
ABSTRACT
Software architectures evolve as the result of numerous, inter-
related design decisions. At any point in an architecture’s evo-
lution, current decisions can critically affect alternatives at later
stages, and each decision has the potential of requiring previ-
ous decisions to be reconsidered. Analysis techniques that pro-
vide feedback only after “complete” sequences of design
decisions have been made do not directly support the evolu-
tionary nature of the architecture design process. We present a
system for architectural analysis that more closely supports
evolution by providing feedback as design decisions are made.

Keywords
Domain-oriented design environments, software architecture,
human cognitive needs, software evolution

INTRODUCTION
Existing approaches to architectural analysis are coarse-grained
and discrete. Design decisions are entered into a formal repre-
sentation. That formal representation is fed as input to analysis
tools which produce output regarding properties of the repre-
sentation. Finally, architects interpret the output, relate it back
to design decisions embodied in the representation, and prepare
the design for another iteration. In sum, existing approaches
require the architect to suspend the evolution of the architecture
by creating a snapshot for analysis and, consequently, to sus-
pend or delay the decision-making process by clustering modi-
fications between evaluation opportunities. This design process
is coarse-grained, operating on whole architectures as units.
The cognitive process is correspondingly coarse-grained, deal-
ing with clusters instead of individual decisions.

In contrast to this coarse-grained, discrete approach, we propose
a fine-grained, concurrent approach. Namely, we describe a
design environment that uses critics to perform analysis on par-
tial architectural representationswhile architects are considering
individual design decisions and modifying the architecture.

Analysis is concurrent with decision-making so that architects
are not forced to suspend the architecture’s evolution or cluster
their decisions in preparation for analysis. Feedback from critics
can be used by architects while they are considering design
decisions. Furthermore, feedback is directly linked to elements
of the architecture thereby assisting architects in applying the
feedback in revising the design. We believe this approach more
directly supports the evolutionary nature of the architecture
design process and the cognitive needs of software architects.

CRITICS AND CONTROL MECHANISMS IN ARGO
Traditional approaches to software analysis follow the authori-
tative assumption: they support architectural evaluation by
proving the presence or absence of well defined properties.
This allows them to give definitive feedback to the architect,
but limits their application to late in the design process after the
architect has formalized substantial parts of the architecture.

Critics are active agents that support decision-making by con-
tinuously and pessimistically analyzing partial architectures.
Each critic checks for the presence of certain conditions in the
partial architecture. Due to their continuous and pessimistic
nature, however, care must be taken to ensure that critics do not
distract the architect by providing an overwhelming volume of
feedback. Criticism control mechanisms are used to control the
execution of critics and manage their feedback, so as to inform
the architect without distracting from the design task at hand.
Critics are embedded in adesign environment where they have
access to the architecture as it is being modified and to a model
of the design process as it is being enacted. Figure 1 shows an
overview of Argo, our design environment for evolving soft-
ware architecture. Figure 2 shows a screenshot of Argo model-
ing an example architecture.

The critic-based approach makes what we call the informative
assumption: architects are capable of making design decisions,
and analysis is used to support architects by informing them of
potential problems and pending decisions. Critics are written to
pessimistically detect potential problems. They need not go so
far as to prove the presence of problems; in fact, formal proofs
are often not possible, or meaningful, on partial architectures.

Critics can deliver knowledge to architects about the implica-
tions of, or alternatives to, a design decision. In the vast major-
ity of cases, critics simply advise the architect of potential
errors or areas needing improvement in the architecture; only
the most severe errors are prevented outright, thus allowing the
architect to work through invalid intermediate states of the
architecture. Architects need not know that any particular type
of feedback is available or ask for it explicitly. Instead, they

Argo: A Design Environment for Evolving Software Architectures

Jason E. Robbins David M. Hilbert David F. Redmiles

Department of Information and Computer Science
University of California, Irvine
Irvine, California 92697-3425

{jrobbins,dhilbert,redmiles}@ics.uci.edu

This research is supported in part by the Air Force Material Command and
the Advanced Research Projects Agency under Contract Number F30602-
94-C-0218, and by the National Science Foundation under Contract Number
CCR-9624846. Additional support is provided by Rockwell International.
The content of the information does not necessarily reflect the position or the
policy of the funders and no official endorsement should be inferred.

Appeared in Proc. 19th International Conference
on Software Engineering. Boston, MA. May 17-23,
1997. Pages 600-601.



simply receive feedback as they manipulate the architecture.
Feedback is often most valuable when it addresses issues that
the architect had previously overlooked.

We can define a variety of potential types of critics, each type
delivering a specific kind of knowledge. Correctness critics
detect syntactic and semantic flaws in the partial design. Com-
pleteness critics detect when a design task has been started but
not yet finished. Consistency critics detect contradictions
within the design. Presentation critics detect awkward use of
the notation. Alternative critics remind the designer of alterna-
tives to a given design decision. Optimization critics suggest
better values for design parameters. Some critics may be of
multiple types, and new types may need to be defined, as
appropriate, for a given application domain.

Criticism control mechanisms select critics for execution. Dur-
ing execution a critic evaluates its analysis predicate and, if
appropriate, constructs a “to do” list item and posts it. Criticism
control mechanisms ensure relevance and timeliness by using
explicit models of the design goals and the design process.
Attributes on each critic identify what type of design decision it
supports. Criticism control mechanisms check those attributes
against the design goals and process model. Argo’s process
model is an activity network, where each activity addresses
design decisions of a certain type; the architect indicates which
activities are currently in progress, and control mechanisms
activate only timely critics.

Once critics generate design feedback, it must be presented to
the architect in a usable form without distracting the architect.
In Argo, the “to do” list user interface presents feedback to the
architect (Figure 3). When the architect selects a pending feed-
back item from the upper pane, the associated (or “offending”)
architectural elements are highlighted in all design perspectives
and details about the open design issue and possible resolutions
are displayed in the lower pane.

RELATED WORK
Our focus on the cognitive needs of architects stems from the
work of Fischer and colleagues [1]. In applying design envi-
ronments to software architecture [4], we extended previous
design environment facilities to support cognitive needs identi-
fied in the cognitive theories of reflection-in-action (via critics),
opportunistic design (via a process model and “to do” list”),
and comprehension and problem solving (via multiple-coordi-
nated views [3, 6]).

Aesop [5] is a tool that generates style-specific software archi-
tecture design environments from a set of formal style descrip-
tions. Aesop primarily addresses requirements of architecture
representation, manipulation, visualization, and analysis, with-
out providing explicit support for evolutionary design or the
architect’s cognitive needs.

STATUS
It is our goal to develop and distribute a reusable design envi-
ronment infrastructure that others may use, extend, and inte-
grate with their research to better support architectural
evolution and architects’ cognitive needs. To date we have pro-
duced two prototypes. The initial version, coded in Smalltalk,
was demonstrated at ICSE-17. The current version is imple-
mented in Java and is available with documentation via http://
www.ics.uci.edu/pub/arch.

REFERENCES
1. Fischer, G. Domain-Oriented Design Environments.Proc. 7th

Knowledge-Based Software Engineering Conference, 204-213.
2. Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., and Sumner, T.

Embedding Computer-Based Critics in the Contexts of Design.
INTERCHI’93. April 1993, 157-164.

3. Kruchten, P. B. The 4+1 View Model of Architecture.IEEE
Software. Nov. 1995, 42-50.

4. Robbins, J. E., Hilbert, D. M., Redmiles, D. F. Extending Design
Environments to Software Architecture Design. KBSE’96, 63-72.

5. Shaw, M., Garlan, D.Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

6. Soni, D., Nord, R., Hofmeister, C. Software Architecture in Industrial
Applications.Inter. Conf. on Software Engineering 17, 1995, 196-207.

Figure 2. Conceptual Architecture Perspective

Figure 1. Design Environment Facilities of Argo

To Do

Architect

Critics with Design Knowledge

Internal
Representation Design

Feedback

Control

Design Interactions

Process
ModelPerspectives

List

Decision
Model

Analysis
Situated

To Do

Architect

Critics with Design Knowledge

Internal
Representation

Design

Feedback

Control

Design Interactions

Process
ModelPerspectives

List

Decision
Model

Analysis
Situated

Figure 1. Design Environment Facilities of Argo

Figure 3. The Architect’s To Do List


