.
the best one. $S17 makes no attempt to alter this solution so that it ucc.omphs:h.c:,
this in a more efficient manner. It is not clear whether this is due to his inability
1o realize the inefficiencies in this solution, or whether he simply does not know
what modifications to make.

Knowledge Representation

Access to Background Knowledge.  The experts demonstrated an im[')rcssnv.cj
ability to retrieve and apply relevant information in the course of so?vmg l'hlb
problem. The appropriate facts are utilized just when lhcy are needed; n‘nporl.‘m(
items are seldom forgotten. Moreover, they devote little time to the consideration
of extrancous information. In contrast, the novices” lack of an udcqpaiu knowl-
edge organization for solving this problem is apparent lhro.ugh()ut their ;)T()ltt)(f()lls;
They frequently fail to correctly apply knowlcdge. that is needed .l(‘)‘sohv‘, llm’
problem, and the information that they generate in the course of s(.ﬂvmg l'lf.,
problem is often not available to them when it is.mosi ncc.dcd. We ul?n'bulc'tlns:
in part, to the inadequacy of the organizing functions provided by their immature
design schemata. . o

The novices’ failure to apply relevant knowledge can be seen in their sclcc.lmn
of a data structure for the terms and page numbers. Each‘lcn'n can p()lcnm':“‘y
have a very large number of page references associated with il, but the ;)f[;:ual
entry will have only a few references. The sclccth dj‘\m structure should allow
for the occasional term with an extreme number of rctcrcnc‘cs ?Nl(h()l!l having to
reserve large amounts of storage for every term. A linked Ifst is a data structure
that allows these properties. Our experts used a linked list to h()ld‘(hc page
aumbers associated with each term. The course from which ‘t?xc novices were
recruited had recently covered linked lists. In addition, most, il nu(‘. all, of thcnz
had been exposed to this concept in other courses. 'I‘l.lus‘, we are C()llfld(:!.ll fhla'l‘thu
subjects were familiar with the construct. In spite of this, none us.cd suc,l? :x' lsl to
hold the page numbers. They all stored page numbers in an IMMENsSe array.
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Several subjects mentioned that such an arrangement was inefficient, but none
were led to change it.

The construction of a linked list is a technique with which these subjects are
familiar. However, their understanding of when that technique is applicable does
not extend to the current situation. Understanding of the conditions under which
some piece of knowledge is applicable is one way in which knowledge about a
domain becomes integrated. For this information to be useful, it cannot exist as a
set of isolated facts but must be related to other knowledge. For example, linked
lists would be interrelated with information such as additional types of data
structures and methods of gaining storage efficiency in a program. The experts
have achicved this integration of concepts, although it is still undergoing de-
velopment in the novices.

Episodic Retrieval.  The design schema mediates retrieval of information
within a problem-solving effort as well as retrieval of relevant background
knowledge. The experts, with their more mature design schemata, were better
able to accumulate useful information during the course of the solution atiempt
and to apply it at the relevant time. The clearest example of this is $3’s handling
of the issue of hyphens in the problem.

Early in the protocol, S3 notices that the text may contain hyphens and that
this complicates the comparison process. At this point, S3 only notes this *‘as
being a problem when you come around to comparing.”’ This issue is not consid-
cred for long portions of the protocol, but it emerges whenever a module that is
related to the compare operation or accessing the text is considered. S3 never
mentions hyphens when she is expanding the “‘read terms’’ module, but it is one
of the first things mentioned when the ‘‘construct index” module is taken up.

In contrast, the novices are not only less able to generate relevant information,
but the information that they do generate is not stored in an casily retricvable
form. §19 provides an illustration. Early in his solution, he notes that a term may
straddle a page. He decides that this possibility complicates the design unneces-
sarily and legislates that it will not happen. He even writes down this assumption.
Sometime later he again notices that this problem could occur. He treats this as
an entirely new discovery; no mention is made of his carlier treatment of the
topic. In fact, during this second episode, he decides to allow terms to straddle
page boundaries but uses the ending page number instcad of the starting page
number as the reference. This too is written down, but neither then nor later does
he notice that it contradicts his earlicr assumption.

Another example is that §17 mistakenly assumes that terms will be single
words, rather than phrases. In the middle of the problem, while rercading the
specifications for some other purpose, he notices the error and comments on
corrections that must be made to allow for multiword terms. However, none are
incorporated into his next iteration of the problem, which only deals with
single-word terms. At the end of the session, he notices once more that terms are
phrases and that his design must be modified to account for that fact.
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This failure to recall information over the course of a single solution attempt is
probably the result of two handicaps under which the novices must operate. First,
the solution to these problems consumes such a large portion of their resources
that they are unable to monitor memory for other potentially relevant informa-
tion. Experts can avoid overloading themselves by utilization of the design
schema. Second, their memory representation of the problem is not organized in
such a way as to facilitate the retrieval of previously generated information.

Understanding of Concepts. The novices fail to have an adequate under-
standing of many of the basic concepts of computer science. These under-
graduates are generally familiar with only one machine (the CDC6400) and two
or three programuming languages. Much of their understanding of the basic con-
cepts is tied to their experience with one or two exemplars of that concept and
reflects the idiosyncrasies of that experience. These mistaken assumptions fre-
quently lead to inefficient designs and occasionally to outright errors.

Several examples of incomplete or incorrect understanding of concepts can be
found in the protocols of S17 and S19. S17, in particular, repeatedly attempts to
incorporate constructs into his design that he is aware of but does not fully
understand. He tells the experimenter that the book text should be stored as a
“‘binary tree'’ [i.c., he intends to read in the book text and sort it into alphabetic
order (presumably by word)]. A binary tree is an efficient structure for repeatedly
searching ordered collections of items. It allows one to find an arbitrary item in
the set with substantially less searching than a scquential search requires, in
much the same way that one looks up an entry in a dictionary or a phone book.
However, all the information as to which word follows another, which are
necessary to isolate phrases from the text, is lost. S17 has apparently learned
some of the conditions under which a binary tree should be used, but he clearly
does not understand the concept well enough to reject it in this obviously unsuit-
able situation.

Contrast this with the solution of S5. He is quite concerned with efficient
storage of the terms and the text. He spends over an hour working out appropriate
data structures and how they will be searched, as opposed to the minute or two
spent by S17. S§5's solution is to store the text as a string, and, for very much the
reasons mentioned previously, to store the terms in a binary tree. These decisions
are exactly opposite to those arrived at by S17.

S19’s protocol shows that he does not completely understand the difference
between computer words and English words. On the computer that he is familiar
with, a computer word will contain an English word of up to 10 characters, so for
many practical purposes, the distinction is not needed. In his term data structure,
he allocates five (computer) words for each term, one for each (English) word.
Whereas this might not be the most effcctive way to store the terms, it might
work for somie data sets, at least on the CDC6400. His misunderstanding of the
difference gets him into trouble, however, when he tries to read the text. He
initially tries to read it a line at a time but abandons this because he cannot
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determine how many words are on a line. He then decides to read the text a word
wta time. His assumption that an English word is a natural unit for input (it is not;
it takes a substantial amount of computation to determine the word's boundaries)
is due to his confusion between the two types of words.

S3, on the other hand, not only understands the difference between the two
concepts but is also aware that the overlapping terminology is confusing. When
she is allocating list pointers, she comments *'the pointers themselves are actu-
ally in a vector of NT units, or words, well, computer words, 1 guess, . .. (that's
certainly a misused word). " Thus, she is sensitive to the distinction between the
concepts as well as the confusibility in terminology.

Yet another example is S17°s confusion over what a flag is and when to use
one. A flag is a variable that can take on two values, usually “*true’” and ‘“*false.”
It is used to indicate the status of some condition that changes within the pro-
gram. S17 has some understanding of the use of flags, as he intends to *‘set a flag
back and forth’" to signal the end of the text file. Although this is not an ervor, it
is not a particularly good use for a flag, as the end of the text file will only be
reached once, and a simple test for the condition would be more suitable.

Later on in the design, he needs a way to indicate which terms have been
found on the current page before the page number is available. Although his
solution incorporates the idea of setting a flag, he calls it a **count.’” This misuse
of terminology confuses him later on, when he mistakes this **count’” for a count
of the number of times each term occurs in the entire text.

Understanding of Implications. In addition to their conceptual failures, the
novices are often unable to extract all the implications of a piece of knowledge.
In particular, they are frequently unable to derive the implications of the interac-
tions between a task and a computer implementation of that task. This is
exemplified by the differences in the way the experts and novices dealt with the
subproblem that compares the text and terms.

This subproblem is the heart of this design, because the efficiency of this
routine directly impacts the overall efficiency of the program. All the experts
treated the matcher as a difficult problem. They concerned themselves with many
aspects of it: whether comparing should be done charucter by character or word
by word; how to organize the data to minimize the number of comparisons that
are unsuccessful; what constitutes a correct match. The novices, for the most
part, simply stated the subproblem and made no further effort to decompose it.
They seemed to treat it as too simple to require further consideration. The
experience most of the novices have with compare procedures is with those that
deal with comparing numbers. For such cases, the procedure is quite straightfor-
ward. Questions about how much to compare at once and how to decide if a match
has occurred never arise. The novices did not retrieve information about factors
that must be considered in a character string compare, because they simply did

not understand the implications of the way a computer compares data.
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known solution, if one exists. 52 and S$3 depended almost completely on the first
two of these, whereas S5 and S35 were able to retrieve a known solution to a
significant portion of the problem.

Experts devote a great deal of effort to understanding a problem before at-
tempting to break it into subproblems. They clarify constraints on the problem,
derive their implications, explore potential interactions, and relate this informa-
tion to real-world knowledge about the task. The novices, on the other hand,
show little inclination to explore aspects of a subproblem before proposing a
solution, This has serious consequences for both the correctness and efficiency of
their designs.

Expert designers employ a set of processes that attempt to find a known
solution to a given subproblem. Critical features of the solution model are used to
search for potentially applicable algorithms. Successful retrieval requires the
designer to have knowledge of relevant solutions and their applicability condi-
tions, to be able to retrieve the solution in a possibly novel context, and to adapt
the solution to the particular context of the design problem. The experts show
themselves to be skilled at retrieving algorithms for use in their designs. Novices
show no evidence of recognizing the applicability of information in a novel
situation that they had unquestionably learned previously. The novices’ schemata
are deficient in the processes that control the retrieval of information for integra-
tion into their designs.

The experts differed in their ability to recall high-level solutions to the prob-
lem, specifically, for the matcher and its associated data structures. S35 retrieved
an algorithm from the literature and built his solution around it. S5 retrieved a
skeletal solution to the same subproblems. However, he chose to work out this
solution in some detail before proceeding with the remainder of the design. S2
and 53 did not retrieve information about possible solutions to these subprob-
lems. Instead, they used the default decomposition processes to iteratively refine
the problem. Both, however, recalled numerous low-level algorithms that they
incorporated into their designs.

The objective of the decomposition process is to factor a problem into weakly
interacting subproblems. However, subproblems can interact, and the individual
solutions must be integrated. This can impose serious coordination demands
upon the problem solver (Simon, 1973). The experts used (wo components of the
design schema to solve this coordination dilemma. First, experts expand sub-
problems systematically, typically top-down, breadth-first. Second, they are able
to store detailed and well-integrated representations of previous problem-solving
activities and retrieve them when they become relevant.

Novices have difficulty coordinating their activities because of incffective
retrieval strategies. Because they do not recognize the implications of potential
interactions, novices are often unable to correctly interface subproblems. They
also fail to retricve and incorporate information acquired in the classroom and are
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unable to integrate information generated during earlier parts of the solution
attempt with later efforts. Thus, they do not generate a consistent and well-
integrated solution to the problem.

The variations in performance, both within and between levels of expertise,
demonstrate the complexities of learning the design schema. Basically, the
schema is learned through actual experience in doing software designs; textbook
knowledge is not sufficient. The experts’ years of experience cnable the proce-
dures of the schema to become automatic, freeing the designer to focus more on
the details of the specific problem. As the more sophisticated processes of the
schema develop, the designer is able to deal more successfully with complex
problems.

The differences in the ability to use the decomposition process demonstrate
that the schema develops in stages. The levels along this continuum seem to
correspond to incremental improvements in a designer’s understanding and con-
trol of the decomposition process. Novices first understand that the problem has
to be broken down into smaller parts, although they do not have a good under-
standing of the nature of those parts. Next, they add the idea that the breakdown
should occur iteratively; that is, they should go through several cycles of break-
ing things down. At the next level, they acquire the ability to do the decomposi-
tion in terms of meaningful subproblems, and, finally, to recursively apply this
strategy. The mature design schema would include at least the following
additional processes: refinement of understanding, retrieval of known solutions,
generation of alternatives, and critical analysis of solution components.

The processes people use to solve complex problems in their field of exper-
lise are important to the understanding of the development of that skill. In
software design, these processes appear to be specialized versions of more gen-
cral methods, which are highly organized and automatic. Although these pro-
cesses superficially resemble the default methods, they are so strongly tailored to
the specific domain that they should be considered distinct methods in their own
right. For any sufficiently complex and well-learned skill, these kinds of organi-
zational structures would seem to be necessary. A crucial question, which re-
mains to be addressed, is what types of skills lend themselves to the development
of such structures.
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