

Abstract

Research in knowledge-based software engineering has
led to advances in the ability to specify and automatically
generate software. Advances in the support of upstream
activities have focussed on assisting software developers.
We examine the possibility of extending computer-based
support in the software development process to allow end
users to participate, providing feedback directly to devel-
opers. The approach uses the notion of “agents” devel-
oped in artificial intelligence research and concepts of
participatory design. Namely, agents monitor end users
working with prototype systems and report mismatches
between developers’ expectations and a system’s actual
usage. At the same time, the agents provide end users with
an opportunity to communicate with developers, either
synchronously or asynchronously. The use of agents is
based on actual software development experiences.

1: Introduction

Research in knowledge-based software engineering has
led to advances in the ability to specify and automatically
generate software. This research has, in recent years, led to
advances in supporting upstream software processes,
including requirements analysis [18]. However, the tools
that exist are intended to assist software developers only;
end users are one-step removed from the systems being
developed for them. We examine the possibility of extend-
ing computer-based support in the software development
process to allow end users to participate, providing feed-
back directly to developers.

Our research effort shares many goals with research in
computer-supported cooperative work (CSCW), but it also
extends it by integrating it with concepts of participatory
design [4][7]. Namely, end users are also “stakeholders” in
a software product and need to be brought into the devel-
opment process. We build on an evolutionary model of
software development with the goal of improving the
expected usability of a system by active, computer-based

support for feedback from users of prototype systems.
Representative users would interact with prototype sys-

tems while software agents monitor their interactions and,
under certain conditions, enable synchronous and asyn-
chronous communication with the system developers or
other stakeholders. This agent-based interaction comple-
ments traditional participatory design in which users are
tightly integrated into the development process with face-
to-face meetings. The agent-based approach enables the
usability of a prototype to be observed unobtrusively
while users perform their normal tasks. It also reduces the
travel requirements between users’ and developers’ sites
in companies that are geographically distributed. Further-
more, agents can monitor a greater number of users as a
prototype becomes more robust or even after its distribu-
tion as a product.

This approach is based on real development experi-
ences and current research into agent-based software envi-
ronments. Namely, a system called Bridget was developed
by the Intelligent Interfaces Group at NYNEX with the
explicit goal of producing a more usable system for cus-
tomer sales representatives who create new accounts for
small businesses [1]. The development of Bridget illus-
trated a process in which participatory design was carried
out manually. Simultaneously, an environment called
HOS was developed in the Human-Computer Communi-
cation group at the University of Colorado to support
active delivery of design decisions recorded in a hyperme-
dia environment used by collaborating designers [17]. In
our present work, we extend the active delivery mecha-
nisms of HOS to provide support for the participatory
design process followed in the development of Bridget.
The discussion that follows explores the details of the par-
ticipatory design of Bridget and the possibilities for their
computer-based support.

2: Engineering a useful and usable system
for the domain of service provisioning

The development of Bridget, a new system for tele-

Agent-Based Support for Communication between
Developers and Users in Software Design

Andreas Girgensohn

NYNEX Science and Technology
White Plains, NY

E-mail: andreasg@nynexst.com

David F. Redmiles, Frank M. Shipman, III

Department of Computer Science
University of Colorado at Boulder

E-mail: {redmiles, shipman}@cs.colorado.edu

phone service provisioning, provides an example of partic-
ipatory software design. Many groups of stakeholders
participated: users, managers, quality assurance staff, and
billing and collections staff. Through this experience, the
potential role and benefit of agents became clear.

2.1: The problem domain of service provisioning

Service provisioning is the design of a telephone ser-
vice to meet a customer’s requirements. The interaction
between customer and service representative takes place
over a telephone. During the conversation with the cus-
tomer, the representative enters information into a variety
of databases. The representative’s main problem is access-
ing and updating mainframe databases. This problem is
common to any operation that maintains a large database
of customer and service information.

Currently service representatives attend three months of
training before interacting with a customer. Much of this
training time is spent learning how to work with the data-
bases. Since there is little or no support for the representa-
tives to manage database communications and navigate
the service information space, the representatives are often

too preoccupied to determine fully the needs of the cus-
tomers and the services available to them.

2.2: The Bridget system

The goal in the development of Bridget was to provide
the representatives with a uniform, window-based inter-
face that hides the intrinsic complexities of the mainframe
databases and provides support for customer service con-
figuration (see Figure 1). Bridget consists of a single, sim-
ple interface through which representatives can access all
the databases and submit orders to the appropriate depart-
ments (e.g., installation, billing). By decreasing the com-
plexity of the interface and freeing representatives from
complex database transactions, training time can be
reduced. Additionally, context-sensitive help reminds rep-
resentatives of information learned in training.

Bridget’s user interface is organized as a dynamic form
in which only the needed fields are shown. For example,
the fields for deposit information are not shown if the cus-
tomer’s credit rating is good enough. The form is scrolla-
ble and divided into several sections that can be opened
and closed by clicking the section titles.

Figure 1: Bridget

Details of each section are hidden under the shaded titles in the form-based interface. Selecting a title reveals
detailed fields that must be completed by the customer representative. In this screen, the first section has
been expanded, revealing fields about the customer’s service address.

2.3: User participation in developing Bridget

The views of several different groups of stakeholders
had to be included in the development of Bridget. The
intended users (customer representatives), their managers,
quality assurance and billing people all contributed their
knowledge of systems and tasks. These participants were
the source of domain knowledge. Observations of the
users in their work environment and discussions of various
tasks took place. Also, once or twice a week, some partici-
pants entered service orders in Bridget. They noticed bugs
and problems with the support for certain tasks and made
suggestions for how to improve the system. Our goal is to
facilitate this process with the support of agents.

We intentionally formulated the initial requirements for
Bridget in a vague way. Rather than considering the
requirements as being well-understood and inflexible, the
requirements provided an initial direction for system
development. Interviews were conducted with domain
experts, observation of service representatives were made
as they performed their task, and an analysis was per-
formed on the existing documentation and tools. Proto-
types demonstrated how a system might enable the service
representative to conceptualize their task in terms of ser-
vices and customer requirements rather than in terms of
databases and prescribed methods and procedures.

User participation in the design of Bridget led to fea-
tures that might not have been introduced otherwise. A
good example for this is Bridget’s built-in checklist.
Observation of users of earlier prototypes of Bridget
showed that they often overlooked filling some of the
required fields. Users did not notice the problem until after
Bridget refused to submit the service order to the main-
frame database and they had to go back to all the missing
fields. In response to the observed user problems, a built-
in checklist was added to Bridget. The checklist uses color
to indicate the parts of the form requiring work. Such an
embedded checklist draws the user’s attention without
requiring any extra screen real estate.

2.4: The software development process

The Bridget experience involves a model of software
development with the following elements or characteris-
tics: domain orientation, user-centered task analysis,
evolving prototypes, user participation, and constant com-
munication between users, developers, and other stake-
holders. The goals of usefulness and usability for Bridget
were defined in terms of users’ tasks (e.g., “enable repre-
sentatives to spend more time servicing the customer”).
These, in turn, could not be understood independently of
the more general domain. Members of the design team not
only spoke with potential end users but took some of the

same training. Evolution played a key factor as there was
not one, but many prototypes and trials with the end users.

The evolution of a system from this perspective occurs
as a feedback mechanism by responding to discrepancies
between a system’s actual and desired states. Crucial to an
understanding of the need for evolving prototypes is that
the “desired state” cannot be clearly articulated. Irrespec-
tive of training or task analyses, many design concepts
remain tacit [16]. The presence of an actual prototype
forces design decisions and their full implications to
become explicit [5][19].

The evolutionary model of software development we
have espoused is not completely novel. Boehm [2] sug-
gested a variation on the waterfall model that emphasized
iteration. Henderson-Sellers [8] increases the granularity
of iteration in a “fountain” model. However, a major dif-
ference between the model we espouse and that of others,
is that we consider participation of end users to be an
essential factor. The types of software systems these other
models address are often customer driven, but the cus-
tomer is only a manager of the end user or another person
projecting end user needs at a distance. Iteration in other
approaches is a means for software developers to converge
on specifications rather than a means to evolve a prototype
according to a growing understanding of the task at hand.
No method to date has considered the potential of agents
in software development.

3: Supporting user participation with agents

The key to the evolutionary model of software develop-
ment is continuous communication between developers,
end users, and other stakeholders. This ideal is problem-
atic since access to users is often difficult and the over-
head in developer time is large. To enable this process to
occur when it may otherwise not be feasible or convenient
we have begun to look at actively supporting communica-
tion via agents.

3.1: Expectation agents

In creating a prototype, developers have certain expec-
tations of how users should perform tasks with a system. If
these expectations do not match actual use, i.e. a “break-
down” in the developers’ expectations has occurred [19].
The users might be performing tasks in a suboptimal man-
ner or the developers’ expectations might be based on
false assumptions. Either the users need to be informed or
the system needs to be redesigned, but most importantly,
the discrepancy needs to be recognized and resolved early
in the development process.

Expectation agents can help in observing “actual use”
in contrast to “expected use.” Such agents know about a

family of tasks the system is intended to support and the
sequence of user interactions the developers envisioned
for performing these tasks. In the case of a mismatch,
agents may perform the following actions: (1) notify
developers of the discrepancy; (2) provide users with an
explanation based on developers’ rationale, (3) solicit a
response to or comment about the expectation. What
action is appropriate depends on the type of discrepancy
and whether the situation allows for immediate communi-
cation between users and developers.

In sum, this type of agent initiates a dialog between
users and developers in which the developers communi-
cate their

intent

 to the users and the users have the oppor-
tunity to respond. Additional follow-up discussions can
take place outside of the agent-based software develop-
ment environment.

This model of expectation agents parallels methods
used in the development of Bridget. In particular, develop-
ers had users redo their actual tasks using the newest pro-
totype. The developers observed and asked for
explanations of unexpected behavior after the task was
completed. The users also used Bridget unsupervised and
compiled a list of suggestions for changes.

3.2: Extending existing field methods

The use of agents makes it possible to involve more
users in parallel, to exchange information more efficiently,
and to provide a better documentation of the design deci-
sions than a manual process of data collection such as fol-
lowed in the development of Bridget. However, our flavor
of agent-supported participatory design is not intended
and cannot be a complete replacement for traditional par-

ticipatory design. Direct interactions between developers
and users are generally richer and are obviously essential
before an initial prototype is created. We see agents as a
way of making these interactions more productive by
enabling them to be more convenient, more frequent, and
more precisely directed with respect to requirements spec-
ification.

Furthermore, existing methods of task analysis provide
developers with the basis for deriving expectations based
on users’ tasks and representing these expectations in such
a way that similarities and discrepancies may be identi-
fied. Existing methods include cognitive walkthroughs
[12], predicate representations [15], and task action gram-
mars [9].

3.3: Facilitating communication

The notion of agents introduced with this work is that
of a mechanism to facilitate communication. The commu-
nication enables a mutual understanding to evolve
between developers and end users. The emphasis is on
accurately matching a system to the needs of its intended
users and less on enforcement of requirements that, in
actuality, may be inappropriate for a problem situation. In
this role, agents provide several advantages.

In the development of Bridget, participatory design was
very helpful. However, this process required a lot of trav-
elling both by the developers going to the users’ offices
and by the other participants coming to the developers’
site. The geographical distribution of users and developers
is increasingly a problem with national and multinational
companies. Agents can alleviate this situation to a degree
by supporting

distance communication

.

Figure 2: Message of an expectation agent

Distance communication is the notion that developers
would not always have to travel to user sites to share
design decisions. Video link up’s to console monitors as
well as for person-to-person communication would be
facilitated by agents. A shared workspace between devel-
opers and users can be used to explore new ideas for the
application. The combination of the shared workspace
with video can be used to make the participants aware of
each others focus of attention [10].

Using agents to initiate person-to-person communica-
tion creates the potential for agents to provide the user
with an explicit or implicit choice as to whether a discus-
sion occurs. It also provides the potential for the user to
choose between synchronous and asynchronous modes of
communication. Despite the richness of face-to-face com-
munication, asynchronous communication mechanisms
(e.g. electronic mail, design rationale) have advantages for
discussions where comments and arguments are carefully
crafted. Also, people seem more open to conveying or
receiving negative criticism from a computer than a
human.

4: Examples of agents in Bridget

Some examples are given below in order to illustrate
how expectation agents would be used. The context for the
examples is that system developers have already imple-
mented a prototype version of Bridget (see Figure 1). The
prototype is the result of establishing an initial set of
requirements through discussions with end users (service
representatives) and their managers, as well as an analysis
of observing existing tasks the end users perform. Agents
monitor the trial use of this prototype and support commu-
nication between developers and end users with the goal
of refining the prototype and the requirements it imple-
ments.

As mentioned earlier, the primary task the Bridget end
users perform is to establish a new service account for a
customer. Over the phone, the service representative solic-
its information from the customer. The process requires
accessing several legacy databases. The first of these data-
bases is used to validate the new customer's address. In
addition to validation, the query to this database returns
information about services available at that address. This
information can constrain the information fields in the ser-
vice configuration section. In developing the initial
requirements and prototype, the developers made an
assumption that the customer representatives would ini-
tiate the address validation query by clicking on the “Vali-
date Address” button (at the top of the screen in Figure 1)
when they finished filling out that section and before pro-
ceeding to the next section. Doing so gives time for the
query to be evaluated before the additional configuration

information is needed.
The above assumption is expressed by the developers in

an agent either through the agent editor or created by dem-
onstration (see Section 5.2). If the customer representative
opened another section (e.g., “Listing”) before starting
address validation, a discrepancy between expected and
actual use would occur; the agent would be triggered. As a
result, the representative would be presented with ratio-
nale and the possibility to respond, shown in Figure 2.

Another use for an expectation agent in Bridget is to
determine any changes to the order of the sections in the
form. While customer representatives may fill out sections
in any order, they can be more efficient if the sections are
placed in the normal usage order. An agent can keep statis-
tics about the order followed by many representatives.
Such usage patterns will be reported back to developers.
Patterns found can then be used to engage users in discus-
sions about whether a changed order would be better or
whether some fields should be put in different sections.
The goal of such changes being a more natural flow, mini-
mizing the jumping back and forth between sections.

A user-initiated mechanism, such as a “suggestion” but-
ton, can be used to support the volunteering of comments
and suggestions by Bridget users. Beyond traditional elec-
tronic mail, the suggestion button could combine the user's
suggestion together with the user's current context, such as
recent actions, to be sent to the developers. This informa-
tion can improve the developer's understanding of the
user's situation and suggestion.

5: A software substrate implementing agent-
based support

The preceding section points to a number of ways in
which agents can aid the participatory process that
occurred during the creation of Bridget. Our initial investi-
gation of agents is based on the Hyper-Object Substrate
(HOS) [20]. HOS provides a domain-independent frame-
work, combining characteristics of hypermedia and
knowledge engineering systems.

5.1: Agents in the Hyper-Object Substrate

Agents in HOS use the information represented in the
form of attributes and relations to determine when to take
some action. They search for objects with certain
attributes within the system and perform operations based
on what, if any, objects they locate.

Agents consist of a trigger, a query, and an action. This
representation, detailed in Figure 3, is similar to the repre-
sentation of agents in OVAL [14]. The trigger specifies
when the agent evaluates its query. Any objects that are
returned by the query are passed to the action. If no objects

are returned, the action is not performed.
The existing set of triggers, queries, and actions for

agents is being extended in order to provide support for
participatory design. This includes a representation to
allow queries which look for cases of unexpected user
behavior and actions to create real-time textual, audio, or
video links.

Triggers: Controlling the Activity.

The first compo-
nent of an agent object is the trigger. The trigger defines
when an agent is active, i.e. when it will evaluate its query.
As such the trigger defines the agent’s control characteris-
tics—whether the agent will interrupt the user or not. HOS
includes the following options for triggering: (1) check
every action of the user, (2) check only when requested by
the user, (3) check when the agent is displayed, and (4)
check immediately after the definition of the agent.

The addition of a trigger for specific user events (i.e.
opening form, pressing button, exiting field) will enable
better control of when agents may interrupt users. This
control is necessary since agents, like the developers
observing Bridget use, should not interrupt users in the
middle of partially completed tasks.

Queries: Looking at the Current Situation.

 The sec-

Figure 3: Representation for agents

Options currently available in HOS are shown
in normal type, extensions for supporting user/
developer communication are shown in italics.

Formal representation for agents:

Agent = {<trigger> <query> <action>}

<trigger> = {immediate | every action |
when requested | when displayed |
particular user event}

<query> = {object has property | relation
between objects exists | user events
match/don’t match pattern | usage
statistics in/out of range}

<action> = {present message | add
bookmark | collect/display objects |
select/highlight objects | establish
A/V communication link | record work
context}

How agents are activated:

WHEN <trigger>

IF <query> returns information

THEN do <action> with information
returned

ond component of a HOS agent is a query. The query
defines the information that must be located before the
agent will execute its action. HOS currently allows queries
for objects with some combination of attributes and rela-
tions. For example, a query could search for objects which
have the attribute “Assigned to” with a value of “David”
and the attribute “Completion date” with value “April 20”.

Additional queries important for representing expecta-
tion agents are matching user events to expected events
and comparing usage statistics to expected usage. The
agent whose output is shown in Figure 2 would use event
patterns to compare actual use (user opens “Listing” sec-
tion) to expected use (validate address before opening
another section).

Actions: Advertisement and Collection.

The final
component of a HOS agent is an action. The trigger and
query together determine whether an action will be taken.
The action defines the support service that the agent will
provide. In HOS, the options for actions are (1) present a
message to the user, (2) create a hypertext bookmark, (3)
collect found objects in the current view, and (4) select/
highlight found objects.

An action creating an audio/video link is needed for
agents supporting distance communication. Besides facili-
tating communication between developers and users, this
action would implement agents which connect users to
peers, “power users”, or managers as well. The action to
save the work context requires a representation of the cur-
rent state and the last several events to provide developers
with information needed to interpret users’ comments and
concerns.

5.2: Interface for the creation of agents

Interfaces for creating agents are important because of
the potential for the benefits provided by agents to be
overshadowed by the costs of creating and maintaining
them. To address this concern we have begun looking at
both specialized editors and the use of programming by
demonstration for manipulating agents.

In the development of editors for defining agents, meth-
ods and techniques used for achieving end-user modifi-
ability [6] and incremental formalization [20] play a
prominent role. Developers can currently create or modify
agents in the “agent editor” shown in Figure 4. The agent
editor provides popup menus containing a set of triggers
and actions. After selecting a particular trigger or action,
the developer is asked to specify extra information needed
for that trigger or action. For example, when a developer
selects the action to “present a message” or “add a sugges-
tion to the bookmark list” the system asks what message
should be displayed or what view should be added to the
bookmark window.

The query definition area within the agent editor cur-
rently limits queries to searching for objects with a partic-
ular set of attributes. The need to express developer
expectations and our experience with the use of HOS
agents [17][20] has indicated the need for greater expres-
siveness within query definition. But greater expressive-
ness generally comes at a reduction in ease of use.

To reduce the burden of defining expectation agents a
method similar to programming by demonstration [3] may
be useful. Developers would demonstrate how a certain
task should be performed. These demonstrations are
recorded and analyzed for patterns which are turned into
agents. Rules identify which parts of an interaction are
important so that the generation of agents for less impor-
tant interactions can be avoided. After the agents are gen-
erated, the developers can fine-tune them if necessary,
e.g., by introducing variables or ranges of values. After the
agents are generated, they should be tested with a few
users, i.e., the user feedback mechanism would be turned
off to see whether the number of interruptions of the users
is reasonable. An advantage of this approach to agent cre-
ation is that multiple agents can be defined from the same
demonstration(s). Also, the implicit expectations of the
developer may be captured through their creation of dem-

onstrations.
Managing and adapting agents is also a concern. In par-

ticular, experiences with HOS point to the necessity of
developing better interfaces for agent management. The
small knowledge-based systems developed within the
class projects had only on the order of tens of these agents.
Larger projects, with longer lifetimes and many stakehold-
ers creating agents, can expect many more. This leads to
the issue of how a system can provide users with control
of these agents without requiring too much extra effort.
We have begun investigating methods for manipulating
groups of agents at once.

Another important aspect is the adaptation of agents to
changing prototypes of the system. The agent mechanism
needs to be able to identify which agents are affected by a
change and ask the developers whether these agents
should be discarded or changed.

Trade-offs between the expressiveness and ease-of-cre-
ation of agents are guaranteed. By providing a variety of
methods for defining agents we hope to allow developers
to make decisions concerning agent creation within the
context of their work.

Figure 4: The agent editor in HOS

The top part of the interface is where the user chooses a trigger from a popup menu of choices. In the middle
the user defines the query and in the lower part the action to be performed if objects are returned by the
query. The agent being edited will check to see if the user closes the customer section before address
validation is started. The result of the agent’s action is shown in Figure 2.

6: Conclusions

Complex relationships exist among people, tools, and
tasks. One of the crucial aspects of these relationships is
that they all change over time in a co-adaptive manner:
people adapt their practices and problem-solving approach
to the affordances of a tool, and people adapt their tools to
better support their practices and problems [4][13]. Our
approach supports co-adaptation by supporting communi-
cation of

design intent

 among software developers, from
software developers to end users, and from end users back
to developers. Alan Kay notes that “many are just discov-
ering that user interface design is not a sandwich spread
[11];” our approach seeks to improve the usefulness and
usability of a software system by focusing on the process
of systems development and not just on the end result.

The process of developing Bridget has been very help-
ful in identifying the potential benefits that agents support-
ing participatory design can have. Agents can
communicate the designers’ intent to the users and estab-
lish communication links. Combining these capabilities in
a software development environment will help in the pro-
duction of more user-centered software.

Acknowledgments

We thank Hiroshi Ishii for his many helpful comments
about this formative work. We also thank Mike Atwood
and Gerhard Fischer for supporting this research. This
work is part of an on-going project also involving Beatrix
Zimmermann, Alison Lee, Althea Turner, Bart Burns, and
Jonathan Ostwald. The effort at C.U. is funded by
NYNEX and by the Advanced Research Projects Agency.

References

[1] Atwood, M.E., Burns, B., Girgensohn, A., Zimmermann,
B. Dynamic Forms: Intelligent Interfaces to Support
Customer Interactions, Technical Memorandum TM 93-
0048, NYNEX Science & Technology, White Plains, NY,
Dec. 1993.

[2] Boehm, B.W. A Spiral Model of Software Development
and Enhancement.

IEEE Computer

 21, 5 (May 1988), pp.
61-72.

[3] Cypher A. (ed.),

Watch What I Do: Programming by
Demonstration

. The MIT Press, Cambridge, MA, 1993.

[4] Ehn, P.

Work-Oriented Design of Computer Artifacts

.
Almquist & Wiksell International, Stockholm, Sweden,
1988.

[5] Fischer, G., Lemke, A.C., McCall, R., Morch, A. Making
Argumentation Serve Design.

Human Computer
Interaction

 6, 3-4 (1991), pp. 393-419.

[6] Girgensohn, A. End-User Modifiability in Knowledge-
Based Design Environments. Ph.D. Thesis, Department of
Computer Science, University of Colorado, June 1992.

[7] Greenbaum, J., Kyng, M.

Design at Work: Cooperative
Design of Computer Systems

. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1991.

[8] Henderson-Sellers, B. The O-O-O methodology for the
object-oriented life cycle.

ACM SIGSOFT Software
Engineering Notes

 18, 4 (Oct. 1993), pp. 54-60.

[9] Hoppe, H.U. Task-Oriented Parsing: A Diagnostic Method
to be Used by Adaptive Systems. In

Proceedings of CHI
‘88

, ACM, New York, May 1988, pp. 241-247.

[10] Ishii, H., Kobayashi, M., Grudin, J. Integration of Inter-
Personal Space and Shared Workspace: ClearBoard Design
and Experiments. In

Proceedings of CSCW ‘92,

 ACM,
New York, 1992, pp. 33-42.

[11] Kay, A. C. In

The Art of Human-Computer Interface
Design

, B. Laurel, Ed. Addison-Wesley Publishing
Company, Reading, MA, 1990, pp. 191-207.

[12] Lewis, C., Polson, P., Wharton, C., Rieman, J. Testing a
Walkthrough Methodology for Theory-Based Design of
Walk-Up-and-Use Interfaces, In

Proceedings of CHI ‘90

,
ACM, New York, 1990, pp. 235-242.

[13] Mackay, W. E. In

CHI’92 Basic Research Symposium

,
1992.

[14] Malone, T.W., Lai, K.Y., Fry, C. Experiments with Oval:
A Radically Tailorable Tool for Cooperative Work. In

Proceedings of CSCW ‘92,

ACM, New York, 1992, pp.
289-297.

[15] Mannes, S., Kintsch, W. Routine Computing Tasks:
Planning as Understanding,

Cognitive Science

 3, 15
(1991), pp. 305-342.

[16] Polanyi, M.

The Tacit Dimension

, Doubleday, Garden
City, NY, 1966.

[17] Reeves, B.N., Shipman, F.M. Supporting Communication
between Designers with Artifact-Centered Evolving
Information Spaces. In

Proceedings of CSCW ‘92,

ACM,
New York, 1992, pp. 394-401.

[18] Reubenstein, H.B., Waters, R.C. The Requirements
Apprentice: Automated Assistance for Requirements
Acquisition,

IEEE Transactions on Software Engineering

17, 3 (March 1991), pp. 226-240.

[19] Schön, D.

The Reflective Practitioner: How Professionals
Think in Action

. Basic Books, New York, 1983.

[20] Shipman, F.M., McCall, R. Supporting Knowledge-Base
Evolution with Incremental Formalization. In

Proceedings
of CHI ‘94,

ACM, New York, 1994, pp. 285-291.

