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ABSTRACT

This paper discusses the prospects of psychology playing a significant role in
the progress of human-computer interaction. In any field, hard science (sci-
ence that s mathematical or otherwise technical) has a tendencey to drive out
softer sciences, even if the softer sciences have important contributions to
make. It is possible that, as computer science and artificial intelligence contri-
butions to human-computer interaction mature, this could happen to psychol-
ogy. [t is suggested that this trend might be prevented by hardening the appli-
cable psychological science. This approach, however, has been critized on the
grounds that the resulting body of knowledge would be too low level, too lim-
ited in scope, too late 1o affect computer technology, and wo difficult to apply.

The prospects for overcoming cach of these obstacles are analyzed here.

This essay presents the substance of an address by the first author to the ACM CHI
"85 Conference on Human Factors in Computing Systems in San Francisco, California,
on April 14, 1985.
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1. INTRODUCTION

Human-computer interaction is clearly thriving, To index the accelerat-
ing activity, one need only point to the ACM CHI (Computer-Human Inter-
action) and the IFIP Interact meetings, and to the recent appearance in the
ficld of two new journals, Behavioural and Information Technology and Fuman-

Computer Interaction. The field of human-computer interaction is a confluence of

many disciplines: computer graphics, human factors, cognitive psychology,
and artificial intelligence. In this paper we wish to single out one of these —
psychology.

What are the prospects of psychology playing asignificant vole in this growing
field? The question is important for two reasons. First, the improvement of in-
teraction between humans and computers is a universally shared goal. The use
of results from psychology is viewed by many to be a key to this effort — we
share this view. Sccond, a considerable amount of psychological research is be-
ginning 10 be done on human interaction with computers. Thus, assessments
of whether basic and applied psychological rescarch will pay off in improved
designs are useful to guide individual researchers’ choices of research problems
and funding agencies’ choices of individual researchers.

The case for psychological research might seem hardly to need arguing,.

With a name like human-computer interaction, it would appear that the role of

psychology is firmly established. Yet parents frequently name their children
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after great men and women with no apparent impact on the child’s eventual
greatness. The truth is that the success of psychology in this ficld can by no
means be assured. This i1s the 1ssue we wish to assess here.

We first discuss the problems psychology will have in playing a significant
role in the development of human-computer interaction, then present a vision
of what this role mightbe. Next we turn to the problems of this vision. Finally,
we address the vision’s prospects. Our focus on psychology does not mean that
other aspects of human-computer interaction are not vital. Indeed, many of the
other technologies and their supporting sciences are clearly vital. Our concern
is to assess whether psychology is also vital,

Such a concern does not lend itself 1o a purely technical discussion, but in-
cludes large doses of opinion on the state of our field and its disciplinary struc-
ture. This paper, therefore, is intended as an essay—and a bit of an ex-

hortation.

2. THE ROLE OF PSYCHOLOGY IN HUMAN-COMPUTER
INTERACTION

2.1. Gresham’s Law

Let us begin by considering a venerable law of cconomics. During the
mid-16th century, Sir Thomas Gresham, a founder of the London Royal Ex-
change, formulated a law to describe the fact that newly minted coins tended to
disappear from circulation, leaving only the worn ones. Presumably, this was
because the new coins were intrinsically worth more melted down than the
older coins of the same denomination. Succinedy stated, Gresham’s law is
that

Bad money drives out good.

A similar phenomenon appears to govern in the intellectual economics of sci-

ence, namely that:
Hard science drives out soft.

Given the existence of some hard science —quantitative or otherwise
technical —and the existence of some soft, qualitative seience, the hard science
will tend to be used and the soft science ignored, regardless of whether all the
important issues are within the scope of the hard science. As a consequence,
when hard science appears, those issues that have mostly soft science associated
with them tend to be ignored. This phenomenon occurs despite an explicit be-
lief by all concerned that the qualitative factors are important. Qualitative fac-
tors are left aside when they do not fit into the technical analysis.
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The principle can be given meaning by a few examples:

Example 1: Operations Research. In operations research and management
science there has long been a concern that it is difficult to cause qualitative fac-

tors to be taken into account. The hard side of operations research consists of

linear programming, queucing theory, and mathematical models of assorted
pedigrees. The soft side consists of issues of values, of manager's beliefs and ex-
pectations, and assorted conceptual entities, such as a firm’s good will. For in-
stance, although entreprencurs can bargain about the worth of a firm's good
will and assign a dollar figure, analysts cannot, as a practical matter, include
good will in a linear programming model to compute its change with varying
circumstances. In fact, there is a substantial literature in operations research
decrying the lack of qualitative considerations. Yet, despite this protest litera-
ture which reaches back to the beginnings of operations rescarch, hard science
continues to drive out soft.

Example 2: Human Factors. Consider next the difficult life and times of

human factors. Human factors as a discipline goes back 40 years to World War
I1 (although its industrial engineering roots go back another 20 years). There
has certainly been much brave talk about the central role that human factors
should play in the development of machines. And indeed, there have ensued
some real, if modest, gains, such as in the aircraft industry, where human fac-
tors has played a genuine role in cockpit design. But after all these years there
remains a continuous stream of discussion within the field of how human-
factors specialists are not taken as seriously as they would wish to be. Muckler’s
lament in a recent issue of the Human Factors Society Bulletin is typical:

Many computer system designers appear to have no knowledge of human
factors, are not aware that the human-computer interface is vital to their
systems, or that a substantal human-factors database exists to help

them. (Muckler, 1984, p. 1)

There is thus much evidence in the human-factors literature that human-
factors practitioners are not really in the center of the world in which they
work. Hard science, in the form of engineering, drives out soft science, in the
form of human factors.

Example 3: Programming Languages. A third example comes from the
computer-science world: Millions for compilers but hardly a penny for under-
standing human programming language use. Now, programming languages
are obviously symmetrical, the computer on one side, the programmer on the
other. In an appropriate science of computer languages, one would expect that
half the effort would be on the computer side, understanding how to translate
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the languages into exccutable form, and half on the human side, understand-
ing how to design languages that are casy or productive 1o use. Yet we do not
even have an enumeration of all of the psychological functions progranmming
languages serve for the user. Of course, there is lots of programming language
design, but it comes from computer scientists. And though technical papers on
languages contain many appeals to ease of use and learning, they patently con-
tain almost no psychological evidence nor any appeal to psychological science.

Some research on the human side does exist, of course. But imagine a scale
with Shneiderman’s Softiware Psychology (1980) and an armload ol books weighed
against the two volumes of Aho and Ullman (1972) and the library of books on
compiler construction, parsing, program specification, correctness proofs,
denotational semantics, applicative languages, LR(k) grammars, and struc-
tured programming. Relative to what is found on the human side, the technol-
ogy of programming languages is technical and deep—all those algorithms to
know, all those theorems on syntactic language classes, all those operations on
data structures. There are also things to know with respect to the psychology of
programming languages — but far fewer and much of that consists of the details
of idiosyncratic experiments. The human and computer parts of programming
languages have developed in radical asymmetry (Card & Newell, 1984). This
comparison docs not imply that knowledge about the human is less useful than
knowledge about compilers, it just shows the operation of Gresham’s law. In-
terestingly, the technology of programming languages has its own ways of di-
verting attention from the missing human part of the enterprise. Currently,
The idea is that

the panacea in the programming world is o
if a designer has sufficiently rapid feedback from what happens when a user

uses a program, nothing else is required. Rapid protatyping thus bypasses the
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need to know anything about the human. In other words, hard science, in the At

form of computer technology, drives out the soft science of the user, e‘ e
Ao
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2.2. The Hard and Soft Sciences of the Interface R S

The hard science of the human-computer interface is computer science —the
technologies of computer graphics, command languages, interface programs,
and microcomputers. This is true even though computer science itsell s often
viewed skeptically by the harder-yet sciences of physics and chemistry. Be that
as it may, computer science is still far more mathematical and technical than
the soft sciences of the interface, and this relative difference is all that is re-
quired for Gresham’s law 1o work.

The solt science of the human-computer interface is, of course, psychology.
But consider the maxims often quoted in books about designing interfaces:

Know the user. (Hansen, 1971, p. 528)
Communicate with metaphors. (Heckel, 1984, p. 41)

( v\( .
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For many applications 1t may be desirable to distinguish blanks (keyed
spaces) from nulls (no entry at all ) in the display of data forms. (Smith &
Mosier, 1984, Guideline 2.1.2-15, p. 117)

Fven though these maxims are considered part of the appropriate lore for hu-
man engineering the interface, they have almost no technical psychological
content. They require no real contribution, experimental or theoretical, from
a psychology of the user. They derive, essentially, from a little common sense,
plus placing a value on serving the user well.

And now comes artifical intelligence. Yet another technology and another
science with something to contribute to the interface. At least when compared
to psychology, Al is, if not a hard science, then a harder science. With Al ity
possible 1o apply hard science to the cognitive aspects of the interface, yet not to
be psychological. Interestingly, Al also has its peculiar ways of diverting at-
tention from the missing human part of the science, namely, if the interface is
intelligent, then it is not necessary to know anything about the user, because
the interface will be able to interact with the user intelligently.

3. THE VISION

The burdens of Gresham’s law were already clear when (with Tom Moran)
we began our research into human-computer interaction at Xerox PARC in
the mid-1970s. But we also had a vision at the time of how psychology could
beat Gresham’s law and play a significant (we hoped enabling) role in the prog-
ress of human-computer interaction. Already in the 1970s, cognitive psychol-

ogy scemed sufficiently ripe to support the development of anapplied informa-
tion processing psychology for human-computer interaction. Over the next
few ' years, lh(' vision grew fm the ¢ Impc nf suc h contr 1l)uuon

<only at dcs;gn time are thcr(- an a(lvqumc number of degrees of freedom to
““‘make a difference, including the ability to make trades with parts of the system
that have no direct connection with the user. If design is where the action is,
then the designer is the point man. Moving responsibility away from the de-
signer to human-computer interaction specialists organized as advisers,
evaluators, consultants, overseers, even bosses — Is to attenuate the effect sert-
ously. Bridges are designed by teams of engineers, not by some breed of profes-
sional designers who know nothing about structural engineering, but call
upon engineering consultants or submit their designs to engineering evalua-
tion (although both activities are important supplements for specific pur-
poses). Likewise, computer interfaces are to be designed by teams of engineers
who know about human behavior at the interface, as well as about the internal
mechanics of making the interface work.

/ /f;.”i“_ o '\01 fice
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cering-style ry ofhiow the user

xyu(cr, This nnpln s three important characteristics: task
analysis, calculation, and approximation. Task analysis means predicting im-
portant factors about user behavior from a symbolic description of the task to
be done. Calenlation means that predictions are to be made by explicit opera-
tions on mathematical models of the situation, rather than by some other
means — the judgment of the theorist, the experience of the practitioner, the as-
sesstments of users, or even the empirvical evaluation of systems. Approximation
reflects an appreciation that human hehavior is so complex that real-world cal-
culations cannot be expected to be very accurate —so complex, in fact, thatun-
less caleulation with very approximate theories is accepted, success is not pos-
sible. Ic is not that more approximation is better. Rather, approximation is a
necessary ingredient in the right kind of theory. However, hidden in the pre-
scription to approximate is the belief that the developing science will gradually
replace poor approximations with better ones, whereas little progress can be
made by waiting for initial theories that are highly accurate on the first
bounce.

We developed a line of research that embodied and substantiated this vision.
The result was a 1983 book (with Tom Moran), The Psychology of Human-
Computer Interaction, hereafter abbreviated PHCI The book provided some ap-
proximative and calculational theories useful for task analysis: the Model Hu-
man Processor, the COMS family of models, and the Keystroke-Level Model. Tt
developed these tools in the task domain of interactive text editing and pro-
vided an extended empirical treatment of that domain. A brief review of these
picces will help i1l out this original vision.

Model Human Processor.  The Model Human Processor (Figure 1) is an
approximate cognitive model of the user to be employed by the designer in
thinking about the human interacting with the computer at the interface. The
model is an attempt to refine the information processing diagrams that have
been a staple of cognitive psychology — to make them into a calculational tol,
rather than just a summary of the high-level structure of the cognitive system.
It encapsulates the psychological literature in a simplified model of the human
in terms of memories, processors, and a few quantitative parameters of each.
The model permits some simple approximate calculations, such as how fast
people can type. These calculations are done with ranges of parameter values
as a way of taking into account the approximate nature of the model structure,

parameters, and task analysis.

The GOMS Model. "The GOMS family of models of the user (Figure 2) is
an approximate way of characterizing user behavior in terms of goals, basic op-
erations that the user could perform, methods for achieving the goals, and selec-

tion rules for choosing among alternative methods. The model allows a way of




Figure I.  The Model Human Processor. Depicted schematically in the figur.c are
the memories, processors, and constants used for making simple computations:
Sensory information flows into Working Memory through the Perceptual Prt‘)c-
essor. Working Memory consists of activated chunks in Long-term Mcn\or}/. The
basic principle of operation of the Model Human Processor is the Recognize-Act
Cycle of the Cognitive Processor: On each cycle of the Cognitive Processor, the con-
tents of Working Memory initiate actions associately linked to them in Long-Term
Memory; these actions in turn modify the contents of Working Memary. The Mo-
tor Processor is set in motion through activation of chunks in Working Memory.
Predictions are made using a set of associated Principles of Operation: (P0) The
Recognize-Act Cycle of the Cognitive Processor, (P1) The Variable Pcrccptu.nl
Processor Rate Principle, (P2) The Encoding Specificity Principle, (P3) The Dis-
crimination Principle, (P4) The Variable Cognitive Processor Rate Principle, (P5)
Fitts's Law, (P6) The Power Law of Practice, (P7) The Psychological Uncc.rta'iuty
Principle, (P8) The Rationality Principle, and (P9) the Prob.lcm Space Pr.m.cxplc.
(Reprinted from Card, Moran, & Newell (1983, Fig. 2.1) with the permission of
Lawrence Erlbaum Associates, Inc., Publishers.)
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Figure 2. The GOMS (Goals, Operators, Methods, and Selection rules) Model. A
portion of a GOMS model for the POET cditor. The goals arc GOAL:EDIT-MANU-
SCRIPT, GOAL:EDIT-UNIT-TASK, GOAL:ACQUIRE-UNIT-TASK, GOAL:EXECUTE-
UNIT-TASK, and GOAL:MODIFY-TEXT. The operators are GET-NEXT-PAGE, GET-
NEXT-TASK, and VERIFY-EDIT. The methods are named USE-QS-METHOD, USE-LF-
METHOD, USE-S-COMMAND, and USE-M-COMMAND,; in a more detailed model they
would be expanded into more goals and operators. Selections are indicated by [se-
lect ...}. The actual selection rules themsclves are not given in the figure. (Reprinted
from Card, Moran, & Newell (1983, Fig. 5.12) with the permission of Lawrence
Crlbaum Associates, Inc., Publishers.)

GOAL:EDIT-MANUSCRIPT

. GOAL:EDIT-UNIT-TASK

. . GOAL:ACQU!IRE-UNIT-TASK

. . . GET-NEXT-PAGE

. . . GET-NEXT-TASK

. . GOAL:EXECUTE-UNIT-TASK

[select USE-QS-METHOD

USE-LF-METHOD]

. . GOAL:MODIFY-TEXT

. .. [select USE-S-COMMAND
USE-M-COMMAND]

. VERIFY-EDIT

repeat until no more unit tasks
if not remembered
if at end of manuscript page

if an edit task was found

recording possible users’ methods so that users” behavior could be predicted.
There is a family of such models, rather than a single one, because the level of
aggregation can be pegged at different durations. The basic operators can be
taken from the half-sccond level o the two-second level, depending on the type
of analysis that needs to be done.

The Keystroke-Level Model.  The Keystroke-Level Model (Figures 3 and 4)
is a simplified, practical instance of the GOMS family. It is cast in terms of
low-level operators (keystrokes, button pushes, and mouse moves), and it pre-
serves only a single mental operator. Indeed, it is defined essentially as the ap-
proximation that follows if the number of mental operations is restricted to
one.

PHCI focused on computer text editing, although several extensions were
explored, such as page and circuit layout. Thus, the GOMS models were de-
fined for text editing (as in the Keystroke-Level Model), although they arise
from a general characterization of how skilled humans perform in task envi-
ronments with diserete actions. The book was not purely theoretical, but con-
tained empirical and experimental data on text editing, most of it seen through
the lens of the theoretical models (¢.g., the actual durations of operators in the

GOMS models).
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Figure 3. The Keystroke-Level Model. The figure shows the analysis of a particu-
lar method of doing a particular task. The steps of the method are described in En-
glish in the left-hand column, then coded in terms of the Keystroke-Level Model on
the right. The equation at the bottom of the figure is derived from this coding (e.g.,
t,,1s the time to do an M operation). (After Card, Moran, & Newell, 1983, p. 289.)

TASK: CORRECT BAD WORD N WORDS BACK
METHOD R: Point back to bad word, replace, resume typing

1. TERMINATE TYPE-IN M K [ESC]

2. REPLACE BAD WORD

2.1. Home hand on mouse HIMOUSE]

2.2, Point to target word Plword]

2.3. Select 1t KIMOUSEBUTTON2]
2.4. Home hand on keyboard HIKEYBOARD]

2.5. Invoke Replace command M K{r]

2.6. Type new word 4.5K[{word]

2.7. Terminate Replace M K[ESC]

3. RESUME TYPING

3.1. Home hand on mousce H[MOUSE]

3.2. Point to last input word P{word]

3.3, Select it KIMOUSEBUTTONZ2]
4. RE-ENTER TYPE-IN MODE

4.1. Home hand on keyboard HIKEYBOARD]

4.2, Invoke Insert command M KIi]

Toyecute = Ty + 10.5T + 4Ty + 2Tp

= 12.1 sec

In sum, The Psychology of Human-Computer Interaction attempted to provide a
paradigmatic vision of the psychology of human-computer interaction and to
instantiate that vision with studies to make it real. The book, of course, 15 only
a symbol, convenient for its explicitness and because, naturally enough, it ex-
presses the vision that we wish to convey. But this vision also exists in a num-
ber of heads. Anderson (1984), Robertson and Black (1983), Norman (1983;
Norman & Draper, in press), Polson and Kieras (1985), and Young (1981), for
example, have all enunciated the same general vision. At the level we wish to
discuss it, variations of the vision are unimportant. Yet while this vision may
be shared among a few, we do not believe it is common. Other visions still
dominate. One dominating vision is the human-factors vision of human-
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Figure 4. An analysis result for text editing. This figure shows the result of a para-
metric analysis with the Keystroke-Level Model of the method of Figure 3 and two
alternative methods for analyzing an editing task. The task is to delete a word n
words back then resume typing. Each method is found to be faster than the others
for some range of n. (Reprinted from Card, Moran, & Newell, 1983, Fig. 8.12a,

with the permission of Lawrence Erlbaum Associates, Inc., Publishers.)
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‘make useful, if approximate, calculations. These two dominating visions are

both valuable; however, they are not sufficient to ensure major contributions
ol psychology to the field of human-computer interaction. They will never beat
Gresham’s law.

4. PROBLEMS OF REALIZING THE VISION

Although The Psychology of Human-Computer Interaction seems to have been
fairly well received (Meyer, 19845 Park, 1983; Sebrechts, 1983, Swigger,
1983; Thomas, 1984), it is important to look at where this vision has so far
failed or proved incomplete. In fact, there has been some explicit eriticism;
and these critics can help us to see the problems that exist with the vision. The
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book remains a convenient symbol for the vision—making the criticism
pointed and concrete — though no doubt confounded somewhat by other as-
pects. Shneiderman (1984) complained, in effect, that the book was too nar-
row, too incomplete, “The KLM [Keystroke-Level Model] applies the
reductionist method to its limit, dismissing vital factors that, I believe, influ-
ence user performance” (p. 240). He complained that the book only looked at
time as a measure and at editing as a task, which provided too narrow a basis.
Allen and Scerbo (1983) complained that the Keystroke-Level Model, which
represented the part closest to actual application, seriously underestimated the
actual times. Thus, “while the Keystroke-Level Model makes a contribution in
acknowledging and attempting to quantily | yredictions that include mental
times, it seems that many additional insights into behavior and cognitive pro-
cesses will be needed before a truly useful model of command-language use can
be constructed” (p. 177).

These criticisms have their replies. But rather than debating the critics, let
us instead add our own concerns to theirs, When we do this, we get the follow-

ing short but pithy list of difficuldes:

1. The science is oo low level.

2. The scope of the science is too limited.
3. The science is too late.
4

The science is too difficult to apply. ——% s b vadu e ‘“\"M‘ﬁ %@WM

Let us consider these in turn, retaining the book as a stand-in for the vision.

Too Low Level. The science provided is too low-level. PHCI emphasizes
microscopic operations such as keystrokes and immediate commands for
editing. But the real problems of the interface involve much more than this.
They involve the organization of multiple tasks, such as editing, composition,
and retrieval. They involve the principles on which the extended dialogue be-

tween the computer and the user occurs. They involve the design and construc-

tion of entire systems, not just the keyboard. They involve the learnability of

the total system, the degree of compatibility between the system and the
embedding context. Thus, however useful PHCT might be in dealing with the
microstructure of the interface, it is not sufficient.

Too Limited. The scope of the phenomena and the contexts covered is too
limited. There are many other aspects of the interface the vision does not
address— the visual displays, the use of natural language, the problems of nov-
ice users, the questions of learning, the probability and effects of errors, the
preferences of users, the effects of fatigue. The list is almost endless. Whatever
success the book might have depends on it working with just the few aspects
(duration of expert performance) that yield to such theoretical formulations.

Too Late.  Science done this way comes too late for technological progress.
By the time the research is done, the technology to which it applies is obsolete.
The work of PHCI concentrated on line-at-a-time editors, yet by the time
PHCI was published (1983), the display editor was already in wide use and
multiwindow dlsplays were bmnmmq a sul)\tamml (()mponcm in mlvanud

cnvn(mm('nts
currently lmpmmm qm'stmns— where experience is not w 1 u\"ulal)h'—lln ory

1s stlent,

Too Difficult to Apply. The gap o application is too big. The vision does
not deal with real problems. Although PHCI may have the form of applicable

theory, in fact few successful applications are discussed.
4.1. Prospects

In light of Gresham’s law and the above difficultics with the vision, what ave
the prospects for the role of psychological science in the field of human-
computer interaction? There seem to us just two possibilities.

The first, and most plausible, future is for psychology to have a relationship
to human-computer interaction like that of classical human factors. The
human-factors field has striven to find its place in the sun where it can make its
contribution to better man-machine systems, The situation currently faced by
psychology is the same in many respects — indeed, it can be viewed as nothing
but the movement of human factors into a new and rapidly expanding techno-
logical domain. Thus, there seems little reason to project a different outcome.

Actually, the classical human-factors relationship is not really all that bad.
They need you around. You get modest lip service and modest support. You
can point with pride to a few places where you were taken into account. But the
position has all the earmarks of second-class status. The important conse-
quences, of course, are not those on the social status of a particular professional
group, but those on the domain. Many aspects of the human use of interfaces
will not be taken into account. Certainly the ever-continuing human-factors
criticism of existing man-machine systems has a large measure of truth. The
human dimension is often neglected and systems are much more difficubt
and less pleasant to use than they might be with proper attention and con-
sideration.

The second future avoids continuation of the classical human-factors role by
causing Gresham’s law to become inapplicable . Unfortunately, the only way
to cause Gresham's law to become inapplicable is to transform the psychology
of the interface into a hard science. By that we mean producing engineering
theories of the user—task analysis, calculation and approximation. Such

theories need to be usable either directly or through the abstractions for
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design thought that are their consequence. We see no other way of defeating
Gresham’s law. Hardening the science is certainly not the easy path. It coun-
gels getting the human concerns into the interface by just producing better gci-
(:ncc ‘There is no cheap way out.

nsiderations full competi-

Success on this score would make ps%ﬁ(
5 for Attcnn(m by the dcsu;n team

aspects, such s over ldppmq multi- wmd()ws (()uld bv dnv('n by an undm-
standing of the psychological constraints and loads involved. Psychological as-
pects would not come 1o dominate considerations —design s inherently a
trade-off among all the dimensions of cost and performance —but they would
attain full considerations.

Several caveats must be noted, so that our position will not be misunder-
stood.

Experimentation is Needed. Although we emphasize engineering-style
theory, we do not thereby deny that experimentation is required. We will say it
explicitly: Much experimentation is required. This emphasis is necessary, because
historically human factors have emphasized the need to get actual data on how
humans actually use (and are prevented from using) specific machines. Anem-
phasis on theory can easily appear to be a de-emphasis on experimentation. It
is not. However, this caveat notwithstanding, experimentation in our view
1akes on a somewhat different role than in classical human-factors work. Its
primary focus is on developing an engincering-level theory, rather than devel-
oping the end-user application.

The Vision is Limited to the Psychology of the Interface. Our topic is the
psychology of the human-computer interface, not all of psychology. This dis-
tinction is important, because the proposal is not to make all of psychology bet-
ter. The human-computer interface is, in fact, a psychologically limited
microworld. Many issues of the wider world of psychology do not arise. From
the point of view of this essay, one can be thankful for whatever limitations ex-

They make the development of the science of the interface that much more
feasible.

There are Other Interactions Between Humans and Computers.  This pro-
posal does not include the totality of relationships between humans and com-
puters: programming, social psychology, organizational sociology, social im-
pact. These are all important. They may be as important, or even more
important, than the issues we are considering. We are addressing one part of a
wider problem and not presuming o answer all problems. Divide-and-
conquer on the issues is a key part of making progress feasible at all.
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The Payoff for Design Must be Demonstrated.  We take as obvious that the
action is in design. Even so, it is incumbent o show how a hardened science —
an effective caleulational science — produces the desired effect on improving
design. Concelvably, it could have littde effect or no more effect than current
experimental approaches. Conceivably, also, alternatives would be much bet-
ter. For instance, the right thing 1o do might be to invent or propose design
principles directly (Gould & Lewis, 1983; Nakatani & Rohrlich, 1983). Our
argument is to the contrary; that if the science is there, it will be possible 1o
package it into design principles, but that this cannot be successtully done the
other way around.
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4.2. Psychology and the Designer’s Tools for Thought 0¥ & ‘Kwu/v wiich)

The link between theory and design is so important that it deserves addi-
tional consideration. Figure 5 is a highly simplified view of design. The de-
signer starts with a key idea of what is wanted. The idea is embodied in some
partial representation, with little detail. This representation, along with the
goal for what must be included in the final design, defines a design space. The
designer searches this space by successive refinements of the initial partial rep-
resentation. At each step there is imaginative generation of additional aspects
of the design and evaluation of the whole based on the partial information
available.

This simple model of the design process describes how having a theory of the
sort we have described makes a difference. An appropriate mathematical
theory can provide the design representation itself. It can establish the frame-
work for imagining the refinements and it can permit the evaluation of partial
representations. For example, if we know that time for hand movement with
the mouse and other analogue pointing devices follows Fitts's law (Fitts, 1954),
then we begin thinking of devices in terms of their Fitts’s law slopes. We begin
thinking of selection targets on the screen in terms of Fitts's law scaling, lead-
ing us to make targets larger for longer mouse movements (Fius's law tells by
how much). The way to get psychology into the inner design loop is to alter the abstrac-

tions, the representations for thought of the designer — a kind of Whorfian hypothesis of

design. This is the point of Norman's trade-off analysis (Norman, 1983a), in
which he explicitly attempts to construct for the designer a representation for
thinking about interactions between the psychological costs and benefits of dif-
ferent parts of the design.

Providing tools for thought is not the only way in which a theory can make a

difference. Another way is (hmuqh t \plu it computer program tools for thc de-

sign
éi;hQ t

‘hc t()ols may bc of Any l\md——sxmulatxcm, mcasuxuncnt,
analysis, or system building. The Human Operator Simulator (Lane, Streib,
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Figure 5. The process of design. Hypothetical steps a designer might go throughin
designing a logo for human-computer interaction. The design begins as a nebulous
idea and is refined in steps (numbered in the figure). From time to time the designer
abandons a design path that is proving unsatisfactory and falls back several s{cl)s.
The steps in the design are heavily dependent on the designer’s representation.
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Glenn, & Wherry, 1981) provides an example. It is a system that has a human
operator model embedded in a general-simulation system. The idea is that the
analyst programs the task environment into the simulator, but the human part
of the simulation is already fixed as part of the system. The system can be used
for experiments with variations that arc 1o expensive to individually proto-
type (Lane, Strieb, & Leyland, 1979). Although there are issues surrounding
Human Operator Simulator on its ease of use, scope of applicability, and qual-
ity of embedded science, there is no question of the power of its central notion.

5. HARDENING THE SCIENCE

Hardening the science is, of course, a version of the original vision. As we
have seen, this vision is not without problems. Still, our conclusion is that, if
psychological science is to be a significant factor in human-computer interac-
tion, then this vision must not be abandoned; rather, its problems must be
overcome. It is thus appropriate to spend the remainder of this essay consider-
ing the prospects for overcoming the problem of level, the problem of scope,
the problem of lateness, and the problem of remoteness from application cited
above.

5.1. Overcoming Low-Level Science:
Psychology Sets the Framework for Task Analysis

Let us start with the first problem of the vision, that the science is too low
level to affect the design of real systems. Many of the problems of human-
computer interaction are at the level of how to invent systems for activities like
coordinated work, computer-aided design of VLSI chips, authoring of papers
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and reports, or computer tutoring. Yet what seems relatively easy o obtain is
psychological science on the legibility of displays, the arrangement of key-
boards, the naming of commands, and the Tike. As an empirical observation,
scientific psychology scems to tratlic heavily at the low end of things, and to
tread more lightly (pop psychology aside) at the high end. Yet the high-level
tasks of authoring papers or tutoring surely involve humans as much as do the
low-level tasks.

Is there something fundamental in this state of affairs? Or is it just that psy-
chology is harder to do at higher levels, or that there is a natural time lag in de-
veloping the science from the bottom?

The Time Scales of Human Action. In fact, there does seem to be some-
thing basic about the different time scales on which human action occurs that

leads to different class f theories for actions of different duration. In Figure

6, M@&gﬁ@ﬂ% R e s associated with characteristic human actions hav-
ing approximately the indicated duration. For example, at the duration of
about a second, that is, roughly a third of a second to three seconds, the actions
are those of basic psychological operations such as a choice reaction time or the
addition of two digits. Associated with cach action is a characteristic form of
human memory where changes resulting from the action reside. For example,
at the duration of about a second, the memory changes are those of short-term
memory. Such a diagram has a certain cavalier and procrustean character. But
in return for such crudity, we get to see a larger pattern. In particular, the dia-
gram suggests that the theories used to describe human behavior fall into sev-
eral bands.

L. The domain of natural law. The fowest band — below roughly 30 msec— is
the domain of natural law. Physics, chemistry, and biology provide the scien-
tific frameworks.

2. The domain of psychology. Starting just below a tenth of a second we enter
the domain of psychology. Symbolic processing and mental mechanics domi-
nate. Cycle times, operators, and unit tasks are the units of action; sensory
buffers, short-term memory, and long-term memory are the units of memory
change (using the terminology of the Model Human Processor). There are
laws, but they differ radically in character from the laws that describe neural
activity, being those of an information-processing architecture. The symbolic
engine spans about a factor of 1000, from 30 msec to 30 sec.

3. The domain of bounded rationality. Above a minute, we enter a region in
which human activity is described by giving the goals or ends being attempted.
We talk about editing a manuscript, debugging a program, writing a letter,

studying a chapter, or playing a game, These activities are elastic in time, last-

»

a whole afternoon. ¢ t itieg s
eans=ends Hicrarchy of goals.and-subgoals;
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Figure 6. The time scales of human action. Time duration of an action is scaled in
powers of 10 for seconds (with the approximate unit equivalent indicated in paren-
theses). A characteristic action of this duration and an associated memory that pro-
vides inputs and outputs of the action is given for cach time. Finally, the classes of
theories that give an account of the actions are indicated. There seem to be four
broad bands of theory, each at adifferent range of time. The actions associated with
human-computer interaction fall into two of these bands: the psychological and the
bounded-rationality bands.

TIME ACTION MEMORY THEORY
(sec) (common units)
107 (decades) Technology  Culture
108 (years) System Development  Social
and
l()? (months) Design Education Organizational
100 (weeks) Task Education
10° (days) Task Skill
1 (hours) Task Skill Bounded
1? (ten mins) Task L'TM Rationality
10? (minutes) Task LTM
10 (ten secs) Unit task L'TM
1 (secs) Operator STM Psychological
10! (tenths) Cycle time Buffers
10 (centisecs) Signal Integration Neural
and
10 (millisecs) Pulse Summation Biochemical

sponse to the details of the task. The theory that applies to this band is the ra-
tional calculation of means and ends by the user, deciding what to do in light of
what the user knows about the task and its constraints in order to attain the
user's goals. The user’s calculations are of course limited or bounded (Simon,
1982), both by this knowledge and by the user’s computational abilities.

4. The domain of social and organizational theory. As the time scale becomes
longer —wecks, months, and years —we enter a world where the isolated actor
is a rarity and where social theory comes to dominate. Although individuals
fzominuc to operate in intendedly rational ways, their social interactions play
nyn(:rcasingly stronger roles, leading to statistical laws and aggregate effects.
Different terms are used to describe the characteristic changes: education, de-
velopment, and cultural change. The actions are organizational: design of a
user-computer interface (months); development of a new interface type, for ex-
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ample, the personal computer (years); and the emergence of digital technology
itself (decades).

Relationship Between the Psychological and Bounded-Rationality Bands. The
time duration of human-computer interaction lies in both the psychology and
bounded-rationality bands. In the psychology band are the time constants for
the machinery of reasoning: the limits on rates of processing, encodings, work-

ing memory size, and reliability. Using these lmited proc ssing and memo-
rial capabilities, the user performs the rational task analysis that characterizes
the longer duration actions of the bounded-rationality band. This task analysis
of the user done by the user in the service of the user's own goals s, of course, to
be distinguished from the objective task analysis done by an observing scien-
tist. In addition to basic psychological mechanisms, the user brings to the task
situation a quota of acquired knowledge and skill. Indeed, the memory col-
umn of Figure 6 shows LTM and skill extending far into the bounded-
rationality band into hours and days (and even further, though concealed by
the changed terminology).

New psychological laws of information processing do not arise at longer du-
rations. There are, instead, the accumulated effects of long-term memory and
skill acquisition. These effects are influenced by the user’s goal-oriented deci-
sions about what to attend to and what to practice. Thus, new psychological
phenomena occur as time increases, but their theoretical explanation is to be
found in the interplay of the limited processing mechanisms of the psychologi-
cal band and the user’s intendedly rational endeavors. Of course, the paucity of
specific cognitive mechanisms that emerge at durations above a minute or two
is an empirical question. And it has to be said that there are general biological
mechanisms at longer time scales, such as the sleep-wake cycle as well as psy-
chological phenomena of boredom, fatigue, and mood belonging to the
bounded-rationality region (although cognitive psychology has not yet been
able to integrate these into its view of information processing). But the crucial
point is that above a minute all theorizing about the human must adopt a
framework of the user’s rational endeavors on his own behalf.

Psychology and the Level of Human-Computer Interaction.  Psychological
science seems to be at too low a level, because the time scale of human-
computer interaction falls across the time bands of two classes of theory, only
one of which is primarily psychological. The lower band (tenths of seconds up
to perhaps a minute) is that of cognitive psychology, of psychological laws and
mechanisms as described in the Model Human Processor. This domain be-
longs to cognitive psychology. Psychological phenomena abound and cogni-
tive psychologists are the scientists who ferret them out, describe them as data,
and capture them in theory. However, this band is also the low level of the first
criticism. The user interface, we are told, has bigger mental fish to fry.
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1sh are to bc toun(l - thc hclp syst('ms
the lntclhqcm cxtcndcd dxs( ourses, dnd the workbenches for intellectual activ-
ity. This domain belongs to the task-domain specialist. The crucial mgredient
is task analysis of the situation faced by the user, and discovery of what knowl-
edge would help and what activities would support the attainment of the user’s
goals. The cognitive psychologist has no unique capabilities for such investi-

‘gations of specific task domains—of CAD/CAM, sales support, or music.

composition.
Our conclusion, therefore, is that the criticism of the vision being too low
level to cover the phenomena of the interface is partially correct. The domain

that marks psychology’s unique contribution is indeed limited to the band be-,:

low a few minutes, which indeed is below the level of much that is critical in
human-computer interaction. But that is not the whole story — for two reasons.
First, the two bands are connected because the rational task analysis is being
done by a human user of limited capabilities, as described by the lower cogni-
tive model. Psychology delivers to the bounded-rationality band the model that must be used
to understand what helps the user and how. The vision says that psychology should
deliver that model in a useful form. Second, understanding the task domain is
certainly the first requirement in the bounded-rationality domain; as the study
of human-computer interaction improves, carrying out the analyses using a
model of the human processor will become increasingly central. This is
unclaimed intellectual territory and could well become part of an expanded
psychology’s contribution.

5.2. Overcoming Limited Scope:
Fill Out the Model Human Processor

We now turn to the sccond criticism of the vision, that the scope of the phe-
nomena and context covered by this vision are too limited. In fact, the scope of
the vision has always been broader than the specific studies in The Pyychology of
Human-Computer Interaction. Those studies were the results of a particular re-
search path. The prominence of performance-time measures, for instance,
occurred because of the locus of the initial rescarch successes. The larger vision
was reflected in the Model Human Processor, which included among other
things principles on problem solving and memory retrieval that went beyond
what the particular studies could use. The inadequacies and incompleteness of
that model can be taken as one part of an agenda for what needs to be done to
increase the useful scope of psychological science for doing human-computer
interaction. Again, the Model Human Processor is taken to mean a codifica-
tion of results from the literature assembled into a calculational framework.

Is it feasible to increase the scope of the Model Human Processor? In fact,
there appear to be a number of recent advances or promising lines of inquiry
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that are ripe for integrating into this framework that could substantially m-
crease its scope. We mention here a few of these as newly opened topics for

rescarch.

Intcgrated Models of(}ognition. As shown in Il igure {,

\nl()(lLfl, which pcrmmcd S01MC (Al(,uldn()n:» to be nmdc. Ihough it was n(.)t a
complete model, it did have the virtue of putting a large array <?i' psy(?l‘xoluglml‘
phenomena into a single framework and permitting caleulations of some of
these. This integration is critical. Perceptual, cognitive, and motor constraints
all operate in unison to limit the user’s performance. Learning, pcrf()rm.nnc.c,
and the development of skills all occur concurrently, although cach with its
characteristic rate. Thus, it is not enough to have theories of the separate as-
pects of cognition; a theory that permits them all to be taken into account na
single task is a real requirement. \ .

Genuine progress has occurred on the overall structure of such an integrated
model, with the development of the ACT* cognitive architecture (Anderson,
1983). ACT* is a production-system architecture that has evolved over the last

decade until it provides the ability to simulate a wxde mngc of humdn pcrform-

long-term mt.mory, thc mgamzauon of. long~tcrm memer
1 below). [t is a more tightly integrated system than the
Model Humm; Processor of PHCI, so that computer simulations can be run.
For example, early stages of language acquisition have been sfmul,m,c in
ACT*. Equally important, Anderson has shown that it is also possﬂ)‘lc to n‘mkc
some approximate calculations about how ACT* would behave 1n a given
task, so that it is not always necessary to run it in simulation mode to obtain
useful answers. As we have repeatedly emphasized, this approximate caleula-
tional character is essential for any theory to have a massive impact on human-
computer interaction. Thus, there is now an improved and broadened s.(:i('n-
tific base on which to build a Model Human Processor-style calculational

framework.

Calculational Models of Perception. T'he Model Human Processor is espe-
cially deficient in the area of perception (so is ACT™). (?iv«:.n thg radically
graphic nature of modern interfaces, this is a serious shortcoming. Pm:ccpu}ul
issues are important in both the psychological and the b()un(lu:l—r;,umnalvny
time bands. In the psychological time band, perception is an inherently 111:&;{
process (from the psychological view); many phenomena occur at the level of a
tenth of a sec. Screen contrast, motion, aliasing, detection, and color effects
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are all interface issues that occur at this level. Perception, of course, is a ma-
ture area of psychology with a solid experimental base. This base is being
codified in a monumental Handbook of Perception (Bolf, Kaufman, & Thomas, in
press). The handbook reveals abundant theoretical fragments, many of them
arising out of linear systems theory. There is renewed interest in placing this
theory into the sort of integrated caleulational framework necessary for its en-
gincering use (Watson, 1983; Watson & Ahumada, 1985).

But major problems remain as the time duration increases, We currently do
not 'have good ways of handling the use of graphic representation or screen

space and relating these to the semantics and pragmatics of the user’s task.
Early studies are beginning, however, to make progress on the graphical repre-
sentation in the interface (Bewley, Roberts, Schroit, & Verplank, 1983;
Verplank, 1985), direct manipulation interface techniques (Shneiderman,
1983; Hurtchins, Hollan, & Norman, 1985), and windows (Card, Pavel, &
Farrell, 1984; Draper, in press; Reichman, in press). There is some developed
theory of visual search (Krendel & Wodinsky, 1960; Engel, 1977; Card, 1984),
but it has not yet been shaped into a useful tool and it has not been integrated
into a large model. There is thus the potential for a Model Human Processor
able to allow answers to much more sophisticated perceptual questions.

Pe

¢h, on., stlmulus response compatibility Uohn Rosmbloom & Ncwdl
1985). With respect to less routine behavior, there has long existed a well-
developed theory of problem solving, which applies both to human cognition
(Greeno, 1978; Newell & Simon, 1972) and to artificial intelligence (Rich,
1983). This theory is providing the basis for a number of developments, such as
the planning models in the discourse work (Allen & Perrault, 1980; Cohen &
Perrault, 1979). Interestingly, however, this theory has not yet been made to
yield calculated predictions of a kind useful for designing the user interface.
With respect to errors, the situation is mixed. On the one hand, much error-
cvoked behavior appears to be variants on types of behavior already character-
ized in existing theory. Some of it is routine and hence GOMS-like. This type
of behavior arises because errors themselves are not always of rare occurrence,
so that users repeatedly make the same types of errors and develop appropriate
methods to deal with them. Some error-evoked behavior is typical problem
solving, both for diagnosing a situation and for recovering from it. On the
other hand, the question of what errors occur and under what conditions is in
need of much more work. Historically, work on errors has consisted of creating
an ad hoc set of error-types and then tabulating error occurrences in the typol-
ogy. But recently, Norman (1981, 1983, 1984) has developed a theoretically-
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based taxonomy of errors in terms ol the cognitive mechanisms that cause them
(c.g., distinguishing slips from mistakes). We can hope that this will lead to ac-
celerated progress. Even a way of accumulating data on errvors that has cross-
situational validity would be extremely useful. Ulimately, error categories
must be integrated into the theories that describe performance and learning.
There is continuing need for good work here. Even in the arca of performance
models, there continues to be both progress and opportunities.

Knowledge Representation and Mental Models. 'The Model Human
Processor was clear that users work in terms of internal symbolic representa-
tions of their tasks, but silent on the nature of these representations. Yet the
user’s representation of the task plays a critical role in determining the user’s
behavior. Within the last few years, however, enough rescarch has been done
to provide some basis for understanding a user’s mental model of a system and
for beginning to connect it with human-computer interface design (diSessa,
1985; Gentner & Stevens, 1983; Young, 1981). Halasz (1984) has provided
evidence for the existence of users’ models and their effects on performance, but
has shown that the direct use of such models is only one of several sources of
knowledge that users employ (e.g., they might remember the result of the pre-
vious time they ran the mental model, rather than running the model anew).

It is necessary to pass beyond describing users’ models in existing user be-
havior to predicting the user’s model given only a description of the task and its
structure, plus the general state of knowledge and skill of the user. As cvery-
where else, engineering-style calculational theories must ultimately have sym-
bolic theories that work on symbolic definitions of the task. Such theories have
barely been attempted yet. Where they have, as in the intriguing analysis of
hand calculators (Young, 1981), the connection to actual human behavior has
remained somewhat tenuous. Work on users’ mental representation is another
promising way in which the scope of a Model Human Processor could be
extended.

Aequisition of Cogmtwe Skill.  Both the Model Human Processor and Fig-
1¢ fact that humans learn in two ways: by storing informa-,
tion in long-term memory and : Chese ways of learning oc-
cur on strikingly different time scale lc,xmmg declarative knowledge

ure 6 incorporate

i(/cnow:;ng,tlial) being much faster than learning procedural knowledge (knowing

how). Theories are needed for both types of learning. However, if anything,
human-computer interaction depends more heavily on the latter. Learning to
use a systermn — arriving at where performance can be described in GOMS-like
terms— is consummately the acquisition of a cognitive skill.

A theory of cognitive skills acquisition has begun to emerge (Anderson,
1981) with many of the features needed for substantially expanding the scope of
the Model Human Processor. Several independent efforts at model building in
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different domains — learning Lisp and geometry (Anderson, 1982, 1983), in-
struction in subtraction (Vanl.chn, 1983), and expert systems (Rosenbloom,
Laird, McDermott, Newell, & Orciuch, 1985) —have produced convergence

on the ingredients. The learner 1s modeled as a production system (a set of

rules of what actions will be taken under what conditions). Goals appear
among the conditions of rules. Learning consists of adding a new production
rule to the current set of rules. Skill is identified with the state in which, for the
domain of the skill, goals are attached to the appropriate actions by a single
rule (as opposed to rules that set up subgoals that, in turn, set up other
subgoals). The construction of new rules cannot be done deliberately by the
learner. New rules can only come about as automatic byproducts of the inter-
nal representations generated during attempts to achieve some goal (successes
and failures both can yield relevant experience). Thus, what is required for the
acquisition of procedural skill is some set of tasks for the learner to do that will,
in turn, generate the internal intermediate information that will, in turn, gen-
erate new production rules through the automatic process. Any way of getting
the learner to do tasks in the skill domain suffices —being told or structed,
following a given plan, problem solving, reading how, watching and imitating
a successful solver, doing exercises, taking hints, using an analogy, and so on.

Such a theory of cognitive skill has important potential for widening the
scope of a Model Human Processor. It is compatible in assumptions and mech-
anisms with the larger cognitive model we have been discussing. It focuses on
exactly the level of greatest concern to human-computer interaction, epito-
mized in learning a computer language such as Lisp. [t appears to be general
enough to cover much procedural skill acquisition. What does need further de-
velopment is how to work with this theory in a calculational mode. Such a
theory can neither predict transfer effects from a symbolic description of the
systems to be learned nor the constants in the approximate learning equations
that can be derived from the theory. But the theory specifies the mechanisms
which seem to determine these phenomena.

Partly Linear Models. A common structure appears repeatedly in these
theories, which is worth pointing out because it shows one path toward build-
ing appropriate models. A given phenomenon of interest can be conceptual-
ized as consisting of two components:

henomenon = Volume-part + Difficulty-part.

Something in the task occurs in volume and the user must deal with it by re-
peating some operation a large number of times. This generates a linear part—
linear in time, errors, solution opportunities, or whatever. However, the phe-
nomenon also has an equally strong (or stronger) nonlinear component, which
often reflects some source of difficulty. Thus, the standard scientific strategy of
approximating a phenomenon by its lincar term cannot work unadorned.
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However, in the human-computer situation it 1s often possible to diseriminate
the nonlinear component, so it can be handled separately. If the linear part can
be brought under good theoretical control, it can be exploited —both for iy
own sake and for teasing out the nonlinear part. Thus, we can think of such the-
ories as partly linear models, an analogy to almost linear ov quasi-linear models.

An example 1s reading for comprehension. In this case, the volume part of
the equation is the amount of text 1o be read. By taking the text item as a unit,
reading becomes a linear process with a sunple rate constant (e.g., 450 words
per minute for light prose, 250 for technical prose). The difficult part is caused
by a variety of integration and understanding sub-phenomena. There are
many interesting cognitive models of the reading process (Kieras & Just, 1984)
that show this dual structure —a linear part with additional constants to ac-
count for local fluctuations of reading speed, caused by sentence endings,
anaphoric references, new words, cte.

The GOMS and Keystroke-Level Models provide another instructive case.
The linear (volume) part is obvious — the number of operations multiplied by
the average time per operator. The first interesting aspect is that the numbers
of cach type of operation can only be determined when the method employed
by the user for doing the task is known. Thus, anlayses with these models natu-
rally divide into two activities: determining the method and determining per-
formance time given the method. This decomposition works because the
method can be determined independently by task analysis. Also, it is signifi-
cantly easier to do the task analysis of expert users than of novice users. So, ini-
tially, GOMS-like models deal with expert behavior, although there is no rea-
son not to extend them toward novice behavior. The second interesting aspect
concerns the difficulty part — the evror behavior, which in text editing can be
nontrivial (10% to 25%). Errors require a distinet theory, so they are split off
and the GOMS and Keystroke-Level Models are cast as error-free expert be-
havior. This splitting works because error-free expert behavior is a useful cate-
gory in its own right, for example, dealing with questions such as, “If the user
were 10 use the proposed method, how much time would the task take?”

There are more examples. In learning declarative material, for instance, the
Yolume jpart of the equation is the amount of material to learn, but as we know
from much work in psychology; the unit of learning is not the textual item, but
the chunk (Miller, 1956). If the user already has the material partly organized
in chunks, then only the remaining chunks must be learned. The difficulty
part appears to be predominantly due to interference. In the work of Polson
and Kieras (1985), production systems provide an alternative formalism to the
GOMS notation of PHCI and extend it to procedural learning. This list is
enough to show that partly Hinear models arise frequently in human-computer
interaction, and that they provide one underlying form for much of the
calculational theory in the Model Human Processor. This form provides some
guidance in asking how to build appropriate caleulative theories for other

aspects.
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Cumulate the Science of the Canonical Interface
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The canonical interface. Most human-computer interaction takes place
by mcans‘()f only a few devices that are in mass use. The features of the mcmbir; of
cach dc.vncc'cl;.xss tend to be similar (e.g., all typewriter terminals tend to h:ivc
spct_:ds in a similar range). As years go by, the number of users with various t )c"s f
equipment slowly changes. This limited and correlated variability in ¢ ‘uiy)lx ~-Ot
‘ | : ‘ simplifies the analysis of human-computer interaction by imposing si q'l'l XTU]

teletype-style interfaces reached maturity, for example, the technology had straints on different interfaces. s

The third problem with the vision concerned the timing of science for mak-
ing progress in a rapidly moving technology. By the time years of study with

passed on to bitmapped displays in which the old problems were no longer of
interest. By the time we understand bitmapped displays, the technology will
have passed on to more exotic displays. And so on.

The wraditional answer is that science cumulates, so that it is possible gradu-
ally to succeed. Ultimately the tools will already be in place to analyze the on-
rushing new technology. The path we have called for—to construct an
engineering-style theory of the user —is solidly in this tradition. Though the
computer is an arena where technology seems to be moving ever faster while
the basic science crawls along, this is only cause to hold firm and redouble the
effort. This traditional answer has to be correct.

However, there is another partial answer —or at least a little more to be said.

< A== O> VPO

Interface hardware is actually highly standardized across the industry. At any

point in time only a few interface devices are in general use (Figure 7). Thus,

we have had a progression from 10 characters/sec uppercase teletypes to
typewriter-like interfaces to CRT-based glass teletypes to high-resolution YEARS

multiwindow displays. (Actually the progression starts even carlier with card
readers and printers.) Furthermore, other aspects of the interface correlate Correlated features:
with the basic terminal type: interaction rates, computations per interaction . )
Terminal device type
. . : : Rates of interaction
teraction, memory by the system of the user, number of (t()n‘lpumtlonal agents Computation per interactive cycle
working concurrently, and degree of intelligence of the interface programs. Amount of displayed information
Approximately every 5 years a new canonical interface (Lo give it a name) comes Media: Text, Box graphics, Full graphics, ...
1o dominate the scene. Over the years this interface passes through a typical life Memory of the system for the user
’ Number of active agents
Amount of intelligence

cycle, display size in pixels, display area, media, memory available for the in-

cycle: starting out developmental, expensive and limited to research environ-
ments, then rising to prominence, then to mature dominance, and finally

undergoing a slow phase out as successive canonical interfaces take over. To all intents and purposes, then, the psychology of human-computer interac
syc gy o A1-C : erac-

tion is the psychology of interaction with the canonical interface. This is a re-
markable situation. It sharply distinguishes the psychology of hum;ml-
computer interaction from general human factors, which must deal with an
immensely more variable operating environment, and hence has a much

Throughout the life cycle, parameters gradually improve, but the gestalt of the
interface does not change. Most change occurs in price, reliability, and phys-
ical packaging, which affect market penetration enormously, but not the user
characteristics. Fifteen to 20 years is a reasonable figure for the total lifetime of
an interface type. (If this seems long, note that bitmapped displays are already harder task. The canonical interface is the feature, if any, that might mal
o decade o , . Ve Ve . . , - . e . K . AR - e TR , that might make pos-
a d(,(,‘xfit old, and they havglyu .[0 bu.omc fully dominant.) As a result, amix sible a separate discipline of human-computer interaction Bccmic chan ,1. Ci
ture of perhaps three canonical interfaces share the scene at any moment, each the canonical interface take on the order of hi ' S¢ changes in
’ CoavE AR > order of years, this appears to give us
enough time, though perhaps just barely, to track the changes scicntif'icully
sraduall ating and i i . . N ]
i.:, u y upd.‘m-ng and improving the Model Human Processor. The inter-
ace is so specialized compared with the range of possible tasks people can do
that this specialization gives us real leverage.

in a different phase of its life cycle.

Most tasks to be done on a computer go through the interface — therefore,
they go through the current canonical interface. Thus, there is a specialized,
standardized environment, which is the locus of human-computer interaction.
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5.4. Overcoming Difficulty of Application:
Find Ripe Application Domains

Finally, letus turn to the fourth and last criticism of the vision — that the gap
between theory, on one hand, and real applications, on the other, 15 too large.
The fundamental answer is that one needs to keep trying. iWhen faults are dis?
covered in proposed approximative models, we should build improved ones
(as opposed to saying models are premature and throwing the whole idea out).
In a favorite phrase of McCulloch (19653), “Don’t bite my finger, look where |
am pointing” (p. xx). Even a relatively poor approximation may be of signifi-
cant use; the utility of powers of ten caleulations in physics is an example. But
improvement of these models requires their exercise by many people in differ-
ent circumstances. Studies that have applied, tested, improved, or extended
the approximative models of the book seem to us more on the right track
(Robertson, McCracken, & Newell, 1980; Allen & Scerbo, 1983; Bewley et
al., 1983; Gomez, Egan, Wheeler, Sharma, & Gruchacz, 1983; Poller & Gar-
ter, 1983; Robertson & Black, 1983; Ross & Moran, 1983; Borenstein, 1985;
Good, 1985; Whiteside, Jones, Levy, & Wixon, 1985).

A sccond answer is to look for good application domains. The important
property to seek in applications is that they are ripe for advancing science —
that they will force the development of a Model Human Processor in the con-
text of applications. Application domains are not all equally fertile and hospi-
table. And transferring results from one successful domain to a new one is
infinitely easier than being successful the first time.

One interesting domain is intelligent tutoring systems (Anderson, Boyle, &
Reiser, 1985; Sleeman & Brown, 1982). These are systems capable of tutoring
a student in a specific (currently very narrow) subject matter. It presents the
student with material to be learned and with exercises to be done, 1t analyzes
the student’s performance on the exercises, it provides guidance and help for
rcises tailored to the student’s
current state of learning. 9t « iﬁﬁtéi&ig(#xwe systems;
must understand the subject matter wcl] cn()ugh to solve the problems them-
selves and to analyze the student’s often fumbling attempts at solving the prob-
lem. § haintain models of the stud,
ust. mfcr from: the student’s chavxor not only what he knows and wha.t
¢ will do, but also predict.what instructional steps will help and what wxlyl
ndér furtherJearning: They must, in other words, be rather sophlstxum din-
terfaces. Although there are still not large numbers of intelligent tutoring sys-

the exercises, and 1t choose rial and exe

s new mate

tems, the subject and cducational levels range fairly broadly, from children’s
subtraction problems (Burton, 1982) to Lisp (Anderson & Reiser, 1985).
Viewed one way, intelligent tutoring systems seem to be just another appli-
cation area, though perhaps interesting because applying computers to educa-
tion has been contentious for decades or because it intertwines artificial intelli-

'
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gence and human-computer interaction. From our perspective, however, the
application is special. It just might be the path to major advances in hardening
the psychology of the interface. The eritical feature is the required inclusion of
a psychological model of the user (the student). The tutor itself must use the
model to predict student behavior—the very paradigm for using the Model
Human Processor. It actually goes the standard paradigm one better: that a
program, rather than a human psychologist, must make the evaluations and
predictions, insures objective caleulation and task analysis. (That the student
models will also be approximate needs hardly be said.)

Thus, intelligent tutoring might be the area in which the Model Fluman
Processor finally develops and succeeds enough to demonstrate to us adl that o
hard cognitive psychology of the interface is feasible, Once we see this clearly
in one area, developing it in other areas will go more casily. T'wo additional
factors provide cause for optimism. First, the intelligent tutor interface is a
rich one from the point of view of the Model Human Processor, because it com-
bines all the usual interaction phenomena with all the additional phenomena
of learning. Second, cognitive science in education is very ‘x(uvc currently, so
there is nm(h new science to draw upon. Indeed,
ongly: and explicitly linked to frontier work i in cogmuvu
(Anderson, Boyle, Farrell, & Reiser, 1984; VanlL.chn, 1983).

6. CONCLUSION

I;('.i us now state the main conclusions {0 our argument.

Gresham’s Law: Hard Science Drives Out Soft.  This principle is our task
analysis of the main constraints that will determine the future role of psycho-
logical science in human-computer interaction. Qur concern here has not been
to cheer for psychological science or other soft science for its own sake or for
professional reasons. We are unconcerned with whether psychology depart-
ments pmspcr or p%yclm](’)gists‘ have ;1dvquatc cmpl()ynu'm or wheth

1 they are

Wc (hml\ psych()logu al science has major p()—
tential contributions to make, but that, as soft science (compared to computer
science) its actual influence could well be marginal. ‘1
preventing this is to harden the science.

‘he only chance we see of

There 1s Nothing so Useful as a Good Theory. This is an old cliché, but it
serves our purpose. Striving to develop a theory that does task analysis by caleula-
tion is the key o hardening the science. We ried in The Psychology of Human-
Computer Interaction to provide a glimmer of what might be achicved in this re-
gard. We see additonal progress in the indications that calculations are

" ‘1. R o ? P g . . . . PO
possible in Anderson’s ACT* theory. The notion of approximation is important
to keep from setting the initial sights too high.
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Good Studies of the Interface Yield Theories, Not Facts. There is a strong
role for empirical studies of the interface, but it is not to evaluate proposed in-
terfaces, but to provide the basis for the theories. Most applications to the in-
terface should be made by applying theory, not by doing special experiments.
(Of course, some of the latter are useful as well.)

Psychological Research Best Affects Design by Providing the Designer Tools for
Thought. Psychological theories and experiments, such as Fius's index of
difficulty or Norman’s framework of trade-off analysis, can shape the way a de-
signer thinks about a problem. Analyses of the key constraints of a problem can
point the way to fertile parts of the design space. Providing tools for thought is
a more effective way of getting human engineering into the interface than run-
ning experimental comparisons between alternative designs.

The Race is Between the Tortoise of Cumulative Science and the Hare of Intui-
tive Design.  Intuitive experimental programming has been the basis for most
interface innovations because it is a cream-skimming technique. In an envi-
ronment of rapidly changing technology, experimental programming is the
way to get there the fastest with the mostest. From time to time this intuitive

dppl(m( h to de siqn t{( ts in(() diﬂ'icul( pmblcms which tth pr()vu]( pdy()l{ im

Yo

ogy dcvcl()pmcm d(sans are llu coin of the xL.llm For a science to 'Izzy a
significant role in technology, it must be the means by which important picces
of the design come to be. The reverse side of the coin is that this practical pres-
sure of technology can also be of benefit to psychological science itsell by pro-
viding a sustained, concrete set of problems to solve with visibly measurable
results. Whether shipboard chronometers for maritime navigation or human
interfaces for complex systems, nothing drives basic science better than a good

applied problem.
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